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Abstract.

In this paper, we investigate the existence of nontrivial solutions for
the equation y(Gofl) - y(G) y(H) fixing one factor. For the complete bipartite
graphs X, ,; we characterize all nontrivial solutions when m - 2, n 2 3 and
prove the nonexistence of solutions when m, 2 > 3. In addition, it is proved that
the above equation has no nontrivial solution if £ is one of the graphs
obtained from C, the cyele of length n, either by adding a vertex and one

pendant edge joining this vertex to any v € W()), or by adding one chord
Jjoining two alternating vertices of (,.
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1. Introduction.

All graphs considered in this paper are simple and finite. Let G be a graph
with vertex and edge sets W G) and EG), respectively. The open neighborhood
of re L G) is NW)-|it uv e B G)) and the gpen neighborhood of & subset X ol
vertices is N(X) =, , N(v). Similarly, we define the closed neighborhiood

N - N)UlY] and MX] - NX) U X A subset D of WG is called a
dominating set of G if for each xe WG — D, there is y € D such that xy €
K G). The domination munber, y(G) - miu{| I : Disa dominating set of G},
where | Z} denotes the number of elements of 22 A dominating st with smallest
cardinality will be called a y(G)-set or simply, a y-set. The cartesian product
GoH of two graphs G and H is the graph with vertex set WGoI)- WG« WH)
and two vertices in W GO H) are adjacent if and only if they are equal in one
coordinate and adjacent in the other. The two graphs & and X are called the
Iactors of the graph GoZL We think of the vertices of GoH as being laid out in
a matrix form where for 2 € WG), the row {(u, v): v € WH)) induces a
subgraph of GoH, which is isomorphic to A This graph will be denoted by
H,. Similarly, for ve WH), the column {(#,¥) : # € WG)) induces the
subgraph G, of GoHl Clemrly, G, =G.

The interest in dominating the cartesian product of two graphs stems from a
conjecture suggested by V.G. Vizing in 1963 1101, which states that for any two
graphs G and I, y(Go H) is not less than y(G) y(H). Most of the progress to
resolve this conjecture has been to show that the conjectured inequality holds
when some structural properties are imposed on one or both graphs. While, for
the general case, this conjecture is still open.

Several authors considered the problem of determining pairs of graphs for
which the conjectured lower bound is attained. Jacobson and Kinch [4] studied
the case when both factors are trees. Fink et. al [3] proved that equality holds
when both factors have domination number half their order. On the other
hand, Hartnell and Rall [5] gave five instances of infinite families of graphs
for which Vizing's conjecture holds with equality. For more abont equality, the
interested reader may refer to the survey article by Hartnell and Rall [6] and to
the more recent articles [2] and [8]. In [6], the authors posed the following
problem: can we characterize the graphs II that satislies the equation.
HGoH) - 1(@) yCH), M

when G is some fived graplf. Later on, the same authors answered this
question in the affirmative for G - K, [8L. They further proved that Vizing's
conjecture holds strictly for the star graph K, ,; m = 2, [7). Moreover, they
pointed out that for any generalized comb H, (It ,0H) - 2y(H), m = 2, [6].
Fal-Zahar, Khamis, and Nazzal [2] gave a characterization ol graphs I when
G-Cz K, They also considered cquation (1) when one [actor of the cartesian
product is a cycle. This motivates the investigation of nontrivial solutions for
equation (1) when &' is either the complete bipartite graph I(,,,, where m =2
and 2= 3, or G is the graph obtained from the cycle of any length as described
below.
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The main results of the present paper are given as follows: in section 3, a
characterization of all nontrivial solutions for equation (1) in case of & - 4 ,;
1 =3, is given. On the other hand, it is shown that Vizing's conjecture holds
strictly if & - K, fov m, 11 = 3. In section 4, it is proved that equation (1) has
no nontrivial solution if G is the graph obtained from ¢, either by adding one
vertex and a pendant edge joining this vertex to any ve WG, or by adding one
chord joining two alternating vertices ol ;. For case of reference, those graphs
will be called C;, and C,, respectively. Scction 5 is dedicated to the study of
more graphs with domination number 2, where we either give solutions for
equation (1), or else, prove the nonexistence of nontrivial solutions.

2. Preliminaries.

Before proceeding, some previous results and some related ideas arve
presented.
Theorem 2.1 (2. Let D be ay-set for G. Then there is a vertex ve V(G) — D
such that v Is adjacent to at most two vertices of D, n]
Theorem 8 of [11 states that eycles, C; n>3, satisly Viziugs coujecture. The
proof of this thcorem made use of the fact that if D is a y-set for Caff n2
6, then the graph C,,0H and a corresponding y( C,y0H)-sot, D", may be
constructed from Colf and D), respectively. This is simply done if two
successive rows in Ca ) are deleted and then the two rows adjacent to the
deleted ones are identified. Here the rows corresponding to the vertices of H,,.,
and 4, arc deleted and then the vertices corresponding to 7/, and 17, are
dentified. According to this construction, the following corollary is obtained.
Corollary 2.2 [11. Forany connected graph H and 1 > 6,

WGolh 2 y(Guoll) v YD) o
Obviously, if C, and C,; in corollary 2.2 are replaced by C ,',' and

C ,','_3, respectively, the resalting inequality is valid, as long as we keep away
from the vertex adjacent to the newly added vertex either in the deletion or in
the identification process. An analogous result holds for the graph C ,',

described above. This proves the following corollary:

Corollary 2.3. For any connected graplh H and 1 > 6, the following
Inequalities hold:

) W Cl oty 2y C,_yoll) + Y, aud
D C! a2y Cy_y o) + (1. o
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Let G be a fixed connected graph with domination number 2. To gain some
insight in the case when the lower bound of Vizing's conjecture can actually be
achieved, we are going to recall and extend the proof of El-Zahar and Pareek
(1] that graphs with domination number 2 sutisfy Vizing's conjecture,

Let G'be a connected graph for which equation (1) is satisfied. Assume that A
is & minimum dominating set for the product GoZL

Define:
By={yeV(H):[P(G,)n 4]=0},

B,={evH): [(G,)n 4=1}ama

B,={yeV(H): [(G,)n 4|22}

Evidently, B, U B, U B, is a partition of WH). Since y(G) - 2, W G) can
be partitioned into ¥V and ¥, such that each of the sets ¥V and V, is a
dominating set of G ; the complementary graph of G, [11. In fact, for the
graphs which are under consideration in this paper, several such partitions
exist; those different partitions are employed to investigate the existence of
solutions for equation (1). For our purposes, assume W &) has the following
two different partitions:

KG) - iu W and KG) -Vl .
For 7-1,2 let
B,={yeB,: V(G,)nA={(x,y)},withxeV,}, and
B, ={ye B, :V(G,)nA={(x,y)}, with xe V/}-
1t can be shown that each one of the sets B, U B, and B, U By;;
i-1,2, is a dominating set of A, and thus, it has cardinality greater than or
equal to y(A). In particular, | B,UB, |27(H) and | B,UB, |2 y(H), [1).
This implies that 2y(H)-| A= 2| B, I + | B, | >2y(H)-
Thereforo,l B, UB, |-| B,UB, |= y(H), and
B, ={yer): [P(G,)n4=2}

Hence, | By - | B Considering the second partition and applying a similar
argument, one can get |B|'1| = |Bl'2 - By - | B.

For each v € K G), let
F,={yev(H):¥(G,)n4={n)}}

Then, for 7-1,2;

Bi- | JF, ana B, =|JF,.

veV; veV]
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Thus, the lollowing equality holds:

2IFE|=2IF|=2|F]=2

vel veb vely vel;

F| ®

3. The Graphs K, ,0 H; m-2 and n-3.
We are now ready to investigate the existence of solutions for equation (1) for
some fixed graphs & with domination number 2.

If one factor of the cartesian product is 1, , then the results of {61
and [2] imply that both J; and (}, respectively, ave solutions for equation (1).
For any graph I having at least 4 vertices, a characterization of I for which
Vizings conjecture holds with equality is given as follows:
Theorem 3.1. Let I be a conuected graph of order at least four: Then H
satisfies Y(Ks, 0k - 2y(II}, n = 3, if and only it H is either C ora
generalized comb.
Proof. Assume fis a connected graph with order at least four and let A be a
minimum dominating set for £, ,0f7 with cardinality 2y(J1).

Since y(A,,) - 2, there is a partition of WUK,,,) into ¥; and ¥, such that
cach of the sets V; and V, is a dominating set of KZn . In fact, WJi,,,) has

several snch partitions each of which satisfies this property. Note that

Kz'” I, U K, and label the vertices of A; by wy, my, and those of A, by n,
¥, ..., ¥, Consider the following partitions ol V(Jt,, ).

VI - l"l ’ Vl}’ VE - I”'«b Kay ey VII,’ and
’ !
Vl -y, w», W, Vz O /790 P A %
As a result of equality (2), one can conclude that
IF:,l UF,|= |]5;,l UF, U szl, and hence, |F, |=0.
Considering other different partitions gives:
F,|=0, foreach ji-1,2, ., n, and |F, |=|F, |. Now, the following two

cases are studied.

Case I: F, - Fu2 - . This means that B is a y(II)-set. Note that = G. It
not, then 7 is a null graph which contradicts the hypothesis of the theorem.
So, let xy € B, Then, in order for GXO to be dominated by A, iy should be
adjacent to at least 3 distinet vertices in I3, since # = 3, which contradicts
theorem 2.1,

Case 2 Both sets F l and F'u2 are nonempty. Suppose J3# &, and consider

U
the vertex & 73 Note that ¥y is adjacent to exactly two vertices in 3, Thus
Xp is adjacent to at least one vertex in one of the scts F, , and Fu2 , as well as
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the two vertices say i, )a€ B Without loss of generality, assume X, is
adjacent to X, € F, . But then, the set (B, UF, Y.V {x,}

would be a y(£)-set with smaller cardinality. So, By-&. Therefore, | WJII}- | B)
B but, 2y(ED - | B + 2By and so y(H) )ZIV(H 1, which is a contradiction.
This implies that /3, - &. Consequently, V(H)-B, and 2y(H) - | B - | KH),
that is, J1is either C; or a generalized comb. Conversely, if His a generalized
comb, denote the set of end vertices of H by U and let W- WID- U
Clearly, the set ({m}x D) O ({mjx W) is a y-set for Ky, 0 with cardinality
2y(FD). Also, if H - (, then the set ((m}x{L,3}) U ({m}x(2,4]) is a y-set for
K, 0C, with cardinality 2y(C, ). o

The above theorem implies that a sharp lower bound is attained infinitely
olten for the graph I, ,. However, the next theorem shows that this is not the
case for the complete bipartite graph, K,,, where m, u =3.

Theorem 3.2. For any connected graph H of order at least four, Y( K, D) »

y(H), my, n>3.

Proof. The graph K,,, has domination number 2 and thus it satisfies Vizing's
conjecture, so it remains to prove that equality does not hold.

Suppose H is a graph for which (K, ,0H) - 2y(H). Let A be a minimum

dominating set for X, 0H such that| A - 2 y(H). Observe that K s K,
v K,, let WK)-{my, oy, .., m,) and WIK)-{w, », ..., v). Consider the
following paxtitions of WU, ,), where each of the sets Vk and V; k-1,2,is

a dominating set for K :
Vi- |m, ), Vol ooy Uy, Voyoony v, ), and

(4 (2
W -, my w, ), Vy-{thye oyl ¥eoos Vae

F, |=|F, |=0. Considering other different partitions, it

Fu 7 FV '}

all f 1< j < n It follows that Bj- &, and hence, B, is a y(E)-set. Now, any
ye WJID - B, must be adjacent to at least 3 distinct vertices in I3, otherwise;

not all vertices of the column G y would be dominated by A. This contradicts

This implies that

can easily be realized that =0 forall 7;1< i< m and =0 for

Theorem 2.1, and thus the result follows. 0o

4, The Graphs C.oH and C,0H.
Now, the effect of adding one chord joining two alternating vertices of
¢, is studied. Assume that WG)- {1, 2,..., 4}. For the case n - 4; ¥( C ‘;) -1,

therefore, equation (1) has no solution [7). A similar result holds for C ;’ . For
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the graph C ; (see Fig.1.) the result is addressed in the following lemma.
Lemma 4.1. For any connected graph H of order at least four; y(Cqoil)»

Ry(D).
Proof. Assume that there exists a graph Z7 such that y(C ; oll) - 2y(H) and

let A be a minimum dominating set for C; odl with cardinality 2y(fd).

Consider the following partitious of V(C )

0(0

¥ -1{1,5), Va- 12 3, 4),
2 ¥V -(1,20), V, -3, 4, and
3 V(1,23 vy - 14, 5.
2
o - SRR G S G-
s q
Fig. 1.

This implies that 75 - @, | K| - | Fj| and | £ - | £5. Now the following two
cases are tackled.

Case I: 5 # @, then Fy # @. For cach 7 such that 1</ < 5, let A;
-{ye WH).(7 ,x)e A}. Note that I Mdy). If not, then for some y € f4, the
vertex (2, ) would not be dominated by A. Since B - @ and Fc N Ay), then
J-is adjacent to some vertex ze f3, this implies that the set (v £ 1) -{4
dominates /7 and has cardinality y(Z)-1 which is a contradiction.

Case 22 K - O, then F; - &. Furthermore, if F - &, then F] - O,
conscquently, 13, is y(H)»set, which leads to a contradiction. So, /4 # & and
I c N(Ay) which again leads to a contradiction. Therefore, for the graph C ; ,
there exists no graph £ for which Vizing's lower bound is sharp. D
Note that the graph C : is a spanning subgraph of C ; with the same

domination number. This implies that
Corollary 4.2. For auy connected graph H of ordor at least four,

v Cy 0H)> 2y(H). o
Lemma 4.3. For any connceted graph H of order at least 4, ¥ CgoH)»
Ry(H).

Proof. The graph  Cg and its complement are shown in Fig.2 .
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Fig. 2.
Considering different partitions of V(C;) into ¥ U V¥, where each of the
sets V) and ¥, is a dominating set of C_é yields B)-&, and thus B, isa

v(H)-set, which leads to a contradiction. So, the result follows. m]
Let us remark here that a similar result of the above could be obtained if

another chord joining vertex 1 to vertex 5 is added to the graph Cg of lemma

4.3.
The following corollary is an immediate result of lemma 4.3.

Corollary 4.4. For any connected graph H of order at least 4, y(C§ oH)»
2y(H). o

To this point, it has been shown that for u - 4, 5, 6; ¥ C,. o1l y( C,, W(ID,
and for u - 3, 4, 5, y(C,, o) > y(C, Y(HD. The general cascs are obtained

using corollary 2.3. This can be stated as follows.
Theorem 4.5. For any connected graph H of order at least 4,

W Cr o) > y(C, Y 1 >4, and
W C, o8 > y(Cp WCH); n-3. D
5. More Graphs with Domination Number 2.

In this section, two results which are immediate consequences of the resnlts of
section 3 are demonstrated. Let G1 be the graph obtained from C5 by
adding the chords {1,3} and {2,5}, while G, is the graph obtained from Cj

by adding the chords {1,3)}, {2,6}, {3,5}, and {4,6}, which are shown in Fig.3. Then
some solutions for equation (1) are given in the following lemma

Lemma, 5.1. Let G be one of graphs G, or G, aud let H be either C; ora
generalized comb. Then y(GoH) - y(Gy(H).
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1 2 1 £ 2

Gq

<3

IFig . 3.
Proof. The two mentioned graphs Gl and G2 are supergraphs of £,y and
1y, respectively, with the same order and domination number. So, if »-3 or
4, then y(GolD<y(X,, o ID-2y(Il), where £ is either ¢ or a generalized
comb.
(u}
Corollary 5.2. Let G be the graph obtained from G by adding at least one
of the chords {4,i+3} where -1, 2, 3. Then, for any connected graph IT;
WGa Ly 2D,
Proof. Note that if all three mentioned chords are added to ¢ then & is
isomorphic to [,y Thus the result follows from theorem 3.2, On the other
hand, if not all three chords are added, then & is a spanning subgraph of /i3
with the same domination number and hence
WGaH) = y(hss0 ) » 2y(H). o

We end this section with the following result concerning the graph
&-Ciode, since y(@)-2.
Theorem 5.3. For any connected graph H of order at least 4, Y(@oIl) »
Ry(£D).
Proof. The graph @ and its complement are shown in Fig. 4.

(=]
25 =N
Tig. 4
Consider the following partitions of W @):
1) Vi- l], 4” K-’" {2r 3’ 5) 6: 7’ 8}’
2) V' -12,3), V) -11,4,5,6,7,8), and
"
3 V- 35), V) -11,2,4,6,7,8).
Which implies that forecach £ 7- 1, 2,..., 8 F; isempty. So, By is empty, and
thus B, isa y-set for /7 which leads to a contradiction. o

This shows that il one factor of the cartesian product is @ then the lower
bound of Vizing's conjecture is not attained. HHowever, considering the graph @,
- oA proves that the upper bound, given in [10), is actually achieved, since

4= | GO v(@) = v(@ 0 &5) - Y(@) - 4.
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