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Abstract

Let {T,T'} be a Latin bitrade. Then T (and T") is said to be (r,c,e)-
homogeneous if each row contains precisely r entries, each column contains
precisely c entries, and each entry occurs precisely e times. An (r,c,e)-
homogeneous Latin bitrade can be embedded on the torus only for three
parameter sets, namely (r,c,e) = (3,3,3),(4,4,2), or (6,3,2). The first
case has been completely classified by a number of authors. We present
classifications for the other two cases.
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1 Imntroduction

Let R, C, and E be non-empty finite sets of cardinality n. A partial Latin square
is an n x n array with rows indexed by R, columns indexed by C, and entries
from E, in which each cell is either empty or contains precisely one entry, and
no entry occurs more than once in any row or column. Let T be a partial Latin
square. Then T is a Latin trade if there exist a partial Latin square T' with the
properties that
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1. a cell is filled in T if and only if it is filled in T,
2. no entry occurs in the same cell in T and T",
3. in any given row or column, T and T” contain precisely the same entries.

The partial Latin square 7" is called a trade mate of T and the unordered pair
{T,T'} a Latin bitrade. The above definitions permit empty rows, empty columns,
and non-occurring entries. However it is usual and convenient to ignore these and
assume that every row and every column contains some entry, and each entry
occurs in some cell of the partial Latin square.

A topological representation of a Latin bitrade {T,T"} can be constructed as
follows. For both T and 7', re-define R = {r1,7s,...,7z}, C = {c1,¢2,...,¢},
and E = {ey,€3,...,e,} to be the sets of (non-empty) rows, (non-empty) columns,
and (occurring) entries respectively. Let m = £+y+2. The Latin trade T can now
be represented as a set St of triples {r;, ¢;, ex} where the entry e occurs in row r;,
column ¢; of the trade and similarly for 7'. The cardinality of S is called the size
of the Latin trade; n = |St| = |Sr|. Now take the sets of triples St and St as
black and white triangular faces respectively and sew them together along common
edges. This representation will not necessarily be connected but each component,
which may be a surface or pseudosurface, will itself be the representation of a
Latin bitrade. In this representation the Euler characteristic x of a connected
Latin bitrade is F + V — E where F is the number of faces, V is the number
of vertices, and E is the number of edges. Thus V =m, F = 2n, E = 3n and
therefore x = m — n. In this paper our interest is in the case where m = n and
the Latin bitrade forms a surface rather than a pseudosurface. Such bitrades are
often called separated in the literature. Since the surface is necessarily orientable
it is the torus.

A Latin trade T is k-homogeneous if each row and column contains precisely
k entries and each entry occurs precisely k times in T. An example of a 2-
homogeneous Latin trade is the Latin square of order 2 and it is easy to see that
every 2-homogeneous Latin trade is the disjoint union of such squares. But the
situation for k = 3 is more complex as the example in Figure 1 shows.

2 3 4 3 4 2

3 1 4 1 4 3
1 2 3 31 2

1 4 2 2 1 4

Figure 1: A 3-homogeneous Latin bitrade.
A construction for 3-homogeneous Latin trades, based on a hexagonal packing

of circles in the plane, is given in [3]. Cavenagh [2], then classified all such trades,
showing in fact that the construction in [3] gives all 3-homogeneous Latin trades.
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Further independent proofs appear in (4] and [6]. An alternative solution to the
classification, based on the work of Altshuler [1], and Negami [8], was then given
in [5]. An essential feature of this latter classification is that the topological repre-
sentation, as described above, of every 3-homogeneous Latin bitrade is necessarily
the torus.

The concept of k-homogeneity of Latin trades may be generalized. A Latin
trade T is (r,¢, e)-homoageneous if each row contains precisely r entries, each col-
umn contains precisely ¢ entries, and each entry occurs precisely e times in T'.
Clearly, if T is any trade mate of T then T” itself is also (r, ¢, €)-homogeneous
and the pair {T,T'} is called a (r, ¢, €)-homogeneous Latin bitrade. For an (r, ¢, e)-
homogeneous Latin trade, n = zr = yc = 2¢, 80 x = ¢+ y + 2 — ar =
zr(l/r + 1/jc+ 1fe ~1). If x = 0 then 1/r +1/c+ 1/e = 1. By considering
the conjugates of a partial Latin square we may assume without loss of generality
that r > ¢ > e, and so there are just three solutions

1. r=3,¢c=3,e=3,
2.r=4,c=4, e=2,
3. r=6,¢c=3, e=2.

The first of these is the case considered in [5]. In the next two sections we
consider the remaining two cases and obtain a complete classification of separated
Latin bitrades of these types. The situation is therefore slightly different from case
1. since for 3-homogeneous Latin bitrades, every such bitrade is separated.

2 Separated (4,4,2)-homogeneous Latin bitrades

Let {T,T'} be a separated (4,4, 2)-homogeneous Latin bitrade, and consider its
topological representation on the torus. Then every vertex 7; € R and ¢; € C has
valency 8 and every vertex e; € E has valency 4. Now remove all the vertices
ex, together with their incident edges. The graph which remains has ¢ + y = 2z
vertices, all of which have valency 4. Hence the graph has 4z edges and so its
embedding on the torus has 2z faces. Since the graph is also bipartite with the
sets R and C forming the vertex bipartition, it follows that every face is a 4-cycle,
i.e. what remains is a quadrangulation of the torus by a 4-regular graph. Such
quadrangulations have been completely classified by Altshuler [1], see also [7).
First consider the quadrangulation Q, shown in Figure 2, of the domain

{(z,y) eR?: 0<z<s, 0<y<p},

where p and s are positive integers.

345



D 1 2 . . . s
Figure 2: Quadrangulation of {(z,y) € R?: 0<z<s, 0<y<p}

In order to convert this into a quadrangulation of the torus, first identify the
upper and lower sides of the rectangle in the usual way to form an open-ended
cylinder. Now glue one of the boundaries of the cylinder to the other so that the
point (0,¥), 0 < y < p coincides with the point (s,3'), 0 <y <pify—-y' =¢
(mod p), where q is an integer satisfying 0 < ¢ < p. Informally we make a “twist”
in the cylinder before gluing the two boundaries. This procedure defines the
standard {-regular quadrangulation Q(p,q,s). For our purposes, the main result
in both [1] and [7] is the following theorem.

Theorem 2.1 Every quadrangular embedding of a 4-regular graph in the torus, is
isomorphic to some stendard gquadrangulation Q(p,q,s) for some integers s > 1,
p>3,andqg>0.

However, not every quadrangulation Q(p, g, s) can arise from the process of
removing the vertices e; € E, together with their incident edges, from the toroidal
embedding of a separated (4,4, 2)-homogeneous Latin bitrade. As stated above,
the 4-regular graph which remains is bipartite. So we must determine which of
the quadrangulations Q(p, g, s) are of bipartite graphs. Since the upper and lower
sides of @ are identified, it follows immediately that p must be even. Further,
the vertices (0,y) and (s,y) will be in the same vertex partition if s is even and
different vertex partitions if s is odd. Hence, in gluing the boundaries of the
cylinder so that the points (0,y) and (s,y’) coincide, in order for the graph to be
bipartite, ¥ — ¥’ must have the same parity as s. Since y — y' = ¢ (mod p), and
p is even it follows that g and s are either both even or both odd. Finally we
need to recover the Latin bitrade from the toroidal quadrangulation of a 4-regular
bipartite graph. This is easy. Simply place a new vertex into each face of the
quadrangulation and insert edges connecting it to each of the four vertices which
determine the face. We therefore have the following theorem.

Theorem 2.2 There is a one-one correspondence between separated (4,4, 2)-homo-
geneous Latin bitrades and quadrengulations Q(p,q,s) of the torus with p.= 0
(mod 2),p>4,andq=3s (mod 2),s>1,q2>0.
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It is also worth remarking that if T is a separated (4, 4, 2)-homogeneous Latin
trade, then any trade mate 7' will be unique. Let e; € E. Then there exist
r, T# € R and ¢;, ¢y € C such that {r;,c;,e;}, {r#,cjs,ex} € Sr. Moreover
these are the only triples containing ex. Thus {r;,c;,ex}, {ri,cj,ex} € Stv,
i.e. the trade mate is uniquely determined. (The same argument applies to any
homogeneous Latin trade with r, ¢, or e = 2.) We conclude this section with
an example. Figure 3 below shows a separated (4, 4, 2)-homogeneous Latin trade
together with its trade mate and Figure 4 shows the quadrangulation Q(4, 3, 5)
corresponding to this Latin bitrade.

01 2 3 4 5 6 7 8 9
Ofr q a w
116 ¢ s c
21s r m k
31 w t n p
4 k f e J
5 n m h g
6|la g f b
71 ¢ i h d
8 d w e v
9 J p t g

01 2 3 4 5 6 7 8 9
Ola r w q
1({s ¢ t b
2 r k s m
3 t n p v
4 J k f e
5 m g n h
61b f a g
71 d h c 1
8 v e d w
9 q i i p

Figure 3: A (4,4, 2)-homogeneous Latin bitrade.
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RO c0 R1 Cl1 R8 C6

Figure 4: The quadrangulation Q(4,3,5).

3 Separated (6,3,2)-homogeneous Latin bitrades

The approach to the classification of separated (6,3, 2)-homogeneous Latin bi-
trades is similar to that in the previous section. Let {T',7'} be a separated
(6,3,2)-homogeneous Latin bitrade, and consider its topological representation
on the torus. Then every vertex r; € R has valency 12, every vertex ¢; € C' has
valency 6, and every vertex e, € F has valency 4. Remove all the edges which
join vertices in the set R to vertices in the set E. Now every vertex r; has va-
lency 6 and every vertex e has valency 2, whilst the valency of every vertex c;
remains unchanged. Then suppress all the vertices ex. The graph which remains
is 6-regular, with each vertex r; incident with 6 vertices from the set ' and each
vertex ¢; incident with 3 other vertices from the set C' and 3 vertices from the set
R, occurring alternately around the vertex ¢;. There are x + y = 3z vertices and
9z edges and so its embedding on the torus has 6z faces. It follows that every face
is a 3-cycle, i.e. what remains is a triangulation of the torus by a 6-regular graph.
Such triangulations have also been completely classified first by Altshuler [1], and
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later by Negami [8]. Our approach, which follows that of Negami, is similar to
the previous section. First consider the triangulation 7, shown in Figure 5, of the

domain
{(z,y) €R®: 0<z<s, 0<y<p},

where p and s are positive integers.

p

0 1 2 . . . 3

Figure 5: Triangulation of {(x,y) € R?: 0<z <s, 0<y <p}.

Again, in order to convert this into a triangulation of the torus, first identify
the upper and lower sides of the rectangle in the usual way to form an open-ended
cylinder. Then glue one of the boundaries of the cylinder to the other so that the
point (0,y), 0 < y < p coincides with the point (s,3"), 0 <y’ < pify—y' =g¢
(mod p), where g is an integer satisfying 0 < ¢ < p. This defines the standard
6-regular triangulation T(p,q,s). For our purposes, the main result in both [1]
and [7] is the following theorem.

Theorem 3.1 Every triangular embedding of a 6-regular graph in the torus, is
isomorphic to some standard triangulation T(p,q,s) for some integers s > 1,
p>3,andq>0..

As in the previous section, not every triangulation T'(p, ¢, s) can arise from the
above process and again we must determine those which do. So suppose that the
vertex (z,y) € R. Then the vertices (z,y + 1), (z—1,y), (z—1,y-1), (z,y —
1), (z+1,y), (z+1,y +1) € C. Moving to the vertex (z + 1,y) € C, it then
follows that (z+ 1,y —1) € R, (z+2,y) € C, and (z + 2,y + 1) € R, and further
by moving to the vertex (z + 2,y) € C, that (z+2,y~1) € C, (z +3,y) € R,
and (z + 3,y + 1) € C. In particular if (z,y) € R then (z +1,y), (z+2,y) €C
and (z + 3,y) € R. Similarly (z,y + 1), (z,y+2) € C and (z,y + 3) € R. Also
(z+1,y—1) € R. Therefore the toroidal embedding is labelled as shown in Figure
6 below.
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C C R C c R C

ok C C R C C sR

Figure 6: Labelled triangulation of T'(p, ¢, ).

Since the points (z,0) and (z,p), 0 < z < s are identified, it follows immedi-
ately that p = 0 (mod 3). Further, the vertex (0,y), 0 < y < p coincides with
the vertex (s,y'), 0 <y’ < p, if y =y' + ¢ (mod p) and, since p = 0 (mod 3),
this implies that y = y' + ¢ (mod 3). But y = y' + s (mod 3) so s = ¢ (mod
3). Finally we need to recover the Latin bitrade from the toroidal triangulation.
First reinstate the vertices e, € E by placing one on every edge which connects
two vertices from the set C'. Now as stated above, each vertex r; € R is incident
with 6 vertices all belonging to the set C. In cyclic order around r; let these
be ¢i0), Ci(1), Ci(2), Ci(3)s Ci(a)» Ci(s)- Moreover each vertex c;(j) was, (before
the reinstatement of the vertices ey), incident with ¢;(j41), arithmetic modulo
6. Insert edges connecting each vertex r; to these reinstated vertices ex. This
re-establishes the separated (6,3, 2)-homogemeous bitrade and the situation is
illustrated in Figure 7 below.

e Xco/ (Wi 7 ki

Figure 7: Labelled triangulation of T'(p, q, s).

We have the following theorem. As in the previous section, r = 2 and so by
the argument given there a trade mate 7" of a separated (6, 3, 2)-homogeneous
Latin trade T' is unique.
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Theorem 3.2 There is a one-one correspondence between separated (6, 3,2)-homo-
geneous Latin bitrades and triangulations T(p, q, s) of the torus with p =0 (mod
3),p=23, andq=s (mod 3),s>1,¢>0.
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