(d, 1)-Total labellings of regular nonbipartite graphs and an application to flower snarks * Tong Chunling¹, Lin Xiaohui², Yang Yuansheng², Hou Zhengwei² - 1. Department of Information Science and Engineering Shandong Jiaotong University Jinan, 250023, P. R. China - Department of Computer Science and Engineering Dalian University of Technology Dalian, 116024, P. R. China #### Abstract A (d,1)-total labelling of a graph G is an assignment of integers to $V(G) \cup E(G)$ such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent edges of G receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least d in absolute value. The span of a (d,1)-total labelling is the maximum difference between two labels. The minimum span of labels required for such a (d,1)-total labelling of G is called the (d,1)-total number and is denoted by $\lambda_d^T(G)$. In this paper, we prove that $\lambda_d^T(G) \geq d+r+1$ for r-regular nonbipartite graphs with $d \geq r \geq 3$ and determine the (d,1)-total numbers of flower snarks and of quasi flower snarks. Keywords: (d,1)-Total labelling; Minimum span; Flower snark ### 1 Introduction We consider only finite undirected graphs without loops or multiple edges. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). ^{*}The research is supported by Chinese Natural Science Foundation (60973014) and Research Foundation for the Doctoral Program of Shandong Jiaotong University. †Email: yangys@dlut.edu.cn A (d,1)-total labelling of a graph G, introduced by Havet and Yu [3,4], is an assignment f of integers to $V(G) \cup E(G)$ such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent edges of G receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least d in absolute value. The span of a (d,1)-total labelling is the maximum difference between two labels. The minimum span of labels required for such a (d,1)-total labelling of G is called the (d,1)-total number and is denoted by $\lambda_d^T(G)$. The (1,1)-total labelling is the traditional total coloring. Bazzaro et al [1] proved that $\lambda_d^{\mathrm{T}}(G) \leq \Delta + 2d - 2$ for planar graphs with sufficiently large girth and high maximum degree Δ . Chen and Wang [2] proved that $\lambda_2^{\mathrm{T}}(G) \leq \Delta + 2$ for outer planar graph with $\Delta \geq 5$, or $\Delta = 3$ and G being a 2-connected graph, or $\Delta = 4$ and G containing no intersecting triangles. Havet and Yu [5] provided lower and upper bounds of (d,1)-total number and determined the exact value of $\lambda_d^{\mathrm{T}}(K_n)$ except for even n in the interval $[d+5,6d^2-10d+4]$. Montassier and Raspaud [9] proved that $\lambda_d^{\mathrm{T}}(G) \leq \Delta(G) + 2d - 2$ for connected graphs with a given maximum average degree. Let G_n be the simple nontrivial connected cubic graph with vertex set $V(G_n) = \{a_i, b_i, c_i, d_i : 0 \le i \le n-1\}$ and edge set $E(G_n) = \{a_i a_{i+1}, b_i b_{i+1}, c_i c_{i+1}, a_i d_i, b_i d_i, c_i d_i : 0 \le i \le n-1\}$, where the vertex labels are read modulo n. Let H_n be a graph obtained from G_n by replacing the edges $b_{n-1}b_0$ and $c_{n-1}c_0$ with $b_{n-1}c_0$ and $c_{n-1}b_0$ respectively. For odd $n \ge 5$, H_n is called a snark, namely flower snark. G_n and H_n $(n = 3 \text{ or even } n \ge 4)$ are quasi flower snarks (or related graphs of the flower snarks). Figure 1.1 shows the flower snark H_5 and quasi flower snark G_5 . The flower snark, defined by Isaacs [6], is certainly one of the most famous cubic graphs that theorists have come across. Mohammad et al [7] determined the circular chromatic index of flower snarks. Zheng Wenping et al [11] studied the crossing number of flower snarks and of their related graphs. Mominul et al [8] investigated the prime cordial labelling of flower snarks and of their related graphs. Xi Yue et al [10] proved that flower snarks and of their related graphs are super vertex-magic. In Section 2, we will prove $\lambda_d^{\mathrm{T}}(G) \geq d+r+1$ for r-regular nonbipartite graphs with $d \geq r \geq 3$. This provids a lower bound of $\lambda_d^{\mathrm{T}}(H_{2m+1})$ and $\lambda_d^{\mathrm{T}}(G_{2m+1})$ $(m \geq 1)$. In Section 3, we will exhibit a (d+4)-total labellings of H_{2m+1} and G_{2m+1} , providing the matching upper bound. Figure 1.1. The flower snark H_5 and quasi flower snark G_5 ### 2 Basic lemmas Let f be a (d, 1)-total labelling of G in $[0, \lambda_d^{\mathrm{T}}(G)]$. For $v \in V(G)$, let $N_v(v) = \{u \in V(G) | uv \in E(G)\}$, $N_e(v) = \{(v, w) \in E(G) | w \in V(G)\}$. For $S_e \subseteq E(G)$, let $f(S_e) = \{f(e) | e \in S_e\}$. And for $S_v \subseteq V(G)$, let $f(S_v) = \{f(v) | v \in S_v\}$. By [3, 4], we have Lemma 2.1. **Lemma 2.1.** If G is an r-regular graph, then $\lambda_d^{\mathrm{T}}(G) \geq d + r$. **Lemma 2.2.** If G is an r-regular graph with $\lambda_d^{\mathrm{T}}(G) = d + r$ and $d \geq r \geq 3$, then $f(v) \in \{0, 1, d + r - 1, d + r\}$. **Proof.** If $f(v) \in \{2, 3, ..., d-1\}$, then $f(N_e(v)) \subseteq \{d+f(v), d+f(v)+1, ..., d+r\} \subseteq \{d+2, d+3, ..., d+r\}$. If f(v) = d and d=r, then $f(N_e(v)) \subseteq \{0, d+r\}$. If f(v) = d and d>r, then $f(N_e(v)) \subseteq \{0\}$. If $f(v) \in \{d+1, d+2, ..., d+r-2\}$, then $f(N_e(v)) \subseteq \{0, 1, ..., f(v)-d\}$ $\subseteq \{0, 1, ..., r-2\}$. For all these cases, we have $|f(N_e(v))| < r$, a contradiction to the fact that $|f(N_e(v))| = r$. Hence, $f(v) \in \{0, 1, d+r-1, d+r\}$. \square **Lemma 2.3.** If G is an r-regular graph with $\lambda_d^{\mathrm{T}}(G) = d + r$ and $d \geq r \geq 3$, then G is bipartite. **Proof.** Suppose to the contrary that G contains an odd cycle, say $C = v_0v_1...v_{2k}v_0$. By Lemma 2.2, we have $f(v) \in \{0, 1, d+r-1, d+r\}$. Let $B(i) = \bigcup_{f(v)=i} f(N_c(v)), A(i) = \bigcup_{f(v)=i} f(N_v(v))$. Then $B(0) \subseteq \{d, d+1, ..., d+r\}$, $B(1) = \{d+1, d+2, ..., d+r\}$, $B(d+r-1) = \{0, 1, ..., r-1\}$, $B(d+r) \subseteq \{0, 1, ..., r\}$. Case 1. d = r. Since $B(0) \cap B(1) \neq \phi$, $B(0) \cap B(d+r-1) = \phi$, $B(0) \cap B(d+r) \neq \phi$, $B(1) \cap B(d+r-1) = \phi$, $B(1) \cap B(d+r) = \phi$ and $B(d+r-1) \cap B(d+r) \neq \phi$, we have $A(0) \subseteq \{1, d+r\}$, $A(1) = \{0\}$, $A(d+r-1) = \{d+r\}$ and $A(d+r) \subseteq \{0, d+r-1\}$. If $0 \notin f(V(C))$, then $f(V(C)) = \{d+r-1, d+r\}$, a contradiction to G is nonbipartite. If $0 \in f(V(C))$, without loss of generality, we may assume that $f(v_0) = 0$. Then we have $f(v_1) \in \{1, d+r\}$. It follows $f(v_2) \in \{0, d+r-1\}$, $f(v_3) \in \{1, d+r\}$. By induction, we can get $f(v_{2j-1}) \in \{1, d+r\}$, $f(v_{2j}) \in \{0, d+r-1\}$ for $1 \le j \le k$. Hence, we have $f(v_{2k}) \in \{0, d+r-1\}$, it follows $f(v_0) \in \{1, d+r\}$, a contradiction to $f(v_0) = 0$. Case 2. d > r. Since $B(0) \cap B(d+r-1) = \phi$, $B(0) \cap B(d+r) = \phi$, $B(1) \cap B(d+r-1) = \phi$ and $B(1) \cap B(d+r) = \phi$, then $f(V(C)) \subseteq \{0,1\}$ or $f(V(C)) \subseteq \{d+r-1,d+r\}$. A contradiction to G is nonbipartite. \square From Lemma 2.3, we have the following theorem. **Theorem 2.4.** If G is an r-regular nonbipartite graph with $d \ge r \ge 3$, then $\lambda_d^{\mathrm{T}}(G) \ge d + r + 1$. Since H_{2m+1} and G_{2m+1} $(m \ge 1)$ are 3-regular nonbipartite graphs, by Theorem 2.4, we have the following corollaries. Corollary 2.5. $\lambda_d^{\mathrm{T}}(H_{2m+1}) \geq d+4$ for $m \geq 1$ and $d \geq 3$. Corollary 2.6. $\lambda_d^{\mathrm{T}}(G_{2m+1}) \geq d+4$ for $m \geq 1$ and $d \geq 3$. # 3 (d,1)-total labelling of flower snarks and of quasi flower snarks Lemma 3.1. $\lambda_2^{\mathrm{T}}(H_3) = \lambda_2^{\mathrm{T}}(G_3) = 5$. **Proof.** Figure 3.1(a) shows a (2,1)-total labelling for H_3 and G_3 . We then have $\lambda_2^{\mathrm{T}}(H_3) \leq 5$ and $\lambda_2^{\mathrm{T}}(G_3) \leq 5$. By Lemma 2.1, $\lambda_2^{\mathrm{T}}(H_3) \geq 5$ and $\lambda_2^{\mathrm{T}}(G_3) \geq 5$. Hence we have $\lambda_2^{\mathrm{T}}(H_3) = \lambda_2^{\mathrm{T}}(G_3) = 5$. \square Lemma 3.2. $\lambda_2^{\mathrm{T}}(H_{2m+1}) = \lambda_2^{\mathrm{T}}(G_{2m+1}) = 5$ for $m \geq 2$. Figure 3.1. A(2,1)-total labelling of $H_n(G_n)$ for n=3,7. **Proof.** For $0 \le i \le 2m$, we construct a function f as follows: $$f(a_i) = \begin{cases} 5, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 3, & i \mod 2 = 1 \text{ and } i \leq 2m - 1, \\ 0, & i = 2m, \end{cases}$$ $$f(b_i) = \begin{cases} 5, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 4, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \\ 3 & i = 2m - 1, \end{cases}$$ $$f(c_i) = \begin{cases} 6, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 0, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 0, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \end{cases}$$ $$f(d_i) = \begin{cases} 4, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m - 1, \end{cases}$$ $$f(a_i a_{i+1}) = \begin{cases} 6, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 0, & i \mod 2 = 1 \text{ and } i \leq 2m - 2, \end{cases}$$ $$f(b_i b_{i+1}) = \begin{cases} 1, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \end{cases}$$ $$f(b_{i} b_{i+1}) = \begin{cases} 3, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \end{cases}$$ $$f(c_{i} c_{i+1}) = \begin{cases} 3, & i \mod 2 = 0 \text{ and } i \leq 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \end{cases}$$ $$f(c_{2m} b_0) = 2 \text{ for } H_{2m+1}, \end{cases}$$ $$f(a_i d_i) = \begin{cases} 2, & i \mod 2 = 0 \text{ and } i \leq 2m, \\ 5, & i \mod 2 = 1 \text{ and } i \leq 2m - 3, i = 2m, \end{cases}$$ $$0, & i = 2m - 1, \end{cases}$$ $$0, & i \leq 2m - 2, $$0$$ $$f(c_id_i) = \begin{cases} 1, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ 4, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \\ 3, & i = 2m. \end{cases}$$ Clearly, the total labelling f has the required properties of a (2,1)-total labelling for $m \geq 2$. We then have $\lambda_2^{\mathrm{T}}(H_{2m+1}) \leq 5$ and $\lambda_2^{\mathrm{T}}(G_{2m+1}) \leq 5$. By Lemma 2.1, $\lambda_2^{\mathrm{T}}(H_{2m+1}) \geq 5$ and $\lambda_2^{\mathrm{T}}(G_{2m+1}) \geq 5$. This concludes the proof. Figure 3.1(b) shows a (2,1)-total labelling of $H_7(G_7)$. Theorem 3.3. $\lambda_d^{\mathrm{T}}(H_{2m+1}) = \lambda_d^{\mathrm{T}}(G_{2m+1}) = d+4$ for $m \geq 1$ and $d \geq 3$. **Proof.** For $0 \leq i \leq 2m$, we construct a function f as follows: of. For $$0 \le i \le 2m$$, we construct a function f as follows: $$f(a_i) = f(b_i) = f(c_i) = \begin{cases} d+3, & i \mod 2 = 0 \text{ and } i \le 2m - 2, \\ d+2, & i \mod 2 = 1 \text{ and } i \le 2m - 1, \\ d+4, & i = 2m, \end{cases}$$ $$f(d_i) = \begin{cases} d+2, & i \mod 2 = 0 \text{ and } i \le 2m - 1, \\ d+3, & i \mod 2 = 1 \text{ and } i \le 2m - 1, \end{cases}$$ $$f(a_ia_{i+1}) = \begin{cases} 0, & i \mod 2 = 0 \text{ and } i \le 2m - 1, \\ 1, & i \mod 2 = 0 \text{ and } i \le 2m - 1, \\ 3, & i = 2m, \end{cases}$$ $$f(b_ib_{i+1}) = \begin{cases} 0, & i \mod 2 = 1 \text{ and } i \le 2m - 1, \\ 3, & i = 2m, \end{cases}$$ $$f(b_{2m}c_0) = 3 \text{ for } H_{2m+1}, \end{cases}$$ $$f(c_ic_{i+1}) = \begin{cases} 1, & i \mod 2 = 0 \text{ and } i \le 2m - 2, \\ 2, & i \mod 2 = 1 \text{ and } i \le 2m - 1, \\ 3, & i = 2m, \end{cases}$$ $$(f(c_{2m}b_0) = 3 \text{ for } H_{2m+1},)$$ $$f(a_id_i) = 2, \\ f(b_id_i) = 1, \\ f(c_id_i) = 0.$$ Clearly, the total labelling f has the required properties of a Clearly, the total labelling f has the required properties of a (d,1)total labelling for $m \geq 1$ and $d \geq 3$. We then have $\lambda_d^{\tilde{T}}(H_{2m+1}) \leq d+4$ and $\lambda_d^{\mathrm{T}}(G_{2m+1}) \leq d+4$. By Corollary 2.5 and Corollary 2.6, $\lambda_d^{\mathrm{T}}(H_{2m+1}) \geq d+4$ and $\lambda_d^{\mathrm{T}}(G_{2m+1}) \geq d+4$. This concludes the proof. \square Figure 3.2(a) shows a (3,1)-total labelling of $H_5(G_5)$. By [5], we have Theorem 3.4. **Theorem 3.4.** If G is an r-regular bipartite graph, then $\lambda_d^{\mathrm{T}}(G) = d + r$. Since H_{2m} and G_{2m} are 3-regular bipartite graphs, By Theorem 3.4, we have Corollary 3.5. Corollary 3.5. $\lambda_d^{\mathrm{T}}(H_{2m}) = \lambda_d^{\mathrm{T}}(G_{2m}) = d+3$ for $m \geq 2$ and $d \geq 2$. For the sake of completeness, we show a (d+3)-total labelling f (0 \leq Figure 3.2. A (3,1)-total labelling of $H_5(G_5)$ and a (2,1)-total labelling of $H_6(G_6)$. $i \leq 2m-1$) as follows: $$f(a_i) = f(b_i) = f(c_i) = \begin{cases} d+3, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ d+2, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \\ d+2, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ d+3, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \\ 0, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ 1, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ 1, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \\ f(b_ib_{i+1}) = \begin{cases} 0, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m-2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \end{cases}$$ $$f(b_{2m}c_0) = 2 \text{ for } H_{2m},$$ $$f(c_ic_{i+1}) = \begin{cases} 1, & i \mod 2 = 0 \text{ and } i \leq 2m-2, \\ 2, & i \mod 2 = 1 \text{ and } i \leq 2m-1, \end{cases}$$ $$f(c_ic_{m}b_0) = 2 \text{ for } H_{2m},$$ $$f(a_id_i) = 2,$$ $$f(b_id_i) = 1,$$ $$f(c_id_i) = 0.$$ Figure 3.2(b) shows a (2,1)-total labelling of $H_6(G_6)$. ### Acknowledgements We are very grateful to the referee for many valuable remarks that helped to improve the paper. ## References F. Bazzaro, M. Montassier and A. Raspaud, (d, 1)-total labelling of planar graphs with large girth and high maximum degree, *Discrete Mathematics*, 307 (2007) 2141-2151. - [2] D. Chen and W. Wang, (2,1)-total labelling of outerplanar graphs, Discrete Applied Mathematics, 155 (2007) 2585-2593. - [3] F. Havet and M. L. Yu, (d, 1)-total labelling of graphs, Technical Report 4650, INRIA, 2002. - [4] F. Havet, (d, 1)-Total labelling of graphs, in: Workshop on Graphs and Algorithms, Dijon, France. 2003. - [5] F. Havet and M. L. Yu, (p, 1)-total labelling of graphs, Discrete Mathematics, 308 (2008) 496-513. - [6] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, American Mathematical Monthly, 82(1975) 221-239. - [7] G. Mohammad, K. Daniel, N. Serguei and T. Robin, The circular chromatic index of flower snarks, ,The Electronic Journal of Combinatorics, 13 (2006). - [8] K. M. Mominul, Lin Xiaohui, Yang Yuansheng and Zhang Jinbo Prime cordial labelling of flower snark and related graphs, Ars Combinatoria, To appear. - [9] M. Montassier and A. Raspaud, (d,1)-Total labelling of graphs with a given maximum average degree, *Journal of Graph Theory*, 51(2006) 93-109. - [10] Xi Yue, Yang Yuansheng, Mominul and Wang Liping, Super vertex-magic labelling of flower snark and related graphs, *Indian Journal of Pure and Applied Mathematics*, Submitted. - [11] Zheng Wenping, Lin Xiaohui, Yang Yuansheng and Yang Xiwu, The crossing number of flower snark and related graphs, Ars Combinatoria, 86(2008) 57-64.