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Abstract

Let G be a connected graph. The hyper-Wiener index WW(G)
is defined as WW(G) = 3 T, Lev(c) 4% v) + 5 T vevic) (1 0),
with the summation going over all pairs of vertices in G and d(u,v)
denotes the distance between u and v of G. In this paper, we deter-
mine the upper or lower bounds on hyper-Wiener index of trees with
given number of pendent vertices, matching number, independence
number, domination number, diameter, radius and maximum degree.
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1 Introduction

Throughout this work we consider simple connected graphs. Let G be a
graph with vertex set V(G) and edge set E(G). We denote by d(z,y), N(z)
and deg(z), the distance between vertices z and y, neighbors of vertex z
and the degree of x, respectively.

The Wiener index, defined as W(G) = >uwev(a) 44, v), is perhaps
the most studied topological index from application and theoretical view-
points. The hyper-Wiener index of acyclic graphs was introduced by Milan
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Randi¢ in 1993 [1] as an extension of the Wiener index. Then Klein et al.
(2] generalized Randié’s definition for cyclic structures. The hyper- Wiener
indez of a graph G is defined as

WW(G):—;- Z d(u,v)+% Z d?(u,v),
u,weV(G) u,veV(G)

with the summation going over all pairs of vertices in G. By setting S(G) =
Y uwev(c) 4 (u,v), we have WW(G) = 3 W(G) + 3S(G). If we denote by
Do(u) = Loevic) d,v), DDalu) = Tyev(c) (), then W(G) =
3 Lueviey De(u),  8(G) = 5 L ev(a) PDe(u).

Up to now, a few results are obtained concerning the hyper-Wiener in-
dex. In [3], general expressions were derived for the hyper-Wiener index
for several series of hydrocarbons, both benzenoid and non-benzenoid, in-
cluding some two-dimensional networks. In [15], the authors presented the
algorithm for calculation the hyper-Wiener index of benzenoid hydrocar-
bons. In [6] the authors discussed the discriminating ability of the hyper-
Wiener index on a class of acyclic structures (trees) including the molecular
graphs of alkanes. Gutman et al. in [12] determined the trees with minimal
and maximal hyper-Wiener indices: among n-vertex trees, the minimum
and maximum hyper-Wiener index is achieved exactly for the star S, and
the path P,, respectively. Some relationships between hyper-Wiener index
and Wiener index were investigated in [5], [10], [11], [13], [19]. The closed
formulas for the hyper-Wiener index of Cy nanotubes, C4 nanotori, zigzag
polyhex nanotorus were established in 7] and [14]. The present authors in
[8] determined the extremal unicyclic graphs with n vertices and girth k&
having minimal and maximal hyper-Wiener index.

Let P, and S,, denote the path and the star on n vertices, respectively.
A starlike tree Sp, n,,..n. is a tree with exactly one vertex v of degree at
least 3, S, ng,oine =¥ = Pn,UPp,U.. .UP,, ,wheren; > np > ... 2 ni > 1
and Zf=l n; + 1 = n. Clearly, n1,ns,...,n, determine the starlike tree up
to isomorphism. BS, i = Sp| n,,..n, i balanced if all paths have almost
equal lengths, i.e., |n; —nj] < 1forevery 1 <i<j<k.

Let T,k (2 < k£ < n—1) be the set of trees on n vertices with k pendent
vertices. If k = 2, then the set ¥, 2 contains just the path P,; while if
k = n—1, the set T, ,_; contains just the star S,. So, we assume that
3 < k <n -2 in the sequel.

Let G be a connected graph. Two distinct edges in a graph G are in-
dependent if they are not incident with a common vertex in G. A set of
pairwise independent edges in G is called a matching in G. While a match-
ing of maximum cardinality is a maximum matching in G. The matching
number B(G) = B of G is the cardinality of a maximum matching of G. It
is well known that 8(G) < %, with equality if and only if G has a perfect
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matching. A subset S C V(G) is called an independent set of G if no two
vertices in S are adjacent in G. The independence number of G, denoted
by a{G) = «, is the size of a maximum independent set of G. A subsct
S C V(G) is called a dominating set of G if for cvery vertex v € V -9, there
exists a vertex u € S, such that v is adjacent to u. The domination number
of G, denoted by v(G) = 4, is the minimum cardinality of a dominating set
of G.

If % < m < n—1, then Ay ,, is the trec obtained from S, by adding
a pendent edge to each of n — m — 1 of the the pendent vertices of Sy, 4.
We call A, .. aspur. Clearly, A, » has n vertices and m pendent vertices;
the matching number, independence number and domination number of
Ap,m are n —m, m and n — m, respectively. Note that if m > ﬁ;—’, théen
An,m = BSu,m'

The eccentricity e(v) of a vertex v is the maximum distance from v to
any other vertex, and the vertices of minimum eccentricity form the center.
A tree has exactly one or two adjacent center vertices; in this latter case
one speaks of a bicenter. The diameter d(G) of a graph G is the maximum
eccentricity over all vertices in a graph, and the radius 7(G) is the minimum
eccentricity over all v € V(G). For a tree T with radius »(T'), it holds

_f2r(T)-1 if T has a bicenter
AT) = { 2r(T) if T has has a center. (1)
Let Cr a(p1,p2,...,pa—1) be a caterpillar on n vertices obtained from

a path Py = vgur...v4—1v4 by attaching p; > 0 pendent vertices to v;,
1<i<d-1,wheren = d+1+2?;]1 pi. Denote Cp, g; = Cp a(0,...,0,n—

i-1
d-1,0...,0). Obviously, Cp 4,i = Cn,dn—i-

Denote by A(T') the maximum vertex degree of a tree T. The path P,
is the unique tree with A = 2, while the star S, is the unique tree with
A = n — 1. Therefore, we can assume that 3 < A < n — 2. The broom
B, a is a tree consisting of a star Sa41 and a path of length n — A -1
attached to an arbitrary pendent vertex of the star.

In this paper, we deal with the hyper-Wiener index of trees with pre-
scribed parameters such as the number of pendent vertices, matching num-
ber, independence number, domination number, diameter, radius and max-
imum degree. Furthermore, we introduce the ordering of starlike trees and
determine the trees with the second smallest and largest hyper-Wiener in-
dex.
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2 Preliminaries

Definition 2.1 Let v be a vertex of a tree T and deg(v) = m + 1. Sup-
pose that Py, P,, ..., P, are pendent paths incident with v, with the start-
ing vertices of paths vy,vs,...,Vm, respectively and lengths n; > 1 (i =
1,2,...,m). Let w be the neighbor of v distinct from v;. Let T' = 6(T,v)

is a new tree obtained from T by removing the edges vvy,vva,. .., v0n—1 and
adding new edges wvy, wvs, ..., wWom—1. We say that T’ is a §-transformation
of T.

This transformation preserves the number of leaves in a tree T'.

Lemma 2.2 Let T be a tree rooted at the center verter u with at least
two vertices of degree at least 3. Let v € {z| deg(z) > 3,z # u} be a
vertez with the largest distance d(u,v) from the center vertex. Then for the
d-transformation tree T' = §(T,v) (as in Definition 2.1), it holds

WW(T) > WW(T"). )

Proof. We follow the symbols in Definition 2.1. Let G be the compo-
nent of T — wv containing the vertex w. Let M = {P,P,..., Pn-1}.
After § transformation, the distances between vertices from G and M de-
creased by one, while the distance between vertices from M and Q =
P, U {v} increased by one. By direct calculation, we have WW(T") ~
WW(T) = E:ceG,yeM ((d(w7 y) - 1) + (d(ZL‘, y) - 1)2 - d(.’II, y) - d2($’ y)) +
ZxGQ,yEI\/I ((d(l‘, y) + 1) + (d(.'l,‘,’y) + 1)2 - d(a:,y) - dz(m’ y))

= 2(Ez€Q,yeM (d(.’l!, y) + 1) - Ez:eG,yEM d(:z:,y)).

According to the assumption, there is an induced path P = ww ws ... wg
passing through the center vertex u in G, with length at least
max{ni,n2,...,Nm}. For the path P;, 1 < i < m — 1, it follows D; =
erQ,yEPg (d(:l:, y) + 1) - E:rEG,yEP.- d(x, y) < Z::eQ,yEP; (d(.’B, y) + 1) -

zePyeP; d(xi y) S 0.

Finally, we get WW(T') —- WW(T) =2 z:’;l D; <0, since T contains
at least two vertices of degree at least 3, we have strict inequality. Il

From the above lemma, the hyper-Wiener index decreases if we move
pendent paths P; towards the center vertex u of T along the path P passing
through u.

Lemma 2.3 Let G be a connected graph and v € V(G). The graph Gy ,, is
obtained from G by attaching two paths P = vv;...vs and Q = vuy...up
of lengths s and m (s > m > 1) at v, respectively. Then S(Gj ,,) <
S(Git1,m—1) and WW (G5 ) < WW(Gy 1 m—1)-

Proof. The second conclusion is also obtained in [13], we present an alter-
native proof here. From the definition, we have
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S(Gim) = Lapevics,, ) @9 + Toevio: ) (@@ um-1) +1)°.
S(Girm—1) = Lo yevia:,, ) Fl@y) + Xeevias,,_y (dvs) + 1)%.
It follows that () = S(Giprm-1) = Teevics., ) (d(z,um_,) -
d(z, v,)) (d(a:, Um-1) + d(z,0,) +2) < 0.

In [16], it is shown that W(G},,) < W(Gi,;,,_)). Together with

S(G;,m) < S(G:+1,m-—l) we get' WW(G;,m) < WW(G;+l,m—I)' -
By Lemma 2.3, we immediately have

Lemma 2.4 For 3 <k < n-—1, we have WW(BS,, x—1) > WW(BS, «).
By Lemma 2.2 and Lemma 2.3, it follows

Theorem 2.5 Let Gy be a connected graph and u € V(Go). Assume that
G, is the graph obtained from Gg by attaching a tree T (T ¥ P, and T ¢
Si) of order k to u; Ga is the graph obtained from Gy by attaching a path
Py, with its endvertex at u; Gs is the graph obtained from Gg by attaching
a star Sy, with its center at u. Then WW (G3) < WW(G,) < WW(G,).

Let z = (21,22,...,2,) and y = (Y1,¥2,---,¥n) be two integer arrays
of length n. We say that = majorize y and write z > y if elements of these
arrays satisfy following conditions:

(l) L1 2T92...2%y andyl 2Y2 2 ... 2 Yn,
(i) z1+ze+... 4+ Zy1+y2+... +yx, forevery 1 < k < n,
(i) z1 + 224 ...+ Tpn=y1+yo+ ...+ Yn.

Theorem 2.6 Let p = (p1,p2,...,Pk) and ¢ = (q1,92,---,9x) be two ar-
rays of length k > 2, such that p < q and n = Z:;l pi = 2:.;1 gi. Then

WW(SPI 1p2)"'ypk) S WW(S‘IthmJIk)’ (3)
with equality holding if end only if p; = ¢;, (i = 1,2,--- , k).

Proof. For the array (p),pe,...,pr), let s be the largest index such that
q1 =q2 =...=¢qs and r be the smallest index such that ¢, = ¢,41 =... =
gr. We apply the transformation from Lemma 2.2 on tree Sy, 4,,....q, and
get the new tree Sy, g,,....00- 1,00~ 1,g041ses@r—1,r+1,ars1,nqx - Lhe condition
p < g is preserved. So we can continue the above process until the array g
transforms into p, while at every step we decrease the hyper-Wiener index.
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Corollary 2.7 Let T = Sy, n,,....n. be a starlike tree on n vertices with k
pendent paths. Then

WW (BSai) < WW(T) < WW(Bnx).

The left equality holds if and only if T & BS, \, and the right equality holds
if and only if T = B, k.

3 Main results

Lemma 3.1 If T € T (3 < k < n—2) has the minimal hyper- Wiener
index, then there is only one vertez of degree greater than 2 in T, or equiv-
alently, T is a starlike tree.

Proof. Suppose T € Tpnk (3 < k < n — 2) has the minimal hyper-Wiener
index. Let Sp = {v € V(T) : deg(v) > 3}. If |St| = 1, then by Corollary
2.7, it follows that BS,, i is the unique tree that has minimal Hyper-Wiener
index. If |St| > 2, then there must exist at least two vertices of degree
at least 3 and there are only pendent paths attached to them. We can
consider T as the tree rooted at the center vertex and choose a vertex
v € Sp furthest from the center vertex. After applying é-transformation
to T by Lemma 2.2, we decrease the hyper-Wiener index while keeping the
number of pendent vertices fixed. This is a contradiction. ll

Theorem 3.2 Among all the trees on n vertices with k (3 < k < n—2)
pendent vertices, BS, 1. is the unique tree with the minimal hyper- Wiener
index.

Proof. By Lemma 3.1, we have that if T € ¥,, ; has the minimal hyper-
Wiener index, then T is a starlike tree. By Lemma 2.3, we get the result.

Lemma 3.3 The hyper- Wiener indez of Apm is
WW (Anm) = %(1071.2 +m? — 8mn + 2lm — 34n + 24).

Proof. There are four types of vertices in A, m.

o For each pendent vertex attached to the center vertex: D(v) = 3n —
m —4; DD(v) =9n — bm — 12;

e For the center vertex: D(v) = 2n —m — 2; DD(v) = 4n — 3m — 4;

o For each vertex of degree 2, different from the center vertex: D(v) =
3n —m — 6; DD(v) = 9n — 5m — 20;
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e For each pendent vertex not attached to the center vertex: D(v) =
4n—m —8; DD(v) = 16n — Tm — 36.
By the definition of the hyper-Wiener index, we get
1 1
WW(Anm) = 7 > Da,.(uw)+ i > DDa,..(w)
uGV(A,.’m) uEV(Au,m)
1
= Z[((2m+1—n)(3n-—m—4)+(2n-m-2)
+(n—m—1)(3n—m —6) + (n —m — 1)(4n — m — 8))
+((2m +1 — n)(9n — 5m ~ 12) + (4n — 3m — 4)
+(n —m — 1)(9n — 5m — 20)
+(n—m—1)(16n—Tm — 36))]

1
= -2—(10n2 +m? — 8mn + 21m — 34n + 24).

This proves the result. Il

Theorem 3.4 Let T be a tree on n vertices with matching number 3. Then
WWw(T) > %(Sn2 + 6n0 — 13n + B2 — 218 + 24),

with equality holding if and only if T = A, n_p.

Proof. Suppose T has k pendent vertices. Then we have k < 8+n—20 =
n — . By Lemma 2.4 and Theorem 3.2, we have WW(T') > WW (BS, «)
and WW(BS,, ;) > WW(BS, n—8) = WW(A, n_p) sincen -0 > 5. So
WW(T) > WW (A, n-g), with equality holding if and only if T' = A, .
By Lemma 3.3 for m = n — 3, we get the result. ll

Corollary 3.5 Let T be a tree on n vertices with independence number c.
Then

WW(T) > -;—(10712 + o? — 8na + 21a — 34n + 24),
with equality holding if and only if T = Ay, u.

Proof. Since for a bipartite graph G, the sum of the independence number
and matching number cquals to the number of vertices [4], from Theorem
3.4 we get the result. Hl

Corollary 3.6 Let T be a tree on n vertices with domination number .
Then 1
WW(T) > 5(3n2 + 6yn — 13n + 72 — 21y + 24),

with equality holding if and only if T = A, n_,.
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Proof. Note that the complement of the maximum independent set is just
the minimum dominating set, from Corollary 3.5, we get the result. ll

Theorem 3.7 Of all the trees on n vertices with diameter d, C’n,d,r%] is
the unique tree with the minimal hyper- Wiener index.

Proof. Let T be the tree having the minimal hyper-Wiener index and
diameter d. Let Py = vov;...v4—1v4 be a path of length d. We show
the following facts. T =2 Cp, 4(p1,..-,Pda—1)- By Theorem 2.5, all the trees
attached to the path Py,) must be stars, which implies the result. By
Lemma 2.2 for Cpa(p1,...,Pd—1), We can get T = T, 4;. For the tree
Ch,d,i, by Lemma 2.3, we have i = [2]. l

According to the Equation (1), we have 2r(T) = d(T) or 2r(T) — 1 =
d(T). Applying Lemma 2.3 to the center vertex of T, it follows that
WW(Cn,2r,[%'|) > WW(Cn,2r—-1,[-§])'

Corollary 3.8 Let T be an arbitrary tree on n vertices with radius r. Then
WW(T) 2 WW(CH,21'—1,|'§]),
with equality if and only if T = Cy or—1,121-

If d > 2, we can apply the transformation from Lemma 2.3 at the central
vertex in Cn,d,rg-] and obtain Cj, 4_1,[27- Thus, we have
WW(P,) = WW(Cy n1,(37) > WW Cnn-2,[31) > ... > WW(Cy3,121)
> WW(Cyz2,121) = WW(Sy).

Also, it follows that WW(Cy, 3,r37) has the second minimal hyper-
Wiener index among trees on n vertices.

By Lemma 2.3, we can get the following known result

Theorem 3.9 Among all trees on n vertices with mazimum degree A,
By, is the unique tree with the mazimal hyper- Wiener indez.

Proof. Let T be a tree and v € V(T such that deg(u) = A. Suppose
further N(u) = {u1,u2,...,ua}. By Theorem 2.5, if T has the maximal
hyper-Wiener index, then all subtrees attached to u; are paths for 1 <7 <
A. By Lemma, 2.3, we get the result. Il

If A > 2, we can apply the transformation from Lemma 2.3 at the vertex
of degree A in B, o and obtain B, o—1. Thus, WW(S,) = WW(Bp 1) <
WW(Bpn-2)<...< WW(Bpgs) < WW(Bp2) = WW(P,).

Also, it follows that Bj, 3 has the second maximal hyper-Wiener index
among trees on n vertices.

For the sake of completeness, we state the minimum case obtained in
[18]. The complete A-ary tree is defined as follows. Start with the root
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having A children. Every vertex different from the root, which is not in
one of the last two levels, has exactly A — 1 children. In the last level,
while not all vertices have to exist, the vertices that do exist fill the level
consecutively. Thus, at most one vertex on the level second to last has its
degree different from A and 1.

Theorem 3.10 (18] Among all trees on n vertices with mazimum degree
A, the complete A-ary tree is the unique tree with the mainimal hyper-
Wiener indez.

Fischermann et al. in [9] proved that complete A-ary trce minimizes
the Wiener index in the same class of trees.
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