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Abstract

A large set of resolvable Mendelsohn triple systems of order v,
denoted by LRMTS(v), is a collection of v — 2 RMTS(v)s based on
v-set X, such that every Mendelsohn triple of X occurs as a block in
exactly one of the v — 2 RMTS(v)s. In this paper, we use TRIQ and
LR-design to present a new product construction for LRMTS(v)s.
This provides some new infinite families of LRMTS(v)s.
Keywords: Large set; Resolvable Mendelsohn triple system; Tran-
sitive resolvable idempotent quasigroup; LR-design

1 Introduction

Let X be a v-set. A Mendelsohn triple is a cyclic tripe (z,y, z)
(or (y,z,z), or (z,z,y)) based on X which consists of three order pairs:
(z,9), (y,2) and (z,z). A Mendelsohn triple system of order v, denoted
by MTS(v), is a pair (X, B) where B is a collection of cyclic triples on X,
called blocks, such that each ordered pair of X occurs in exactly one block
of B.

An MTS(v) is called resolvable if its blocks can be partitioned into
subsets (called parallel classes), each containing every element of X exactly
once. A resolvable MTS(v) is denoted by RMTS(v).

A large set of Mendelsohn triple systems of order v, denoted by LMTS(v),
is a collection of (v —2) MTS(v)s based on X such that every Mendelsohn
triple from X occurs as a block in exactly one of the (v — 2) MTS(v)s.
Existence results for LMTSs and RMTSs are well known from (1, 10].
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Theorem 1.1 (1) There erists an LMTS(v) if and only if v =0,1 (mod 3)
and v # 6.
(2) There exists an RMTS(v) if and only if v =0 (mod 3) and v # 6.

A large set of disjoint RMTS(v)s is denoted by LRMTS(v). The exis-
tence of LRMTS(v)s has heen investigated by Chang (2], Kang [9], Kang
and Lei [11], Kang and Tian [12], Kang and Xu [13], Kang and Zhao [14],
Xu and Kang [18] and Zhou and Chang [23]. We can list the known con-
clusions as follows.

Theorem 1.2 There exists an LRMTS(v) for the following orders v :
(1) v = 3*m, where k > 1 andm € {1,4,5,7,11,13,17, 23,25, 35,37, 41,
43,47, 53, 55, 57,61, 65,67,91, 123}.
(2) v=TF+2, 13% 42, 255 +2, 2% 4+ 2 and 2% 4 2, where k > 0.
(8) v=12(t + 1), where t € {0,1,2,3,4,6,7,8,9, 14, 16, 18, 20,22, 24}.
(4) v =6t + 3, where t € {35, 38,46,47,48,51,56,60}.
Also, if there exists an LRMTS(v), then there exists an LRMTS((2 -
s¥ +1)v) for any k>0, s = 7,13 and v =0,3,9 (mod 12).

Some orders in this theorem come from the existence of LKTS(v)s,
which are defined below.

A group-divisible design (briefly GDD) is a triple (X, G, B) with the
following properties: (i) X is a finite set of points; (ii) G is a partition of
X into subsets called groups; (iii) B is a set of subsets of X (called blocks)
such that a group and a block contain at most one common point, and any
pair of points from distinct groups occur in exactly one block of B. A GDD
(X,G,B) is called resolvable, denoted by RGDD, if there exists a partition
I'={P,, P, -, P} of Bsuch that each part P; (called parallel classes) is
a partition of X.

A GDD is called a transversal design if it has exactly k groups of size n
and every block has size k. We denoted such a GDD by TD(k,n). A TD
is called resolvable (denoted by RTD) if it is a RGDD.

A GDD (X, G, B) is called a Steiner triple system if | X| = v and it has v
groups of size 1 and every block has size 3. Such a GDD is denoted briefly
by STS(v) (X, B). A resolvable STS(v) is called a Kirkman triple system
and denoted by KTS(v).

A large set of Kirkman triple system of order v, denoted by LKTS(v), is
a collection of v —2 KT'S(v)s based on a v-set X, such that each triple from
X occurs in exactly one of the v — 2 KTS(v)s. In a KTS(v), if we replace
any triple {z,y, z} by two Mendelsohn triples (z,y, z) and (z,y, T}, then we
obtain an RMTS(v). It is obvious that the existence of an LKTS(v) implies
the existence of an LRMTS(v). However, this approach can provide only
odd orders of v since the existence of a KTS(v) implies v = 3 (mod 6). The
existence of LKTS(v)s, known as the general Sylvester’s problem of the 15
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schoolgirls, has a long history [4]. The recent investigation was started in
1974 by Denniston {4, 5, 6, 7]. Some recursive constructions were given by
Ji and Lei (8], Lei [15, 16], Yuan and Kang [19, 20] and Zhang and Zhu
[21, 22]. We summarize the known results on LKTS(v)s as follows.

Theorem 1.3 (1) There ezists an LKTS(3"m(2-13" +1)(2-13"2+1) - - - (2-
13" + 1)) formn > 1,m e Myt > 1andn; > 1 (i =1,2,---,t), where
M ={1,5,11,17,25,35,43,67,91, 123} U {27 *125% + 1 :7 > 0,5 > 0}.

2) There ezists an LKTS(3H 120 + 1)TTS_, (4% = 1)) forp+q >
1,75, 85 2 1 and prime power ¢; = 7 (mod 12).

The main result of this paper is to give a new product construction
for LRMTSs. This provides some new infinite families of LRMTS(v)s. In
Section 2, we give some concepts such as transitive resolvable idempotent
quasigroup (TRIQ(v)), LR-design (LR(u)), etc. In Section 3, we make use
of TRIQ(v) and LR(u) to present a new product construction. In Section
4, we give new orders for LRMTS(v)s.

2 Definitions

A quasigroup is a pair (X,0), where X is a set and (o) is a binary
operation on X such that the equation oz = b and yoa = b are uniquely
solvable for every pair of elements a,b in X. The order of a quasigroup
(X, 0) is the size of X,

A quasigroup of order v is called idempotent if the identity zoz = =
holds for all  in X. An idempotent quasigroup of order v is denoted by
IQ(v). A quasigroup of order v is called symmetric if the identity zoy = yox
holds for every pair of elements z,y in X. A symmetric quasigroup of order
v is denoted by SQ(v).

A quasigroup (X, 0) is called resolvable if all v(v — 1) pairs of distinct
elements can be partitioned into subsets T;, 1 < i < 3(v—1), such that every
{(z,y,209) : (z,y) € T;} is a partition of X. An idempotent quasigroup
1Q(v) is called (sharply) transitive if there exists a group of order v acting
transitively on X which forms an automorphism group of the IQ(v). A
transitive resolvable IQ(v) is denoted by TRIQ(v). A transitive resolvable
symmetric IQ(v) is denoted by TRISQ(v). In [2], Chang gave the following
existence result.

Lemma 2.1 (2] There exists a TRIQ(v) for v = 0,3,9 (mod 12).

Transitive IQ has been used to give a tripling construction for large sets
of STSs in Teirlinck [17]. To consider the similar problem for large sets of
KTSs and large sets of RMTSs, we demand that the transitive IQ must
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have certain property of resolvability. TRISQ(v) was used to construct
LKTSs [21}. TRIQ(v) was used to construct LRMTSs [2, 23].

In {15}, Lei introduced a kind of combinatorial design named LR—desxgn,
denoted by LR(u). An LR(u) is a collection {(X, Ay:1<k< "2 j=
0,1}, where each (X, A}) is a KTS(u) based on u-set X and {AJ (h);1 <
h < %51} is a resolution (collection of parallel classes) of .A'7 with the
propertles

i) U A1) = U A}(1) = A forms a KTS(u) over X too;
=N .
ii) Any triple from X is contained in |J | AJ.
k=1 j=0
Lei [15) and Ji and Lei [8] obtained some existence results for LR(u).

Lemma 2.2 (15, 8] There exists an LR(3°5°T[}_ (2 - 18™ + 1) [T, (2"
7™ + 1)) for any integer n;,m; > 1 (1<i<r1<j<p), a,br,p>0
witha+r+p>1.

Recently, using these auxiliary designs and their existence, Chang et al.
[2, 23] proved the following conclusions.

Lemma 2.3 [2] If there exist both a TRIQ(v) and an LRMTS(v), then
there ezists an LRMTS(3v).

Lemma 2.4 (23] If there ezist an LRMTS(v), a TRIQ(v) and an LR(u),
then there ezists an LRMTS(uv).

Next, we introduce the concept of complete mapping in a finite group.
We follow the definition in Denes and Keedwell [3].

A complete mapping of a group (G, ), is a bijection mapping  — 6(z)
of G upon G, such that the mapping n(z) = = - 8(z) is also a bijection
mapping of G upon G. The following existence results were stated in [3].

Lemma 2.5 (3] If G is an arbitrary group of order n = 4k +2, then G has
no complete mapping. If G is an abelian group of order n # 4k + 2, then
G does have a complete mapping.

Let X = {0,1,---,v — 1} and (X, o) be an idempotent quasigroup with
a sharply transitive automorphism group G written multiplicatively. It is
casy to see that there is a unique g € G such that g(z) = y for every pair of
elements z,y in X. Let the first row of (X, o) be of the following ordered
triples:
(0,h(0),7(0)), heG.

Then h — h* is a bijection between G, denoted by ®. Hence, (g(0), gh(0), gh*
(0)),9,h € G forms the quasigroup (X, o).
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Then (g, gh, gh*),9,h € G is a latin square on G, which inplies that
{(gh,gh*) : 9,h € G} =G x G.

So, we have

{h(h*)"1:heG}=G (1)
Note that the mapping ® : h — (h*)~! is also a bijection between G. By the
definition of complete mapping and formula (1), @ is a complete mapping
of G. Next we record the result as follows.

Lemma 2.6 If there exists a transitive 1Q with G as a sharply transitive
automorphism group, then G has a complete mapping.

3 A new product construction for LRMTS

Let X = {0,1,---,v—1} and (X, o) be an idempotent quasigroup with a
sharply transitive automorphism group G = {09,071, -,0y-1}. By Lemma
2.6, G has a complete mapping, say, ®~!. Let 0* = &(0) for 0 € G. Then,
by the definition of complete mapping, we have

{o(c*):0€G}=C (2)

Theorem 3.1 If there ezist an LRMTS(3v), a TRIQ(v) and an LR(uw),
then there exists an LRMTS(uv).

Proof. Suppose that X is a u-set with a linear order “ < ” (i.e. for any
z#vy, z,y € X, either z < y or y < ). We have an LR(u) over X with
the following collection of © — 1 KTS(u)s

(Al : 1sk< 22

, 1=0,1}

which with following properties:
(i) Let the resolution of A4 be I, = {AL(R): 1 < h < %51}, and

U

2
k=

—1 uT—l
A1) = 4k =4,
1 k=1

(X, A) is a KTS(w).

(ii) For any triple T = {z,y,2} C X, 2 # y # z # z, there exist k,!
such that T € A}.

Furthermore, suppose that Y is a set of size v. So we have a TRIQ(v)
over Y. Let (Y,0) be a TRIQ(v), G = {09,01,*,0v-1} be the transitive
automorphism group of (Y, o). We will construct an LRMTS(uv) on the
point set X x Y. The construction proceeds in 2 steps.
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u—l

Step 1: For any {z,y,2} C X, {x,y,2} € A= U Ad(1).

(1) If {z,y,2z} € A1), we have an LRMTS(3v) on the point set
{z,y,z} xY. Let its block set be {B{z’y’z} 1<i<v-2}U{B({z,v,2}) :
0<j<wv-1,1=0,1}, and each Bi{x’y’z} can be partitioned into parallel
classes B{***}(n), 1 < n < 3v—1, each B.({z,y,2}) can be partitioned
into parallel classes B}({z,y,2},n),1<n<3v—1.

(2) If {z,y,2} & A°(1 ie. {z,y,2} € AY(1) for some k, 2 < k < 31
T<y<zlet

Pi2v*} = (((2,0), (y,04(a)), (2,003 () : a € Y},
plavet - : (@2}
Pj’s - {(w’ v’"’) : (‘U., U,’ll]) € IJj,S Y }3
where 0,,0; € G and let

A:{’_r,y,Z} — U Pj{:,y,z}’
0,€G

A{x’yiz} U (P{,::,y,z} UI_)-s-i'y’z}).
0. €G
Then by formula (2), it is easy to show that each ({z,y,2} x Y, A}I’”'z})
(0<j<v-1,in A}x'y’z}, (u,v,w) is replaced by {u,v,w}.) is a resolvable

TD(3,v) with the parallel classes Pj{;’y’z}, o, € G, and these v TDs form
a large set of disjoint RTDs.

Since (Y, 0) is a TRIQ(v), for any ordered pair (a,b) € Y x Y (a # b)
and any o € G, we get an element aob in Y such that o(a)oo(b) = o(aocbd).

Define
B, . ={(z,a),(z,b), (y,05(a0b))),

BY) . = (4,95(a)), (¥, 0;(b)), (2,000} (a0 1)),
BY) . ; = {(z.0003(a)), (2,007 (b)), (z,a 0 b)),

B, i = ((,0),(z,b), (2,00_10} (a0 b)),

BY) . = ((y,9i(a)), (v, 05(b)), (z,a 0 b)),
BY . = {(2,00-103(a)), (2,04-103 (H)), (3, 05(a 0 b)))

and

,z {z.y,2} l i l
{x Y Z} P"ff !:7 ) UP J )U U {B‘(")bst)B‘("})oer’ ‘(‘}’Z;J}),
(a,b)EY XY
a#b
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where0<j<v-1,l=0,landv—-I{=0,v~1.
Note that the blocks ((a: a), (y,05(a)), (2,000} (a))), ((z,b), (y,0;(b)),
(z,00073(b))) and {(z, aob), (y, oj(aob)), (2, 0007} (aob))) are the three blocks

ofP{j'W} and the blocks ((z, a), (y,05(a)), (2, 6,-103(2))}, (=, b), (¥, 75(b)),

(2,00-105 (b)) and ((z,a0b), (y,0;(aob)), (2, 0y-105(aob))) are the three
blocks of P,,{f’l"’;z}. Furthermore, ({z,y,2} x Y, Bj({:z:,y,z} ), 0< <
v—1,1=0,1, is an RMTS(3v). Let each B({z,y,2}) can be partitioned

into parallel classes Bi({z,y,2},n),1<n < 3v - 1.
(For any trlpleTofXxY T is form as {(z, a), (z,b), (z, ¢)) or {(z, a), (z, ),
(,¢)) or {(z,a), (y,b), (z,¢)) with {z,y,2} € A, then T appears in Step 1.)
Step 2: For any {x,y,z} C X T <y<z {z,y,2} € A (i.e. there cxist
k,l such that {z,y,z} € A} \ (1)) define

PEv = (((2,0), (¥,04(a)), (2,0j03(a))) :a € Y},

_{‘T'y’z} ( 1Yy }
P = {{w,v,u) : {u,v,w) € P70V},
where 05,0, € G and let

{ 'Y } — {$, ,Z}
AJ““ = U Pjrs Y ?
0,€G

_{-Txyrz) — {I, ,Z} {I”y z}
A0 = | @t PR
o,€C
Then by formula (2), it is easy to show that each ({z,y,z} x Y, A{m’y'z})
(0<j<wv-1,in .A{ac vzt v, w w) is replaced by {u,v,w}.) is a resolvable

TD(3,v) with the parallel classes P{x’y’z} 05 € G, and these v TDs form
a large set of disjoint RTDs.
Define

C; = ( U ziz,yyz}) U( U Bjm,y,z}).
{z,y,2}€A\49(1) {z,9,2}€A%(1)

It is not difficult to check that each (X x Y,C;), 1 < i < v — 2, is an
RMTS(uv) with the following parallel classes:

CGn)= |J BF*"Im), 1<n<30-1;
{zw2}€A%(1)

Citk,s)=  |J Plv
{z.,2}€40(1)
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Gitks)= U PEY o<k < 5 0Ss<v-1L.
{z,2}eAl(D)

Furthermore, these v — 2 RMTSs are obviously disjoint.
Define

p=( U BlewadU U A,

{z,y,2}€AL(1) {z.y,z}eA\AL(1)

where 1 <k < ¥51,0<j <v—1,1=0,1 It is not difficult to check that
each (X x Y, 'ch'j) is an RMTS(uv) with the following parallel classes:

D}ﬂ,](n) = U Bj({x,y, z})n)a 1<n< 3v— 1,
{z,y,z}eAl(1)

u—1

Dihe)= U PEY 2<h<iio 0<s<u-1
{z,y,2}€AL ()
Drshs)= U P 9<hg “—;—1 0<s<v-1

{z.y,2}€AL(h)

and these (u—1)v RMTSs are disjoint. We obtain a total of uv —2 disjoint
RMTS(uv), a large set. This completes the proof. 1]

4 New orders

From Lemmas 2.1, 2.2 and Theorem 3.1, we can obtain the following
conclusion.

Theorem 4.1 For v = 0,3,9 (mod 12), if there ezists an LRMTS(3v),
then there exists an LRMTS(v - 3258 [[}_,(2-13™ + ) [[F_,(2- 7™ + 1)),
where integers n;,;m; > 1 (1 £ i <rl1<j<p), abrp >0 wih
a+r+p=>1.

For example, from Theorem 1.2, for s € {57, 93,132,240, 255}, the exis-
tence of LRMTS(s) is unknown. But the existence of LRMTS(3s) is known.
And from Lemma 2.1, there exist a TRIQ(s). Thus, from Theorem 4.1, we
get the following result.

Theorem 4.2 There ezists an LRMTS(s-3°5° [];_, (2 13™ + 1) [T5_, (2-
7™ + 1)), where s € {57,93,132,240, 255}, integers n;,m; > 1 (1 <i <
rn1<j<p), a,br,p20 witha+r+p2>1.

Remark: The smallest order of v (unknown before this paper) obtained
from Theoremd.2 is 1395, 1980, 3600, 3825, - - - in turn.
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