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Abstract

A (d,1)-total labelling of a graph G is an assignment of integers to
V(G) U E(G) such that: (i) any two adjacent vertices of G receive
distinct integers, (ii) any two adjacent edges of G receive distinct
integers, and (iii) a vertex and its incident edge receive integers that
differ by at least d in absolute value. The span of a (d, 1)-total la-
belling is the maximum difference between two labels. The minimum
span of labels required for such a (d, 1)-total labelling of G is called
the (d, 1)-total number and is denoted by )\;P(G). In this paper, we
prove that ,\:,P(G) > d+r+ 1 for r-regular nonbipartite graphs with
d > r > 3 and determine the (d, 1)-total numbers of flower snarks

and of quasi flower snarks.
Keywords: (d,1)-Total labelling; Minimum span; Flower snark

1 Introduction

We consider only finite undirected graphs without loops or multiple edges.
Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G).
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A (d,1)-total labelling of a graph G, introduced by Havet and Yu (3, 4],
is an assignment f of integers to V(G) U E(G) such that: (i) any two
adjacent vertices of G receive distinct integers, (ii) any two adjacent edges
of G receive distinct integers, and (iii) a vertex and its incident edge receive
integers that differ by at least d in absolute value. The span of a (d, 1)-total
labelling is the maximum difference between two labels. The minimum span
of labels required for such a (d, 1)-total labelling of G is called the (d, 1)-
total number and is denoted by A}‘(G). The (1,1)-total labelling is the
traditional total coloring.

Bazzaro et al (1] proved that AT(@) < A + 2d — 2 for planar graphs
with sufficiently large girth and high maximum degree A. Chen and Wang
(2] proved that )\'QI‘(G') < A + 2 for outer planar graph with A > 5, or
A = 3 and G being a 2-connected graph, or A = 4 and G containing no
intersecting triangles. Havet and Yu [5] provided lower and upper bounds
of (d,1)-total number and determined the exact value of )\:,I‘(Kn) except
for even n in the interval [d + 5,6d® — 10d + 4]. Montassier and Raspaud
(9] proved that /\I(G) < A(G) + 2d — 2 for connected graphs with a given
maximum average degree.

Let G, be the simple nontrivial connected cubic graph with vertex
set V(Gn) = {ai,biyci, di @ 0 < i < n—1} and edge set E(G,) =
{aiait1, bibiy1,ciciyr,aidi bidi,cidi @ 0 <@ <n— 1}, where the vertex
labels are read modulo n. Let H, be a graph obtained from G, by replac-
ing the edges b,—1bp and cp—yco With bn_1co and cu-1bo respectively. For
odd n > 5, H,, is called a snark, namely flower snark. G, and H,, (n =3
or even n > 4) are quasi flower snarks (or related graphs of the flower
snarks).

Figure 1.1 shows the flower snark Hs and quasi flower snark Gs.

The flower snark, defined by Isaacs [6], is certainly one of the most
famous cubic graphs that theorists have come across. Mohammad et al (7]
determined the circular chromatic index of flower snarks. Zheng Wenping
et al [11] studied the crossing number of flower snarks and of their related
graphs. Mominul et al [8] investigated the prime cordial labelling of flower
snarks and of their related graphs. Xi Yue et al [10] proved that flower
snarks and of their related graphs are super vertex-magic.

In Section 2, we will prove )\}‘ (G) > d+r+1 for r-regular nonbipartite
graphs with d > r > 3. This provids a lower bound of )\}'(Hgm.,.l) and
/\E‘(sz.,.l) (m > 1). In Section 3, we will exhibit a (d+4)-total labellings
of Hym41 and Gapmy1, providing the matching upper bound.
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Figure 1.1. The flower snark Hs and quasi flower snark Gs

2 Basic lemmas

Let f be a (d, 1)-total labelling of G in [0, AT(G)]. For v € V(G), let
Ny(v) = {u € V(G)luv € E(G)}, Ne(v) = {(v,w) € E(G)|lw € V(G)}.
For S C E(G), let f(S.) = {f(e)le € S¢}. And for S, C V(G), let
f(S) = {f(v)lv € S}

By (3, 4], we have Lemma 2.1.
Lemma 2.1. If G is an r-regular graph, then /\dT(G) >d+r.

Lemma 2.2. If G is an r-regular graph with A}(G’) =d+randd >r >3,
then f(v) € {0,1,d+7»—1,d+7}.

Proof. If f(v) € {2,3,...,d — 1}, then f(N.(v)) C {d + f(v),d + f(v) +
L,.,d+7} C{d+2,d+3,.,d+7}. If f(v) = d and d = r, then
f(Ne(v)) € {0,d+r}. If f(v) = d and d > r, then f(Ne(v)) C {0}. If
fv) e {d+1,d+2,..,d+r — 2}, then f(N.(v)) C {0,1,...,f(v)—d)} C
{0,1,...,7—2)}. For all these cases, we have | f(N.(v))| < r, a contradiction
to the fact that |f(Ne(v))| = r. Hence, f(v) € {0,1,d+7—1,d+7r}. O

Lemma 2.3. If G is an r-regular graph with /\;P(G) =d+randd>7r >3,
then G is bipartite.

Proof. Suppose to the contrary that G contains an odd cycle, say C =
VoU1... U250,

By Lemma 2.2, we have f(v) € {0,1,d+ 7 — 1,d +7}. Let B(i) =
Uf(,,)=i f(Ne(v), A(G) = Uf(u)m. f(Ny(v)). Then B(0) C {d,d+1,...,d +
r}, B(1) = {d+1,d+2,...,d+7}, B(d+r—1) = {0,1,...,r—1}, B(d+r) C
{0,1,...,7}.
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Case l. d=r.

Since B(0)(1B(1) # ¢, BO)B(d+r —1) = ¢, BO)\B(d+7) # ¢,
B(1)( B(d+r—1) = ¢, B(1) N\ B(d+7) = ¢ and B(d+r—1) (| B(d+r) # ¢,
we have A(0) C {1,d + 1}, A(l) = {0}, A(d+7r—1) = {d+r} and
A(d+71) C{0,d+r—1}.

If 0 ¢ f(V(C)), then f(V(C)) = {d+r —1,d + 1}, a contradiction
to G is nonbipartite. If 0 € f(V(C)), without loss of generality , we may
assume that f(v) = 0. Then we have f(v1) € {1,d+r}. It follows
f(v2) € {0,d +r -1}, f(vs) € {1,d+ r}. By induction, we can get
f(vaj-1) € {l,d+ 7}, flvg;) € {0, d+r -1} for1 <j < k. Hence, we
have f(vai) € {0,d + 7 — 1}, it follows f(vo) € {1,d+ 7}, a contradiction
to f(ve) = 0.

Case 2. d > 7.

Since B(O)(\B(d+r —1) = ¢, BO)B(d+7) = ¢, B(1)(NB(d+1 -
1) = ¢ and B(1)NB(d + 1) = ¢, then f(V(C)) € {0,1} or f(V(C)) S
{d+7—1,d+r}. A contradiction to G is nonbipartite. O

From Lemma 2.3, we have the following theorem.

Theorem 2.4. If G is an r-regular nonbipartite graph with d > 7 > 3,
then )\}‘(G) >d+r+1.

Since Ham41 and Gamq1 (m > 1) are 3-regular nonbipartite graphs, by
Theorem 2.4, we have the following corollaries.

Corollary 2.5. /\}‘(Hgm.,_l) >d+4form>1and d>3.
Corollary 2.6. AT (Gamy1) 2 d+4form>1andd> 3.

3 (d,1)-total labelling of flower snarks and of
quasi flower snarks

Lemma 3.1. M (H3) = M (Gs) = 5.

Proof. Figure 3.1(a) shows a (2,1)-total labelling for H3 and G3. We
then have )\'21‘(H3) < 5 and )\?(Gs) < 5. By Lemma 2.1, )\;P(Hs) > 5 and
/\'21‘(63) > 5. Hence we have )\'QI‘(H:;) = /\;F(Gg) =5.0

Lemma 3.2. Al (Hams1) = M (Gam41) =5 for m > 2.
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(a) H3(Gs) (b) Hz(G7)

Figure 3.1. A (2, 1)-total labelling of H,,(G,,) for n = 3,7.

Proof. For 0 < { < 2m, we construct a function f as follows:

5, imod 2=0and i< 2m—2,
flai) = 3, imod2=1and i< 2m-—1,
0, i= 2m,
5, imod 2=0and i < 2m -2,
fy) = 4, imod2=1and i< 2m—3,i =2m,
3 i=2m -1,
5, imod 2=0and i < 2m -2,
fla) = 0, imod2=1and i <2m~ 3,i=2m,
1, i=2m -1,
4, imod2=0and i< 2m -2,
f(di) = 2, imod2=1andi<2m -1,
5, i = 2m,
1, imod 2=0and i< 2m — 2,
flaiaip) = 0, imod 2=1andi<2m -3,
ititl) = 5, i=2m—1,
3, i=2m,
1, imod2=0and i <2m— 2,
J(bibigy) = 2, imod 2=1and i <2m —3,i = 2m,
0, i=2m-—1,
(fbameo) = 2 for Hamyr,)
3, imod2=0and i< 2m—2,
fleiciq1) = 2, imod2=1and i< 2m-3,i =2m,
5, 2m -1,
(f(c2mb0) = 2 for H2m+1,)
2, imod 2=0and i < 2m,
flaid;) = 5, imod2=1and i< 2m-3,
0, t=2m-—1,
0, i< 2m -2,
f(bidi) = 5, i=2m-—-1,
1 i =2m,
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4, imod2=1andi<2m—1,
3, i=2m.

1, imod 2=0and i < 2m — 2,
Sfleidi) = {

Clearly, the total labelling f has the required propertles of a (2,1)-total
labelling for m > 2. We then have A2 (Hzm.,.l) < 5 and /\2 (Gam+1) < 5.
By Lemma 2.1, /\2 (Ham+1) = 5 and A2 (G2m+1) = 5. This concludes the
proof. O

Figure 3.1(b) shows a (2, 1)-total labelling of H7(G7).

Theorem 3.3. /\d (Ham+1) = /\d (Gom41) =d+4form>1andd>3.
Proof. For 0 < i < 2m, we construct a function f as follows:

d+3, imod 2=0and i <2m -2,

f(ai) = fb;) = fci) = d+2, imod2=1andi<2m~1,
d+4, i=2m,

fds) = d+2, i mod 2=0and i < 2m,

* d+3, imod2=1and i< 2m -1,

0, imod 2=0and i <2m -2,

flaiaitr) = 1, imod2=1andi<2m -1,
3, i=2m,

0, imod2=0and i< 2m -2,

flbibiy1) = 2, imod2=1andi<2m -1,
3, i=2m,

(f(bamea) = 3 for Homya,)

1, imod2=0and i< 2m -2,
fleiciyr) = 2, imod2=1andi<2m-1,
3, i=2m,

(f(cambo) = 3 for Hams1,)
flaidi) = 2,
f(bid;) = 1,
(C,’d’) = 0

Clearly, the total labelling f has the required propertles of a (d,1)-
total labelling for m > 1 and d > 3. We then have /\d (H2m+1) <d+4and
)\d (Gg,,..,.;) < d+4. By Corollary 2.5 and Corollary 2.6, /\d (Hom+1) 2 d+4
and /\d (G2m+1) = d + 4. This concludes the proof. O

Figure 3.2(a) shows a (3, 1)-total labelling of Hs(Gs).
By [5], we have Theorem 3.4.
Theorem 3.4. If G is an r-regular bipartite graph, then /\}‘(G) =d+r.

Since Ho,, and Gan, are 3-regular bipartite graphs, By Theorem 3.4, we
have Corollary 3.5.

Corollary 3.5. AT (Ham) = AT (Gam) =d+3 form > 2 and d > 2.
For the sake of completeness, we show a (d + 3)-total labelling f (0 <
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(a) H5(Gs5) (b) Hy(Gs)

Figure 3.2. A (3,1)-total labelling of Hs(Gs)
and a (2,1)-total labelling of H(G).

i < 2m — 1) as follows:

_ _ N d+3, imod 2=0and i< 2m -2,
fla)=f®)=J) = |\ 412 imod2=1landi<2m—1
fd) = d+2, imod 2=0and i < 2m -2,
@) = {d+3  imod2=1landi<2m—1
flaiaip) = 0, imod 2 =0and i < 2m — 2,
4idi+1) = 1, imod2=1andi< 2m—1,
0 imod 2=0and i< 2m -2,
Jbibiv) = 2, imod2=1andi<2m-—1,
(f(bamco) = 2 for Hom,)

_ 1, imod2=0and i< 2m -2,
fleein) = 2, imod2=1andi<2m-1,
(f(c?m:)io; = 2 for Hom,)

flaidi) = 2,
S(bidi) = 1,
fleidi) = 0.

Figure 3.2(b) shows a (2, 1)-total labelling of Hg(Gé).
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