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Abstract

Let G be a simple graph of order p > 2.A proper k-total coloring of a simple graph G is
called a k-vertex distinguishing proper total coloring (k-VDTC) if for any two distinct
vertices u and v of G, the set of colors assigned to u and its incident edges differs from
the set of colors assigned to v and its incident edges. The notation ¥ v¢(G) indicates
the smallest number of colors required for which G admits a k-VDTC with k > x ,¢(G).
For every integer m > 3, we will present a graph G of maximum degree m such that
X ve{G) < x ve(H) for some proper subgraph H C G.
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1. Introduction

Let G = (V,E) be a simple graph. A proper total k-coloring of G is a mapping f :
(VUE) — [k] such that no two adjacent vertices receive the same color, no two incident
edges receive the same color, and no vertex and incident edge receive the same color.
Given such a coloring f, for any vertex v € V let C(v) = {f(v)} U {f(uwv) : wv € E(G)}.
For every pair of adjacent vertices uv € E, if C(u) # C(v) then we say that f is an
adjacent vertex distinguishing total coloring (AVDTC). We call the smallest k for which
such a coloring of G exists the adjacent vertex distinguishing total chromatic number,
denoted by x 4¢(G) [1][2][3]).

Conjecture 1/, Let G be a connected graph of order n(> 2), then xa:(G) <
A(G) + 3.

Given a k-proper total coloring f of G,for any distinct vertices u,v € V, if C(u) #
C(v) then we say that f is a vertex distinguishing total coloring (VDTC). We call the
smallest k for which such a coloring of G exists the vertex distinguishing total chromatic
number, denoted by x 4¢(G). The concept of VDTC was introduced independently by
Zhang et.al [4]. The other terminologies and marks refer to [5].

All the graph mentioned in this paper are simple and finite. Let ny(G) denote the
number of vertices of degree d. It is clear that (¥ "'(G)) > ny for all d with respect to
§(G) £ d £ A(G), where §(G), A(G) denote the minimum and maximum degrees of G,
respectively.In this paper, we will show
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Theorem For every integer m > 3, there erists a simple greaph G of mazimum
degree d such that x v¢(H) > x vt(G) for some proper subgraph H of G.

2. The proof of theorem

The notation [a, 8] stands for an integer set {a,a + 1,...,8}, where integers 8 >
a > 0. We need the following lemmas.

Lemma 1. For a path Pn of order n(> 4), if (M3') < n—2 < (), then
X vt(Pr) =m.

Lemma 21, Let Fy, be a fan of order m + 1, then X vi(Fm) =5 whenm = 3 and
Xvt{Fm) =m+ 1 when m > 4.

The proof of Theorem.The symbol Fr, will be used to denote a fan on m + 1
vertices, where V(Fin) = {u; : i € [0,m]} and E(Frn) = {uou; : i € [1,m]} U {ujuipr ¢
ie[l,m-1}}.

Case 1. A(G) =3.

We have a connected graph G obtained by adding a one-degree vertex v4 and an
edge v1v4 to the 3-cycle Cs = vivevzvi. So E(G) = {viv4} U E(Cs). 1t is easy to show
x v¢(G) = 4 by the following total coloring ¢: ¢(v1) = 1,¢(v2) = 4,4(v3) = 2,¢(v4) =
2,0(v1v2) = 2, ¢(vavs) = 1, ¢(vav1) = 3 and ¢(v1vq) = 4. Thus, C3 = G — v1v4 and
X v¢(C3) =5 in (1],50 X vt(C3) > X vt(C).

Case 2. A(G) =4.

We get a connected graph G obtained by adding a 4-degree vertex w and 4 edges
woy, WYz, w3, wuq to the 12-cycle Ci2 = v1v2 -+ - v12v1. So E(G) = {wv1, wvz, wvs, wug JU
E(C12),V(G) = {w} U V(G). It is easy to show x +:(G) = 5 by the following total col-
oring ¢:

d(w) = p(vs) = $(v12) = $(v1v2) = P(vavs) = P{vrvg) = 15

d(v2) = d(va) = d(vo) = Pp(wua) = $(vsve) = $(viov11) = $(vi2v1) = 2;

#(vs) = (vr) = ¢(v11) = d(wva) = P(vava) = d(vsve) = 3;

$(wv1) = Pp(vzva) = P(vev7) = P(vovio) = 4;

$(v1) = $(va) = $(vs) = d(v10) = $(wv2) = (vn1v12) = 5.

Thus,C12 = G — {w, wv1, w2, wvs, wvs} and X ve(Ci2) = 6 in (1], so x ve(C12) >
X vt(G).

Case 3. A(G) > 5.

Case 3.1. G is disconnected.

To show the result, we take the union G = P, U Fy, of Py, and Fin, where V(P,) N
V(Fp)=0and n= ("';']) +2. Clearly, X vt(Pr) =m+1 by Lemma 1 and x ve(Frn) =
m+1 by Lemma 2, so x v¢e(G) =m+ 1.

On the other hand, we have x/,,(G — S) > m+2 since G ~ § is the union of disjoint
path and cycle P, Crm, where S = {uo}U{uou; : i € [1,m]} and n+m = ("F!) +m+2.

Case 3.2. G is connected.

Take integer m > 5. G is constructed from Pp, = vjv2 -+ vn and Fr, in the following
way,where n = ("';' 1) +1. We join the vertex v; of Py to the vertex u1 of Fry. Clearly,
A(G) =m.

Let 7 be a (m+1)-VDTC of Ppn41 = v1v2 + + - vnur Withm+1 = X v2(Pn+1). Without
loss of the generality, we assume that w(viu1) = 4,7(u1) = 2. It is straightforward to
define a total coloring @ of G as: 6(e) = w(e) if € € E(Pn);0(v) = w(v) if v € V(Pn);
O(viu1) = 4; 8(w;) = i+ 1,i € [0,m]; O(uou;) = i +2,i € {1,m — 1},0(uoum) = 2;
O(uivit1) =i +4,i € [1,m — 3|; and H(um-2um—1) = 1,0(um-1um) = 3,6(umu1) = 1.
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Hence, the total coloring 8 shows that x +:(G) = m + 1. Notice that x »¢(G — up) =
X vt(Pm+4n) = m + 2 according to Lemma 1 for n +m = ("‘:;“) +m+2

The proof of Theorem is finished.

By our expericnce, we propose the following conjecture:

Conjecture 2. For any k-regular graph G with k > 2, there do not exist subgraphs
H of G such that A(H) =k and X ve(H) > X 0t(G).
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