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ABSTRACT

In a graph G, the distance d(u,v) between a pair of vertices ¥ and v is the
length of a shortest path joining them. The eccentricity e(u) of a vertex u is
the distance to a vertex farthest from . The minimum eccentricity is called
the radius of the graph and the maximum eccentricity is called the diameter
of the graph. The radial graph R(G) based on G has the vertex set as in G.
Two vertices 1 and v are adjacent in R(G) if the distance between them in G is
equal to the radius of G. If G is disconnected, then two vertices are adjacent in
R(G) if they belong to different components. The main objective of this paper
is to find a necessary and sufficient condition for a graph to be a radial graph.
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1. Introduction

The graphs considered here are non-trivial and simple. For other
graph theoretic notation and terminology, we follow [4,6]. For a graph G, the
distance d(u,v) between a pair of vertices v and v is the length of a shortest
path joining them. The eccentricity e(u) of a vertex u is the distance to a
vertex farthest from u. The radius r(G) of G is defined by r(G)=
minfe(w):ueV(G)} and the diameter d(G) of G is defined by
d(G)=max{fe(uw):ueV(G)}. A graph G for which r(G)=d(G) is called a self-
centered graph of radius r(G). A vertex v is called an eccentric vertex of a
vertex u if d(u,v)=e(u). A vertex v of G is called an eccentric vertex of G if it
is the eccentric vertex of some vertex of G. Let S; be denote a subset of the
vertex set of G such that e(u) = i for all u&S; The concept of antipodal graph
was initially introduced by[5] and was further expanded by [2,3]. The
antipodal graph of a graph G, denoted by A(G), is the graph on the same
vertices as of G, two vertices being adjacent if the distance between them is
equal to the diameter of G. A graph is said to be antipodal if it is the antipodal
A(H) of some graph H. The concept of eccentric graph was introduced by[1].
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The eccentric graph based on G is denoted by G,., whose vertex set is V(G)
and two vertices # and v are adjacent in G, if and only if d(i,v) = minfe(u),
e(v)}. We introduce a new type of graph called radial graph. Two vertices of
a graph are said to be radial to each other if the distance between them is
equal to the radius of the graph. The radial graph of a graph G, denoted by
R(G), has the vertex set as in G and two vertices are adjacent in R(G) if and
only if they are radial in G. If G is disconnected, then two vertices are adjacent
in R(G) if they belong to different components of G. A graph G is called a
radial graph if R(H) = G for some graph H.

2. Radial Graph of Some Classes of Graphs

Result 2.1. Let P, be any path on n2 5 vertices, then
n2) K, if nis even
RP,) = P; v ((n-3)/2) K, ifnisodd

Proof. Let v;, v,,...v, be the vertices of the path P,, 25. r(P,) =n/2ifnis
even and r(P,) = (n— 1)/2 if n is odd. The radial pairs are (v), v.+)), (V2, V2), .
« s (Va -1, V). The result follows from the definition.

Result 2.2. Let C, be any cycle on n>4 vertices, then
n2) K, if n is even
Ry = { =C, if nis odd
Proof. Let v;, v,,...v, be the vertices of the cycle C,. When n is even, a vertex
and its eccentric vertex are radial to each other and hence R(C,) = (n/2) K,,

n/2 disjoint copies of K. When n is odd, »(C,) = (n — 1)/2 = m. R(G) is the
cycle ViV, Vari) ViV Vyj ... Vara3vy, Which is isomorphic to C,

Result23. R(K,») =Kn UK,

Proof. Let X, Y be the bipartition of the vertex set of K,,,. The eccentricity of
each vertex is two. Any two distinct vertices within a partition are eccentric to
each other and hence the result follows.

Corollary 2.4. For a graph G, R(G) =K, ifand only if G=K ;,,0r G is
disconnected with exactly two components out of which one is an isolated
vertex.

Result 2.5.  For a graph G of order n, R(G) = K, if and only if either G or
GisK,
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Proof. If R(G) = K,, then either G = K, or G contains a vertex adjacent to all
other vertices. In the second case if the vertices u and v are non adjacent in G,
then they are not radial to each other. Thus the result follows.

3. Some Propositions on Radial Graphs
Proposition 3.1. Ifr(G) >, then R(G) c G

Propositions 3.2. Let G be a graph of order n. Then r(R(G)) = 1 if and only if
either A(G) =n-1or Gis disconnected with at least one isolated vertex.

Proposition 3.3. Every graph G of order n with A(G)= n-1 is a radial graph
of itself

Proposition 3.4. Every path P,, n#4 is a radial graph.

Proof. When n = 1,2,3, P, is the radial graph of itself. We can easily verify
that P, is not a radial graph of any graph on four vertices. Let v, v,,... v, be
the vertices of P,, n>5 where v, and v, are the end vertices of P,. For each i,
2 <i<nl, vis non-adjacent to v.; and v,y in P, and it is adjacent to all
other vertices of P Hence eccentric vertices of v;in P, are v, and v ) i+l
The eccentric vertex of v, in P, is v; and the eccentric vertex of v, in P, is
V,.i- Therefore S, ( P,) = V( P,) and hence R( P,) = P,.

Proposition 3.5. A4 cycle C,, on n vertices is a radial graph.

Proof. C;is aradial graph of itself and R( C,) = C,, n>4.

Proposition 3.6. Every complete n-partite graph is a radial graph.

Proof. Let K112, imn be @ n-partite graph. Then R( 1’(.,,,,,,,,2_,“,,,,,) = Kontma,...mn

4. A Necessary and Sufficient Condition for a Graph to be a
Radial Graph.

Let F), Fa5 Fj3 Fy F; denote the set of all connected graphs G for which
rG) =1, r(G) =d(G) =2,r (G) =2and d(G) = 3, r(G) = 2 and d(G) = 4, r(G)>2
respectively and F, denote the set of all disconnected graphs.

Theorem 4.1 Let G be graph of order n, then R(G)=G if and only if G €F ;.
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Theorem A[6)] If G is a simple graph with diameter at least 3 ,then G has
diameter at most 3.

Theorem B[6] If G is a simple graph with diameter at least 4,then G has
diameter  at most 2.

Theorem C[6] If G is a simple graph with radius at least 3,then G has radius
at most 2.

Theorem D[4] If G is a self centered graph with r(G)2 3, then G is a self
centered graph of radius 2

Lemma 4.2. Let G be a graph of order n. Then R(G) = G if and only if either
S,(G)=V(G) or G is disconnected in which each component is complete.

Proof. If S5(G) = V(G), then in R(G), two vertices are adjacent if and only if
they are nonadjacent in G. Also there are no vertices u and v in G such that
d(u,v)> 2. Therefore R(G) = G.

Assume that G is disconnected and each component of G is
complete. Then (G)>1. By proposition 3.1, R(G)c G. Let u and v be any two
adjacent vertices in G. Then u and v are nonadjacent in G. This implies that

u and v are in different components of G. Therefore G ¢ R(G) and hence
R@G)= G

Conversely let R(G)= G and let r be the radius of G. Since
R(G)= G, the vertices which are nonadjacent in G are adjacent in R(G).
Hence if # and v are any two vertices in G, then d(,v)=1 or r. We claim that
$5(G) = V(G) or r = If r(G)=1, then R(G)=G, a contradiction. Assume that
2<r<co. Then there exists at least two vertices say x and y in G such that
d(x,y)=2. Since x and y are nonadjacent in G, they should be adjacent in G.
But x and y are nonadjacent in R(G) as d(x,y)=2<r. This is a contradiction to
R(G)= G. Next we claim that G is a self-centered graph of radius 2 if
R(G)= G. It is well known that (G) <d(G). Suppose that r(G) < d(G). Then
there exists at least two vertices say x and y such that d(x,y) = d(G). x and y
are non adjacent in G and are adjacent in G. But they are non adjacent in
R(G),a contradiction to R(G)= G .Therefore r(G) = d(G) = 2.

Now let us show that each component of G is complete if G is

disconnected. Let G, be a component of G which is not complete and let z and
w be two nonadjacent vertices in G;. The distance between z and w in G; is a
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finite number which is not equal to the radius of G and hence z and w are
nonadjacent in R(G). But zw e E( G) which is a contradiction to R(G) = G

Corollary 4.3. If both G and G are of self centered graphs of radius 2, then
so is R(G).

Proof. Let both G and G be selfcentered graphs of radius 2. Then by lemma
4.2, R(G)= G and hence R(G) is a self centered graph of radius 2.

Lemma 4.4. If G is disconnected, then each component of R(G) is complete.

Proof. Follows from the definition.

Theorem 4.5 Let G be a connected graph with r(G)>1. If G is disconnected
with at least one non complete component, then G is not a radial graph.

Proof. Suppose there exists a graph H such that R(H) = G. If #(H) = 1, then
R(H) = H = G, a contradiction since r(G)>/ and so r(H)>1. By proposition
3.1, R(H) ¢ H. This implies that Hc G. As G i is disconnected, H can not be
connected. By lemma 4.4, each component of R(H) is complete. But R(H)

= G . This is a contradiction to the fact that G is disconnected with at least
one non complete component.

Corollary 4.6. Let G be a connected graph with r(G)>1. If G is disconnected
with each component complete, then G is a radial graph.

Proof. Follows from lemma 4.2.

Corollary 4.7 [f GeF,,and G &F),, then G is a radial graph.
Proof. By lemma 4.2, R( G) =G.

Theorem 4.8. If GeFy and GeFy;, then G is not a radial graph.

Proof. Suppose G is radial graph. Then there exists a graph H such that at R(H)

= G. Also R(H) G. If H is disconnected, then by lemma 4.4, R(H) is
disconnected and each component of R(H) is complete, a contradiction to the
fact that G is connected. Hence A must be connected. R(H) = G implies that
R(H)c H and hence Hc G. Since r( G)=2 and d( G)=3, r(H)22 and d(H)2>3.
Let ueV( G). Then u is adjacent to all the vertices v such that d g (,v)>2 in
G. But u is adjacent to the vertices w such that d(u,w)=r(H) in R(H). From this
we conclude that R(H) is not equal fo G, a contradiction.
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Using the same proof technique used in Theorem 4.8, we prove the
following corollaries.

Corollary 4.9. If G € Fyand G € Fy4, then G is not a radial graph.
Corollary4.10 If G € Fy,and G e F, then G is not a radial graph.
Corollary 4.11. IfG € Fy;and G & Fy;, then G is not a radial graph.
Lemma 4.12. If G € Fysand G € Fy; then G is a radial graph.

Proof. By Lemma 4.2, R( G)=G.

Lemma 4.13. If G € F,,, then G is a radial graph.

Proof. By Theorem B, G & F;,. By Lemma 4.2, R( G)=G.

Lemma 4.14. If G € F3, then G is a radial graph.

Proof. Since G € F3 r(G) 23 and hence d(G) 2 3. If 7(G) = d(G) = 3 then by
Theorem D, G € Fz,. By Theorem C, Ge F2, if d(G) > 3. By Lemma 4.2,
R( G)=G.

Lemma 4.15. If G € F, without isolated vertices, then G is a radial graph.

Proof. Since G has no isolated vertices, G € Fy; and hence by lemma 4.2,
R( G)=G.

Lemma 4.16. If G € Fyhas at least one isolated vertex, then G is not a radial
graph.

Proof. Suppose there exists a graph H such that R(H) = G . If H is
disconnected, then R(H) is connected and hence G is connected, a
contradiction. This implies that H must be connected. Since H is connected,
for each vertex u of H, there exists at least one vertex v in H such that
d(u,v)=r(H) and hence uvef (R(H)). Thus R(H) contains no isolated vertex.

Based on the above discussion, we conclude the following
characterization Theorem for the radial graphs.

Theorem 4.17. A graph G is a radial graph if and only if either G is a radial
graph of itself or the radial graph of its complement.

Proof. The proof follows from the following table.
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Case 1: G is connected.

Case 1.1 Case 1.2 Case 1.3
r(G) =1 rG) =2 r(G)>2
Case 1.2.1. G is connected.
r(G) =d(G) =2
Theorem | g) r( G) =d( G) = 2. Corollary 4.7 Theorem
4.1 b)r( G)=2,d( G) = 3. Theorem 4.8 B and
¢)r( G)=2,d( G)=4. Corollary 4.9 Lemma
d) r( G)>2 . Corollary 4.10 4.14

Case 1.2.2 G is connected.
r(G)=2,d(G)=3
a)r( G)=d( G) =2 Lemma4.12
b)r( G) =2, d( G) =3. Corollary 4.11
Jr( G)=24d( G)=4.
(ruled out from Theorem B)
d) r( 5)2 3. (ruled out from Theorem C)
Case 1.2.3. G is connected.
r(G)=2, d(G)=4 Lemma4.13
Case 1.2.4. G is disconnected. Theorem 4.5 and
Corollary 4.6
Case 2. G is disconnected. Lemma 4.15 and Lemma 4.16
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