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Abstract

Let M be a graph, and let #(M) denote the homeomorphism class of M,

that is, the set of all graphs obtained from M by replacing every edge by a
‘chain’ of edges in series.. Given M it is possible, either using the ‘chain
polynomial’ introduced by E. G. Whitehead and myself (Discrete Math. 204
(1999) 337-356) or by ad hoc methods, to obtain an expression which
subsumes the chromatic polynomials of all the graphs in (M) . Itisa
function of the number of colors and the lengths of the chains replacing the
edgesof M.  This function contains complete information about the
chromatic properties of these graphs. In particular it holds the answer to the
question “Which pairs of graphs in #{(M) are chromatically equivalent”.
However, extracting this information is not an easy task.

In this paper I present a method for answering this question. Although at first
sight it appears to be wildly impractical, it can be persuaded to yield results for
some small graphs. Specific results are given, as well as some general theorems.
Among the latter is the theorem that, for any given integer vy, almost all
cyclically 3-connected graphs with cyclomatic number y are chromatically
unique.

The analogous problem for the Tutte polynomial is also discussed, and some
results are given.
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Section 1. Introduction.

In this paper graphs will be allowed to have multiple edges, but unless
otherwise stated will be without cut-vertices and hence without loops.

Let M be a graph whose edges are labelled with labels 4, b, ¢, ... . If we
replace every edge of M by a “chain” of edges in series, replacing edge a by a
chain of length ng (i.e., having ng edges), b by a chain of length np, and so
on, we obtain a “homeomorph” of M. Figure 1 shows such a labelled graph
and one particular homeomorph -— that obtained by setting na =3, np =3,
nc=2,ng=5,nNg=1, nF=2 andng=4.

Conversely, if we start with a graph G and successively “suppress” all
vertices of degree 2 we arrive at a homeomorphically reduced graph M. For
convenience we shall call this the “reduced graph” of G.

Figure 1

In [23] Whitehead and I showed how to get a general expression for the
chromatic polynomial of such a “chain graph” for general values of the chain
lengths, and to that end introduced a “chain polynomial” for the graph M,
defined as follows

ChiM: @ ; a, b,c ...) = 2 F(Y, ®) 7y

where U is a subset of the labels, 7y is the formal product of the labels in U,
and F(Y, @) is the flow polynomial of the graph induced by the edges in Y, the
set of edges whose labels are not in U. The sum is over all subsets U of the set

of labels, and @, here and elsewhere, stands for 1-A, where A is the usual
variable for the flow and chromatic polynomials. For more information on the
flow polynomial see [23,27]; for the chromatic polynomial see {19,22].

A property of the flow polynomial that we shall need is the following
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Theorem 1. When expressed in terms of o the flow polynomial of a graph
has the form (-1)77P*' f(®) where f(@) is apolynomial in ® in which all
coefficients are positive and in which there is no constant term. Moreover, if
the graph has ¢ cut-vertices then the lowest powerof @ is ¢+ /. In
particular, if the graph is 2-connected the lowest power of @ is /.

In practice, the labels are interpreted as powers of a variable x. In the
notation used in [23] @ stands for x™, b stands for x™, ¢ for x°, and
soon. If we do not need to specify all the details we can write the chain
polynomial as Ch(M; w, x), or just Ch(M). To within a factor, the general
chromatic polynomial for a homeomorphism class of graphs is obtained by
settingx = @ in Ch(M). More precisely, it is

(1.1) P(G) = (-1)% Ch(M, @, @)/ (A— 1)77P

where O denotes the sum of the lengths of the chains in M. Here and
elsewhere p and g stand for the numbers of vertices and edges respectively in
whatever graph is under discussion.

As an example take the case of K4 — the complete graph on 4 vertices,
labelled as in the left-hand graph of figure 2 below. Its chain polynomial [23]
is

abcdef - w (abc + aef + bdf + cde + ad + be + cf)
+(w’+o)(a+tbtcrdre+f)+o(w+1)(@+2)

Hence the chromatic polynomials of its homeomorphs are given by the general
formula

(_])Q [a)nc"'nb"'nc"'nd"nc"nf
- a)(wna+nb+nc+wna+ne+nl + wnb"'nd*nl + a)nc+nd+no
(1.2) + @@+ ™+ gt )
+(df + @) (@™ + O™ + O™+ 0™ + " + ")

+ o+ )(@+2)WA- 1P
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A general chromatic polynomial like (1.2) contains complete information about
the chromatic properties of the graphs in (M), the set of all homeomorphs of
M. In particular it holds the answer to the question “Which pairs of graphs in
#(M) are chromatically equivalent, i.e. have the same chromatic polynomial?”
Although this is true in theory there seems to be no easy way to extract this
information. In this paper I give a method whereby this can be done for small

graphs. The investigation of K4 by this method will be described in detail.

This same chain polynomial can be used to obtain the general Tutte

polynomial for the graphs in #{(M) . This raises the analogous question of
which pairs of these graphs are ‘Tutte equivalent’, i.e. have the same Tutte

polynomial. This question too can be answered for small graphs, and is treated
later in the paper.

Section 2. An example.

Let us take the case of Kg , the complete graph on 4 vertices. Homeomorphs
of K4 have been extensively studied (see, for example, [2,7,8,10,11,12,13,16,
17,26,28,29,33]). We note the following definitions.

Definition, A graph is “chromatically unique” if it does not have the same
chromatic polynomial as any other (nonisomorphic) graph

A useful term introduced by E. G. Whitehead is that of chromatic distinctness.

Definition. A graph is “chromatically distinct” if it is not chromatically
equivalent to any graph homeomorphic to it.

Thus a chromatically unique graph is automatically chromatically distinct, but
a chromatically distinct graph may fail to be chromatically unique by virtue of
being chromatically equivalent to some graph to which it is not homeomorphic.

We note also the following theorem.

Theorem 2 (see [4]) Ifa graph is chromatically equivalent to a homeomorph
of K4 then it is itself a homeomorph of K4.

Consider two homeomorphs of K4, say G4 and G2, labelled as in figure

2,and whose chain lengths are therefore ng, np, ...... Assume that these two
graphs have the same chromatic polynomial.
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As we shall be working almost exclusively with chain lengths it will be
convenient to simplify the notation by using for them the corresponding upper

Figure 2.

case letters; that is, weuse 4 for n,, B for np, and so on.

. We can then rewrite (1.2) as

(_ 1 )Q [ a}A+B+C+D+E+F
- (wA+B+C + PYEF 4 pADHF § CHDAE

2.1) + o (@"*P+ 0Bt + 0°*F)

+(af + w) (" + 0B + 0%+ d® + F + o)

+ o+ D@+2) (A~ 17

The chromatic polynomial of G2 will, of course, be a similar expression in the
variables G, H, I, J, K and L.

Note: This use of the letters 4 to L, in order to avoid a more cumbersome
notation, introduces a conflict with the very natural use of G (and, later, H) for a
general graph. Although I deem it unlikely that this slight clash of symbols will
cause any confusion I have distinguished the two usages typographicaily.
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Consider two homeomorphs of K, say G7 and Gz , labelled as in figure 2,
and whose chain lengths are therefore na, np, .... We want the two
chromatic polynomials to be identically equal. Now the division by
+(1-1 )2 is common to both polynomials and can therefore be ignored. In
what remains, the leading terms will be the same, since 4+B+C+D+E+F and
G+H+[+J+K+L give the numbers of edges in Gy and G2, and these must be
equal. The term independent of the chain lengths is also the same for both
polynomials. Removing these terms and dividing by ® we obtain

- (mA+B+C+ wA+E+F+ wB+D+F + wC+D+E+ 0)A+D ++

22 o+ wC+F) +(@+1) (0% + 0%+ 0+ 0P+ 0f+ 0F)

for G, and asimilar expression for G2. If we now equate these two
polynomials and manipulate the terms so that all coefficients are positive, we
finally arrive at the following equation involving the 12 chain lengths.

(0+1) (0" +0® + of + 0P+ 0%+ 0F)
+ wG+H+l + wG+K+L + wH+J+L+ wI+J+K+ wG+J+ Q)H+K+ wl+L

23) = (w+1)(0°+ o+ 0'+ 0’ + 0F + 0%
+ a)A+B+C+ wA+E+F+ a)B+D+F+ o)C+D+E+ wA+D+ wB+E+ wC+F

It is clear that for (2.3) to be an identity each term on the left-hand side must
cancel with a term on the right-hand side. This requirement can be succinctly
expressed by making a “tableau” listing, in two columns, the 19 powers on the
left and right, as in Tableau I below

It will be convenient to separate by a line the first 12 expressions on each
side from the rest, and to refer to expressions as being “above the line” or
“below the line”.

For G7 and G2 to be chromatically equivalent we must find positive
integer values for the variables A to L such that the numbers in the left-hand
column of the tableau are the same as those in the right-hand column, though in
a different order. In other words, there must be a bijection from the left-hand
expressions to the right-hand expressions which maps equals onto equals

The way is now clear to the solution of the problem of finding all possible
pairs of chromatically equivalent homeomorphs of K4, All we have to do is to
run through the 19! possible bijections. Each such bijection will give us a set
of 19 linear equations in the 12 variables. If these equations have a solution
then we will have found at least one pair. In general we will get a vector space
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A4 G

A+1 G+l

B H B H

B+1 H+1 B+1 H+1

C I C I

C+1 I+] C+1 I+1

D J D J

D+1 J+1 D+] J+1

E K E K

E+1 K+1 E+1 K+1

F L F L

F+1 L+1 F+li L+1

G+H+I A+B+C A+H+I A+B+C

G+K+L A+E+F A+K+L A+E+F

H+J+L B+D+F H+J+L B+D+F

+J+K C+D+E 1+J+K C+D+E

G+J A+D A+J A+D

H+K B+E H+K B+E

+L C+F I+L C+F
Tableau I Tableau 2

of solutions. (Strictly speaking we get the subset of a vector space for which all
the vector elements are positive integers. This usage will be assumed in what
follows.) Each such vector space gives a family of pairs depending on one or
more parameters. Furthermore, any given pair of chromatically equivalent
homeomorphs will give values in the tableau for which a bijection is possible
and hence will be found by this exhaustive procedure.

Section 3. Practicality

There is one slight snag with the method just outlined. The number of
bijections, 19!, is rather large" It would be quite impossible to generate each
one and deal with the resulting equations. Fortunately it is possible to devise a
backtrack procedure of a fairly standard kind which enables the majority of the
bijections to be eliminated without their being generated at all. I shall now
briefly describe this procedure, starting with Tableau I (though, as we shall see
later, we can profitably simplify the problem first.)

We start by asking what the first expression on the left can map onto, and
choose the first possibility on the right. We therefore equate 4 with G.. This

' In case anyone is interested, the exact number is 121,645,100,408,832,000.
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enables us to put G equal to 4 in all the other expressions. The expressions 4
and G are deleted from the two sides of the tableau, as are any other pairs of
expressions that may turn out to be equal as a result of the substitution. In the
present case the second expressions on each side, 4+ and G+1, are now equal
and can therefore be deleted.. We thus obtain a second tableau, Tableau II, in
which the variable G does not occur.. We now proceed similarly with this new
tableau .

In making a mapping of a lefi-hand expression onto a right-hand expression
one of two things can happen. Either we get a valid equation, in which case we
use it to eliminate another variable in the other expressions, and continue with
the revised tableau; or we get an impossible equation, as would happen, for
example, if we attempted to equate B + I with B + D + F (since all variables
are strictly positive integers). In the latter case we try the next expression on
the right-hand side. If this is not possible, because we have reached the end of
the right-band side of the current tableau, then we have to backtrack to the
previous tableau and try the next possibility there.

If we reach a stage where there are no expressions left in the tableau, then we
have a feasible set of equations. Note that we have, at this stage, performed the
“forward substitution™ part of the usual routine for solving a set of linear
equations and it remains only to perform the back substitutions to get the
required solution.

If the program has backtracked to the first tableau and finds that there is no
continuation (the first expression on the left was previously mapped onto the last
expression on the right) then the program ends; all possibilities have been
considered.

It is to be expected that a program such as this would take a long time to
execute and would produce a lot of output. Thus, when we obtain a solution it
is in our best interests to output it promptly. Nevertheless, two things are worth
doing. One is to test whether the two graphs that we now have are isomorphic;
for if they are then the solution is of no interest. The other is to manipulate the
solution into a canonical form such that if the same solution is obtained again it
will be output as an identical record. This will facilitate the elimination of
duplicates, of which we expect a vast number.

A method for doing this is the following. First replace each chain length
expression by an integer. For example, a two-parameter chain length
2u + 3v + I could be replaced by 20301. Then, in each graph separately,
consider the 24 permutations of the vector, (4, B, C, D, E, F) by the 24
automorphisms of the edges of K4 , and of the resulting vectors choose the one
which comes first in lexical order. This gives a canonical form for each graph
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separately. Now compare these two vectors and interchange them, if necessary,
so that the first vector precedes the second in lexical order. This gives the
canonical form for the solution.

Note that this procedure will also detect if the two graphs are isomorphic, so
the other matter is taken care of. This is not precisely the method that I used in
the program, but is along the same lines. The details do not matter.

A program like this, starting with Tableau I would probably have taken
something like 48 hours to run on the rather slow (1999 vintage) personal
computer that I used then. This is not necessarily important. This program
needs to be run only once, so there is no incentive to hone it into optimum
efficiency. It would, for example, be counterproductive to spend two weeks
improving it so that it would take only six hours to run. Only simple
modifications would be worth introducing. As it happens, there is one very
good one available.

Section 4. Preliminary simplification

Let us look at the shortest chain lengths in Gy and G2 Without loss of
generality we can take them to be 4 and G.  From Tableau I it is clear that 4
cannot be mapped onto anything below the line on the right-hand side. Itis
also easy to see that if 4 is mapped onto anything above the line other than G
then nothing on the left can map onto G. Hence 4 must be mapped onto G.
We get the following theorem, first stated by Whitehead and Zhao [28]

Theorem 3. If two homeomorphs of K, are chromatically equivalent then their
shortest chains are of the same length.

We can therefore put 4 = G, start with Tableau Il and work with 17
expressions on each side, and 11 variables in all. (Note that this argument is not
materially affected if there is a tie for shortest chain.) This is an improvement;
but we can go further by considering the next shortest chains on each side. The
same argument applies, and we obtain

Theorem 4. If two homeomorphs of K4 are chromatically equivalent then
their two shortest chains are of the same lengths.

. However, there is now a complication in that, in each graph, the two shortest
chains may be adjacent (having a common vertex) or non-adjacent. We
therefore have three cases to consider, according as the two shortest chains are
adjacent in both graphs, non-adjacent in both graphs, or adjacent in one and non-
adjacent in the other. Thus the previous tableau can be simplified in three
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different ways, and we shall have to run the program three times. This is worth
it, since we now have only 15 expressions on each side and only 10 variables.

We could go further and consider the third shortest chains. But we would
have many more cases to consider, including those arising from the possibility,

for example, that if 4 and D are the shortest chains in Gy then the length of

the third shortest chain in G2 mightbe A4 + D. For this reason I chose to stop
at the consideration of the two shortest chains.

Note that because the chain lengths are, in general, expressed in terms of
parameters, it is not usually possible to say what are the shortest chains (which is
smaller, 2u+ 3v+ lor3u+2v+2?) Hence we have to be content with a

weaker form of Theorem 3, which simply states that Gyand Go2 sharea
common chain length. A similar remark applies to Theorem 4.

Section 5. The results

A C++ program along the above lines was written and run three times with
slightly modified input as just described. The runs took a total of roughly seven
hours of computer time, and the solutions obtained were put into separate files
according to the number of parameters. These files contained many duplicates,
and had to be processed to eliminate all but one occurrence of each solution.
This was done by first sorting each file and then using a simple program which
read each record and discarded any record which was the same as the previous
one. It turned out that there are no solutions with more than 3 parameters and
just a single one with exactly 3 parameters

There remained the task of eliminating those solutions which were special
cases of a family with a larger number of parameters. The programs that did this
were straightforward and of no particular interest, so I shall not describe them.

The final result was that in addition to the unique 3-parameter family there are
seven 2-parameter families, six 1-parameter families and two isolated pairs.
These are summarized in Table I, in which each pair is exhibited as two rows of
six chain lengths, viz

ABCDEF
GHI JKL
The identifier on the left gives the number of parameters and an arbitrary
identifying letter”

o ) presenting these results I am, of course, making the assumption that my
programs were free of errors and ran correctly. I believe this to be the case,
but would enthusiastically welcome any independent corroboration.
Evidence of errors would also be welcomed, though with less enthusiasm!
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correspond to one of the 32 vectors appearing in Table I is chromatically distinct
(and therefore, by Theorem 2, chromatically unique.)

Mention should be made here of some work of E. G. Whitehead, Jr.[29] He
computed the chromatic polynomials of all homeomorphs of K; with up to 36
edges, and by observing regularities among the data he was able to deduce and
confirm a number of infinite families of equivalent pairs, including the
3-parameter family mentiored above and many, but not all, of the others.

Since this investigation has turned out to be feasible, despite the daunting
prospect of handling 19! permutations, we are led to wonder whether other
graphs might be similarly investigated. The outlook is not encouraging. The
next interesting graph to investigate would be Wi, the wheel on 5 vertices.
Unfortunately there are 91 rows in the tableau for this graph and it does not
seem that much can be done to reduce this number.

We can, however, make some general observations. As already remarked,
any homeomorph of K that is not chromatically distinct belongs to one or
more of a finite number of vector spaces of solutions, none of which is of
dimension greater than 3. It follows that the number of such graphs is
asymptotically small compared with the set of all homeomorphs of K;, which
depends on 6 parameters.

Note. It used to be that a sentence like “Almost all graphs have property P
meant that all but a finite number had that property. More recently (see, for
example, [1] or [12]) “almost all” has come to be used in an asymptotic sense,
meaning that the ratio of the number of graphs having property P to the
number of all graphs tends to 1 as the graphs become large. This asymptotic
sense will be assumed in what follows.

We have therefore arrived at the following result.

Theorem 5. Almost all homeomorphs of Ky are chromatically distinct.
From this and Theorem 2 we derive

Theorem 6. Almost all homeomorphs of K¢ are chromatically unique.

This is a well-known theorem, first proved by Li [12 ] by other means. We
now observe that the above argument can be used to obtain a more general
result.
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Take any reduced graph, M, and consider the set #€ of all its homeomorphs.
From the chain polynomial of M we obtain a general expression for the
chromatic polynomials of these homeomorphs. In theory, if not in practice, we
can set up the appropriate tableau and follow the method given for K4 to find
all possible families of chromatically equivalent pairs. The outcome will be a
finite number of vector spaces, and any graph in #{ that is not chromatically
distinct will belong to at least one of these spaces.

Now it is intuitively obvious that the requirement that the two sides of the
tableau must match up one-to-one in a consistent manner must impose some
restriction on the chain lengths and that therefore none of these vector spaces
will have dimension as high as g, the number of edges in M.  This, however,
needs to be proved. If we can succeed in proving it then we can readily deduce:

Conjecture For any graph M, almost all homeomorphs of M are chromatically
distinct.

In the next section we examine the dimensions of the vector spaces of
solutions.

Section 7. The general problem.

Take M to be a graph, which, for now, we assume to be 3-connected.

Take two graphs, G7 and G2 each homeomorphic to M and with general
chain lengths, given by two sets of symbols, S7 and Sz, (In the case of K4
wehad S1={4,B,C D, EF} and Sz = {G H I J K, L}; weshall
use these letters for the purpose of illustration). For convenience let
“Si- expression” stand for “expression in the variables in S; “).

Consider a bijection between the two sides. Ifany S7-expression on the left
maps onto an Sy-expression on the right, the result is an equation in variables in
Sy alone. This is sufficient to show that the graphs G for this particular
bijection correspond to elements belonging to a vector space of dimension less
than g.  Clearly the same thing applies to the graph G. This establishes the
desired result in this case. In the contrary case, every Sy-expression on the left

maps onto an Sz-expression on the right, and vice versa. This means that
every equation obtained is of the form
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7.1) (An S;-expression ) = (An S;-expression )

We first observe that for each variable, 4 say, there is at least one expression
which is just 4 itself. For the coefficient of x™ in the chain polynomial is the
flow polynomial of the graph obtained by deleting a from Gy. By the
connectedness requirement this graph does not have a bridge (so the flow
polynomial does not vanish) and does not have a cutvertex (so, by Theorem 1,
the flow polynomial has a term in @, becoming a constant when we divide
by ©).

Suppose that one such single-variable Sy-expression (say 4 again) maps
onto an expression in more than one variable in S2.  Suppose, for example,
that we have something like

A+2=G+I+L+1

Now G, I and L will each equal an Sy-expression. Since there is no
cancellation (all signs are plus) the equivalent of the sum G + 7 + L + I cannot
reduce identically to 4 + 2. Hence we have an equation in the variables in Sy
and again we have our desired result. We therefore consider the contrary case
where each single-variable expression maps onto a single-variable expression.

The expressions in A alone will be of the form 4, 4+ 1, 4 + 2, etc,,
possibly with repetitions. Let us call this a “batch” of expressions. Suppose that
one expression in a batch maps onto an expression in, say, J, while another
maps onto an expression in some other variable, say L. Then we shall have two
equations, for example

A+2=J+1 and A+5=L+7

These imply an equation connecting J and L. Again we have the desired
result.

The contrary possibility is now that every such batch on the left maps exactly
onto a batch on the right. This gives us a bijection from the set Sz to the set
S2. Itfollows that, Gy and G2 have the same set of chain lengths.

It may seem unlikely that two homeomorphs related in this close way could
be chromatically equivalent no matter what the chain lengths were, unless they
were, in fact, isomorphic; but we note that this can certainly happen if we
ignore the connectedness requirement. The two homeomorphs in figure 3 will
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have the same chromatic polynomial no matter what the chain lengths 4. B. C.
etc. may be (this follows from Theorem 4 in [23]). Yet these graphs are not, in
general, isomorphic. They are, however, “2-isomorphic”. This is a concept
that we shall need later, and for our purposes it can be loosely defined as
follows.

Definition. Two graphs, G1 and Gg2, each of connectivity 2, are said to be
“2-isomorphic” if G2 can be obtained from Gy by a sequence of “twisting
operations™. A twisting operation on, say, G1 relative to a pair of cut-vertices
Uand v isthat of taking Gq apartat v and v, reversing one of the
“pieces” thus obtained, and then reuniting the two pieces. The example in
figure 3 should clarify this informal description.

Figure 3.

A general definition of “2-isomorphic” , including its application to graphs of
connectivity less than 2 (not relevant here) can be found in [30]. An important
property of 2-isomorphic graphs is that they are chromatically equivalent.

The situation is now as follows. G7 is represented by M with edge labels g, b,
c, etc. - call this representation M, G2 is represented by M with the same
labels, standing for the same edge lengths, but possibly attached to different
edges. Call this M(z) .

Consider any cycle C of length m, say, in M and let 2 be the set of

edges in M2 with the same labels as the edgesin € . There are three
possibilities:
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(i)  Some proper subset of the edges of ZZ forms a cycle in M
(il)  Theedges of 22 form a cycle of length m in M2
(iii)  No cycles are formed by any edges of 2.

We now give specific values to the chain lengths, obtaining two particular

versions of G1 and G2, and use the theorem that chromatically equivalent
graphs have the same girth (see [14]).

Make the edges of € into chains of length 2, and make all other edges into
“long” chains whose length is some sufficiently large integer. This defines two

graphs G1# and Gz# which are chromatically equivalent. Furthermore, the
girth of G1# is 2m , since, except for C, every cycle in G1# contains at least
one long chain.

If possibility (i) holds then Go* contains a cycle of length less than 2m, so
its girth will be less than that of G 1#. This is not possible since the two
graphs are chromatically equivalent.

If possibility (jii) holds then every cycle of Go* will contain at least one
long chain. Hence the girth of G2" will be greater than 2m. This too is not
possible.

Note that the reason for making the edges in € into chains of length 2 (rather
than 1) was to avoid any possible difficulty arising from the fact that, as far as
chromatic polynomials are concerned, a double edge is the same as a single
edge.

We deduce that (ii) must hold. In other words, if a subset of labels forms a
cycle in M then the same subset forms a cycle in M? and conversely. This
means that the labelled graphs M and M@ have the same cycle matroid.

By Whitney’s 2-isomorphism theorem (see, for example, [30]) M and M?
are 2-isomorphic. But since we have assumed M to be 3-connected it follows
that M and M@ are in fact isomorphic.

We have thus established that we can have no families of chromatically
equivalent pairs with dimension as high as g. We can therefore upgrade our

conjecture to a theorem, though only when M is 3-connected.

Theorem 7. For any 3-connected graph M almost all homeomorphs of M are
chromatically distinct.
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Section 8. The broader horizon

Hitherto we have considered graphs that are homeomorphs of the same
reduced graph. Let us broaden our horizon and consider two graphs Gy and
G2 that are homeomorphs of two different reduced graphs My and M2 . For

what values of their chain lengths are G7 and G2 chromatically equivalent?
An example will make it clear that there is a brute force method, much as before,
for answering this question, and to that end we briefly consider the two graphs

shown in Figure 4. S is the graph obtained from K4 by shrinking one edge;
T is the 4-theta graph (see [25] for this nomenclature).

T

Figure 4

The general chromatic polynomial of S, after the outside divisor and the
term abcde have been removed and the result divided by ® , reduces to

8.1) - (abc + cde + ad + ae + bd + be)

Hw +1)(a+b+c+d)+wc -(w +1)°
The corresponding result for T is
(8.2) - (fg + fh + fi + gh + gi + hi)

+Hw +1)(f+tg+h+i) - @2 +» +1)

and rearranging the terms as before, we obtain.



(0 +1)( 0"+ 0B +0C+00) + pB 4 o FC 4 o P 4 o F¥

+o0 G+H+ wG+l + H+

83) =(o+1)(0"+0+0l"+0')
+wA+B+C+mC+D+E+wA*D+wA+E+wB+D+wB+E+1

The tableau corresponding to (8.3) is shown in Tableau IIl. Note that the
terms independent of the chain lengths do not cancel completely. In
consequence the tableau contains a constant term “1” (which corresponds to the
term ® since the entries in the tableau are powers of ® ).

A F
A+ 1 F+1
B G 2 F
B+1 G+1 B F+1
C+1 H B+1 G
D H+1 C+1 G+1
D+1 I D H
E I+1 E H+1
E+1 A+B+C F+G I
F+G C+D+E F+H I+1
F+H A+D F+1 B+C+1
F+1 A+E G+H C+D+E
G+H B+D G+1 B+D
G+1 B+E H+]T B+E
H+1 1

Tableau 11 Tableau IV

Since C> 0, C + 1 cannot map onto this “I” so, without loss of generality,
wecantake 4 = /. This condenses Tableau III to Tableau IV, to which the
programs described earlier can be applied.

The output from the computer program contains just two solutions, each in
two forms. In terms of the vectors (4, B, C, D, E) and (F, G, H, I) the first
solution is that

(1,3,1,3,3) and (1,3,2,2,3) areeachequivalentto (2,2,3,4)
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However, the two instances of S are two different edge-gluings of the cycle on

4 edges and the 3-theta graph with chain lengths 2, 3 and 3, and hence, while
distinct, are only trivially so. (An edge-gluing of two graphs is the result of
identifying an edge in one with an edge in the other).

This example is already known; it was discovered by Peng (see [18], or the
reference in [11])

The other solution is that
(1,4,3,3,3) and (1,4,2,3,4) areeachequivalentto (2,3,4,5)

Again the two instances of S result from different edge-gluings, this time of

acycle on 5 vertices with the 3-theta graph with chain lengths 3,3 and 4.
As far as [ know this chromatically equivalent pair has not previously appeared

in the literature.

For completeness we note one further solution, a highly degenerate
3-parameter family, resulting from edge-gluings in both graphs, namely

(d,u,v,1,w) and (1,u, v+l w).

The “cyclomatic number” Y of a connected graphis ¢ -p + I, and hence is
the same for two chromatically equivalent graphs. Moreover it is invariant
under suppression or insertion of vertices of degree 2. Now K4, S and T
are, with one exception, the only reduced graphs with cyclomatic number 3. and
by Theorem 6 and what has just been done we have examined all relevant pairs
of these except for the cases of (a) two homeomorphs of the graph S and (b)

two homeomorphs of the graph 7. Case (b) was settled in [6, Lemma 5.1]
where it was shown that all k-theta graphs are chromatically distinct. Case (a) is
similar to that of two homeomorphs of K4 with which we started; but as it is
simpler, I shall merely quote the result of the corresponding computer
investigation. There are two 2-parameter families, namely

utv+2 v+l u v ut2 and wutvt2 ut2 u v v+l
utv+l v ut2 v+l utl wtv+l] u+l] ut2 v+l utl ;

two single-parameter families, namely

3 3 I ¢+]1 +3 and 3 t+3 1 3 +]
3 12 t 2 4 3 4 t 2 12
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and one isolated pair, namely 3 51 5 8
6 5 4 5

Purposely omitted are the many graphs in which one, at least, of 4, B, Dor E
has value 1. These graphs are edge-gluings of a cycle and a 3-theta graph.
Chromatic equivalents of these graphs are obtained by performing the edge-
gluing in a different way. If the 3-theta graph has chains of length P, @ and
R and the cycle is of length Z , then there are, in general, three ways of

performing the edge-gluing, giving rise to the triplet

1 z-1 P-1 Q R
1 zZ-1 Q-1 P R
1 Z-1 R-1 P Q
of chromatically equivalent graphs.
u F
A
A - £
B D
B D
C C+F
(a) v (b)
Figure 5

Also omitted are graphs like that in figure 5(a). (This is the exception
mentioned above) Although not isomorphic to the graph of figure 5(b), it is a
trivial variation, being, 2-isomorphic to it (perform the twist operation with
vertices ¥ and v).. These two graphs will therefore be chromatically
equivalent no matter what the indicated chain lengths are.

From the results in this section we have complete information concerning
chromatic equivalence between graphs with cyclomatic number 3. Every such
graph must belong to at least one family of graphs, depending on at most three
parameters. This is true even for the graphs in figure 5(a); for C + F and the



other chain lengths depend on at most two parameters (those for 5(b)) and one
other parameter determines the values of C and F individually. Hence we have

the following theorem.

Theorem 8 Almost all graphs with cyclomatic number 3 are chromatically
unique.

Note. We can say “chromatically unique” here rather than just
“chromatically distinct” because we have, in effect, compared every graph with
every other graph to which it could possibly be equivalent, namely those having
the same cyclomatic number.

Section 9. Graphs with a given cyclomatic number.

If a graph G has any vertices of degree 2 it is, ipso facto , only 2-connected;
for the two vertices adjacent to the vertex of degree 2 form a two-vertex cut-set,
as do any two vertices of one and the same chain. If this is the only reason for

G failing to be 3-connected we shall say that G is “cyclically 3~connected”.
(This is by analogy with the term “cyclically 4-connected’). It is easy to verify
the following:

Theorem 9 A graph is cyclically 3-connected if, and only if, its reduced graph
is 3-connected.

We note that for cyclically 3-connected graphs “2-isomorphism” is the same
as “isomorphism”. Any twisting operation leaves the graph unchanged since
one of the pieces is just a path.

Those graphs that are 2-connected but are not cyclically 3-connected will be
said to be “properly 2-connected”. They are the graphs whose reduced graphs
are only 2-connected.

Consider the set, A , of graphs with cyclomatic number y . Since the
suppression or insertion of vertices of degree 2 does not change the cyclomatic
number every graph in A& is a homeomorph of some reduced graph with

cyclomatic number y . Let /R be the set of these reduced graphs.

Theorem 10 The largest graphs in & are the cubic graphs on 2n vertices,
where n= y-1.
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Proof. Ifagraph Gin R has a vertex v of degree >3 we can construct a
larger graph as follows. Delete v and divide the vertices formerly adjacent to it
into two sets, each set having at least two elements. Join the vertices in one of
these sets to one end of a new edge and those in the other set to the other end.
The resulting graph has one more vertices than G and has the same cyclomatic

number.

Repeat this operation until all vertices have degree 3. The resulting cubic
graph has an even number, say 2n, of vertices and 3n edges. Hence
Yy =q-p+1=n+1 It follows inmediately that R is a finite set.

If areduced graph M has less than 3n edges its family of homeomorphic
graphs will be given by a vector space of chain lengths of dimension less than
3n. The number of these homeomorphs will therefore be small in comparison
with the number of cubic reduced graphs. For this reason, as we shall see, we
can restrict our attention to graphs whose reduced graphs are cubic.

Consider such a graph Gy, whose reduced graph My is cubic and
3-connected. Suppose that G is chromatically equivalent to some other graph
G2 whose reduced graph M2 is cubic. At this stage we cannot rule out the
possibility that M2 might not be 3-connected. However, if M2 is only

2-connected then it has two edges which form a cutset. For in any splitting of
the graph into two pieces, at vertices # and v say, two edges at ¥ will be in
the same piece, while the third belongs to the other piece. This latter edge and
the corresponding one for vertex v form the edge cutset.

By the “bead-on-a-string” principle [23 ] or otherwise, we know that the chain
lengths, say J and L, of these edges will always occur together, that is, in any
expression in the tableau which we shall form for Gy and G2 these variables
will always be togetheras J + L.

We now proceed much as in the proof of Theorem 7.  As before, we want to
show that we cannot have a family of solutions which is a vector space of
dimension as high as 3n. We can then deduce that the number of homeomorphs

of M that are chromatically equivalent to some homeomorph of M2 is small
compared to the number of all homeomorphs of My . Put another way, we
want to show that being chromatically equivalent to some G2 imposes at least
one linear equation between the chain lengths in G7y.
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As before we find that all equations resulting from the tableau are of the form
of equation (7.1), and that each ‘batch’ of single variable expressions for G
must map onto a batch of expressions for G2 in a one-to-one manner. Now if
G2 is properly 2-connected then, as noted above, there will be two variables
that always occur together, and the number of batches for G2 will be less than
3n. Hence at this stage we can rule out this possibility and assume that G2
also is cyclically 3~connected.

From here on the proof proceeds exactly as for Theorem 7. We show that
M7 and M2 have the same circuit matroid and hence are isomorphic.

We are now in a position to prove our main resuit.

Theorem 11 For any integer y almost all cyclically 3~connected graphs with
cyclomatic number y are chromatically unique.

Proof. There is only a finite number of reduced graphs with cyclomatic
number y and hence only a finite number of pairs. Consider the tableau for
each pair and derive from it the corresponding families of pairs of chromatically
equivalent graphs. If the reduced graphs in a pair have less than 3n edges each
family of solutions will be a vector space of dimension <3n. We have just
shown that this is also true if one reduced graph is cyclically 3-connected while
the other is properly 2-connected. (Note: we do not need to know whether it is
possible for a cyclically 3-connected graph to be chromatically equivalent to a

properly 2-connected graph).

Hence every cyclically 3-connected graph with cyclomatic number Y which
is chromatically equivalent to some other graph belongs to one or more families
of graphs. All these families are given by vector spaces of dimension < 3n and
hence, since there is only a finite number of them, the sum total of all graphs
contained in them, even with repetitions, is small compared to the number of all
graphs, since these correspond to the elements of a vector space of dimension

3n. This completes the proof of Theorem 11

The situation with regard to properly 2-connected graphs is quite different.
The twisting operation will give a chromatically equivalent graph that is

2-isomorphic to, but, in general, not isomorphic to the original graph. A
2-connected graph can be chromatically unique but clearly this is the exception
rather than the rule.
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This behaviour on the part of properly 2-connected graphs is unfortunate. We
can bring them in line with the other graphs if we redefine ‘chromatic

uniqueness’.

Definition. A graph G is “chromatically 2-unique” if every graph with the
same chromatic polynomial as G is 2-isomorphic to G.

We then have

Theorem 12. For every positive integer y, almost all graphs with cyclomatic
number y are chromatically 2-unique.

The proof is left as an exercise for the reader.

Section 10. Tutte equivalence of homeomorphs.

We now look at the corresponding problem for the Tutte polynomial. For a
given graph M we seek a complete description of those pairs of homeomorphs
of M that are Tutte equivalent, i.e. that have the same Tutte polynomial. We

can call the sum total of this information the “Tutte landscape” of M.

In [24] Whitehead and I showed that the Tutte polynomial of a
homeomorph, G, of M can be obtained by essentially substituting x + y - xy in
the chain polynomial of M. To be precise, the Tutte polynomial of G is

26 xy) =617 oty x+y-xp,x™, x™, x"™, )

Hence, if two homeomorphs, G7 and G2, of M are Tutte equivalent

then Ch(M; x +y -.xy,x"", x™, x" ...) must be the same when the

chain lengths of G+ are used as when those of G2 are used. Thus we have a
situation similar to that discussed in section 2, but there are two important
differences.

(a) The powers of x in the general Tutte polynomial depend on the chain
lengths, but the powers of y donot. Hence we can equate the coefficients of
the various powers of y on the left and right sides of the equation between the
general Tutte polynomials. Thus instead of a single equation, like equation
(2.2), we shall in general have several equations, each giving rise to an
independent tableau.

(b) Instead of two sets of variables, one for each graph, we shall have only a
singie set. This is a consequence of the following theorem
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Theorem 13. [25]  If two homeomorphic graphs are Tutte equivalent then they
have the same multiset of chain lengths.

Put another way this means that the chain lengths in one graph will be the
same as those in the other graph, but in different positions. This change in

positions will correspond in an obvious way to a permutation T of the symbols
for the chain lengths.

These points are best illustrated by an example. It is already known (see [25])
that all homeomorphs of K4 are Tutte unique, so we shall look at the “double
triangle”, DT, shown in figure 6. Its chain polynomial was found (using
MAPLE) and tuned out to be a formidable-looking polynomial which
nevertheless could be greatly simplified by defining the following three
expressions:

S=za+b+c+dte+f

T = ab+ac +ad +ae + af + bc + bd + be + bf
+cd +ce +cf+de +df + ef

U = ab+cd+ef + ace+acf+abe+abf+bce+bcf+bde+bdf + abcd+abef+cdef

where, as before, a stands for xA , that is, x™ . and so on.

)
Q

DT

Figure 6
Take the chain polynomial of DT and, as in section 2, omit the term

abcdef and the term independent of the chain lengths. Divide the resulting
expression by o and then substitute @ = x + y - xy . The resulting polynomial,
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which must be the same for two homeomorphs that are Tutte equivalent, reduces
to the following simple expression

(10.1)  (1-x)(1-PT-(1+2x+2y+x* +)y7-2xy -2y + x5S - U

Now Sand T will be the same for the two graphs since they are invariant
under permutations of the symbols a, b, ¢, d, e, f. It follows from (10.1) that
a necessary and sufficient condition for the two homeomorphs to have the same
Tutte polynomial it that U be the same for both.

Hence for each permutation 7t that we want to try we set up a tableau with
the expressions occurring in U on the left-hand side and the permuted
expressions on the right-hand side. Clearly this example has turned out to be
particularly simple: all expressions are above the line (U has all positive terms)
and there is only one tableau. Thus for the permutation

ABCDEF
ADBECF

we get Tableau V
A+B A+D
C+D B+E
E+F C+F
A+C+F A+B+C
A+D+E A+B+F
A+D+F A+E+F
B+C+E B+C+D
B+C+F C+D+E
B+D+E D+E+F
A+B+C+D A+D+B+E
A+B+E+F A+D+C+F
C+D+E+F B+E+C+F

Tableau V

Note that the expressions 4 + C+ E and B + D + F occur on both sides
and have therefore been omitted from the tableau, since they cancel each other.

It is not necessary to run through all 720 permutations of the six symbols; it
suffices to take one element of each coset of the automorphism group of DT.
There are thus just 15 permutations to try, and for each of these we form the
appropriate version of Tableau V and process it by the same techniques that
were used in section 3. This is a task of manageable proportions.
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Note here that all the equations that we shall get by equating expressions on
the left to those on the rig0Oht will be homogeneous - there are no constants in

the tableau. Consequently if Gy and G2 are Tutte-equivalent graphs and kK
is any positive integer, then the graphs obtained from G and G2 by
multiplying all chain lengths by k will also be Tutte equivalent. This is not

peculiar to the graph DT, but is true for all graphs. This, in turn, is a special
case of a more general theorem which, while not directly germane to the present
discussion, is of sufficient interest to warrant the digression in the next section.

Section 11. Uniform inflation

In [20 ] Ishowed that if we have two chain graphs with a distinguished edge
in each, as illustrated in figure 7 with graphs G and H, then we can easily
compute the chain polynomial of the graph N in the same figure, formed by
identifying the ends of theedge z in G and H, each with z deleted.

¢ 1@

Figure 7

To do this we separate out the terms in 2, writing, say,
Ch(G) =zP + Q and Ch(H) =zA + B.

Theorem 14. [20, p. 238 ] The chain polynomial of N is
Ch(N) = PA - QB/w

We can think of N as having been formed from G by “inflating” the edge
z of G into the shaded part of the graph H, and if we write Ch(N) in the form

(11.1) (-B/@ ) [P.(- 0A/B) + Q)

451



then the process of finding the chain polynomial of the inflated graph can be
boiled down to the following prescription: In the chain polynomial of G
replace every occurrence of Z (the label for the edge being inflated) by

- WA/B , and multiply the resulting expression by - B/.

We have seen that the Tutte polynomial of a graph G can be derived from the
chain polynomial by means of the substitution ® = x+y-xy. What
happens if we go the other way, starting with the Tutte polynomial and making
the inverse substitution y = (0 - x)/(1-x)? We shall get a function of ®
and x (call it @ ) which will be a chain polynomial of sorts. But since
information on individual chain lengths is lost in going from the chain
polynomial to the Tutte polynomial, @ will be a chain polynomial in which
every ‘x’ stands for a chain; that is, it is what the chain polynomial of G
becomes if we regard every edge as a chain of unit length.

Suppose we now want to inflate the edges of G. Using ® alone we

cannot inflate two edges by different graphs since we do not know which ‘x’
belongs to which edge; but it is quite possible to inflate all the edges by the
same graph — an operation that can be called “uniform inflation” -- and the
prescription given above shows how to do it. Using (11.1) we replace every
occurrence of x by the appropriate - WA/B , and multiply the resulting
expression by (- B/w)? , where q is the number of edges in G.  To get the
Tutte polynomial of the inflated graph we now make the substitution

® = x+y-xy. Herel have, for simplicity, ignored the need to multiply or
divide by factors like (x - 1) FP* This makes no difference to the main
argument.

Hence the Tutte polynomial of any uniform inflation of a graph G can be
computed given only the Tutte polynomial of G. We thus have the following
consequence:

Theorem 15 If Gy and G2 are Tutte equivalent then so are the uniform
inflations of Gy and G2 by any given graph (the same for both).

In the special case when the inflating graph is the pathon % edges we have
the result given in section 10, namely, that multiplying the chain lengths by &
preserves Tutte equivalence.

Results similar to the above have been given by Huggett [9] and Woodall [31]
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Section 12. Result for the double triangle

It remains to give the result of the investigation of the double triangle, a result
which turns out to be unexpectedly simple, doubtless due to the many
symmetries of the graph. There is just one family, and it depends on three
parameters, k u and v. Itis shown diagrammatically in figure 8.

Figure 8

Section 13. Questions and conjectures.

An obvious general question is whether there are ways of improving the brute-
force methods described here so that they can be applied to larger graphs. At
the moment I have no suggestions.

In the proof of Theorem 7 we had to entertain the possibility that a cyclically
3-connected graph might be chromatically equivalent to a properly 2-connected
graph. As it turned out we did not need to know whether this was possible. So
we have an outstanding question.

Question 1. Can a cyclically 3-connected graph be chromatically equivalent to
a properly 2-connected graph?

This is equivalent to

Question 2. Can one always tell from a chromatic polynomial whether the
graph is cyclically 3-connected or properly 2-connected?

An obvious companion question is
Question 3. Ifso, is there a practical method of doing this?

Note that if we replace ‘cyclically 3-connected” and ‘properly 2-connected’

by ‘3-connected’ and ‘2-connected’ then the corresponding question is
answered in the negative. In [21] I gave two graphs with the same chromatic
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polynomial; one of them was 3-connected, the other had a vertex of degree 2
and was therefore only 2-connected. However, the latter graph was cyclically
3-connected.

Theorem 11 suggests that the following conjecture might be true

Conjecture 1. All cyclically 3-connected graphs are chromatically unique.

We have seen that almost all homeomorphs of 3-connected graphs with
cyclomatic number y derive from cubic reduced graphs, and the same is true of
the properly 2-connected graphs. Wormald [32] has shown that the number of
2-connected cubic graphs is small compared with the number of 3-connected
cubic graphs. This, in conjunction with conjecture 1 would imply

Conjecture 2. Almost all graphs are chromatically unique.

Maybe so; but there appears to be a wide gap between Theorem 11 and these
conjectures.
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