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Abstract. For 1 < d < v—1.Let V denote the 2v-dimensional symplectic space
over a finite field F, and fix a (v — d)-dimensional totally isotropic subspace W
of V. Let L(d,2v) = PU{V}, where P = {A|A is a subspace of V, ANW = {0}
and A € W*}. Partially ordered by ordinary or reverse inclusion, two families
of finite atomic lattices are obtained. This article discusses their geometricity,
and computes their characteristic polynomials.
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1. Introduction

Let F, be a finite field with g elements, where ¢ is a prime power. Let
V be the 2v-dimensional symplectic space over a finite field Fy, and fix
a (v — d)-dimensional totally isotropic subspace W of V. Let L(d,2v) =
P U {V}, where P = {A]A is a subspace of V, ANW = {0} and A C
W+}. Partially ordered by ordinary or reverse inclusion, two families of
finite atomic lattices are obtained. denoted by Lo(d,2v) or Lgp(d,2v),
respectively. For any two elements A, B € Lo(d, 2v),

AVE = | %4 if Wn(A+ B) # {0},
A+ B otherwise.
ANB=ANB.
Similarly, for any two elements A, B € Lgr(d,2v),
ANB = \%4 1an.(A+B)7é{O},
A+ B otherwise.

AVB=ANDKB
Therefore, both Lo(d,2v) and Lp(d,2v) are finite lattices. This article
discusses their geometricity, and computes their characteristic polynomials.

*Correspondence :College of Science, Civil Aviation University of
China,Tianjin,300300, P.R.China; E-mail: yongxingao@sina.com .

ARS COMBINATORIA 96(2010), pp. 459-467



2. Prelimianries

Now we recall some terminologies and definitions about finite posets and
lattices, which can be found in [1,2] for details.
Let P denote a finite set. A partial order on P is a binary relation <
on P such that

(1) e<aforanyacP.
(2) a <bandb< aimplies a =b.
(3) a<band b<cimpliesa <c.

By a partial ordered set (or poset for short), we mean a pair (P, <),
where P is a finite set and < is a partial order on P. As usual, we write
a < b whenever a < b and a # b. By abusing notation, we will suppress
reference to <, and just write P instead of (P, <).

Let P be a poset and let R be a commutative ring with the identical
element. A binary function p(a,b) on P with values in R is said to be the
Mdébius function of P if

1 ifa=1b,
Z ua,c) = {0 otherwise
a<ce<h :

For any two elements a,b € P, we say a covers b, denoted by b < -a, if
b < a and there exists no ¢ € P such that b < ¢ < a. An element m of P
is said to be minimal (resp. mazimal) whenever there is no element a € P
such that @ < m (resp. a > m). If P has a unique minimal (resp. maximal)
element, then we denote it by 0 (resp. 1) and say that P is a poset with
0 (resp. 1). Let P be a finite poset with 0. By a rank function on P, we
mean a function r from P to the set of all the non-negative integers such
that

(1) 7(0) =0.
(2) r(a) = r(b) + 1 whenever b < -a.

Let P be a finite poset with 0 and 1. The polynomial
x(P,z) = Z 2(0,a)z" (V@)
a€P
is called the characteristic polynomial of P, where r is the rank function of

P.
A poset P is said to be a lattice if both a V b := sup{a,b} and a A
b :=inf{a, b} exist for any two elements a,b € P. Let P be a finite lattice
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with 0. By an atom in P, we mean an element in P covering 0. We say
P is atomic lattice if any element in P \ {0} is a union of atoms. A finite
atomic lattice P is said to be a geometric lattice if P admits a rank function
r satisfying

r{anb)+r(avb) £ r(a)+r(b),Va,b € P. (1)

for any two distinct elements a,b € L. In a finite atomic lattice, (1) is
equivalent to
aAb<-a=>b<-aVvh

The set of all the flats of a combinatorial geometry ordered by inclusion
is a geometric lattice. Conversely, given a geometric lattice L, the in-
cidence structure (L,{L, | y € L}) is a combinatorial geometry, where
L{zeL|z<y}

Let L and L’ be two lattices. If there exists a bijection o from L to L'

such that
o(aVb)=o(a)Vo(b),o(anb) =o(a)Aa(b).

then o is said to be an isomorphism from L to L’. In this case we call L is
isomorphic to L', denoted by L ~ L'. It is well known that two isomorphic
lattices have the same characteristic polynomial and the geometricity.

The results on the lattices generated by the orbits of subspaces under
finite classical groups have been obtained in a series of papers by Guo and
Nan (3], Wang and Guo [4], Wang and Li [5],Gao and Xu [6, 7],Huo and
Wan [8, 9].Very recently, lattices generated by strongly closed subgraphs
in d-bounded distance-regular graphs have been obtained in Gao, Guo and
Liu [10], Guo, Gao and Wang [11].

We recall some terminologies and definitions about symplectic space,
which can be found in [12] for details.

We assume that
0 I®

The symplectic group of degree 2v over Fy,denoted by Spa,(F,), consists of
all 2v x 2v matrices T over F, satisfying TK TT = K. The row vector space
F(,(z") together with the right multiplication action of Spa, (Fy) is called the
2v-dimensional symplectic space over F;. An m-dimensional subspace P is
said to be of type (m, s), if PK PT is of rank 2s. A subspace of type (m, 0)
is called the m-dimensional totally isotropic subspace. Denote by P+ the
dual subspace of P, i.e.,

Pt={yeF| yKzT =0, Vz € P}.
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Let Lg,; denote the set of all subspaces in a i-dimensional symplectic
space. If we partially order L(p )by reverse inclusion, then L(g ;) is a well
known lattice.

For 0 < m < 2v, suppose M(m,s,2v) denotes the set of all subspaces of
type (m,s) in other 2v -dimensional symplectic spaces. As for the size of
M(m,s,2v) , see [12, Theorem 3.18].

Lemma 2.1. For 1 € d £ v — 1.Let V denote the 2v-dimensional sym-
plectic space over the finite field Fy;, and fix an (v — d)-dimensional totally
isotropic subspace W of V . Then the number of type (%, s) subspace inter-
secting trivially with W in W+ is |M(4, s, 2d) | ¢*“~%) ,where 25 < i < d+s.

Proof. Since the symplectic group acts transitively on the set of subspaces
of the same type, we may assume that W has the matrix representation of
the form
W=i(I-9 0 0 0),
v~d d v—-d d

If U is a subspaces of type (i,s) of V, satisfying UNW = {0} and

U c W+, then U has a matrix representation of the form
U= ( },11 },12 0 l/14 ) )
v—d d v—d d

where Y} is an ¢ x (v — d) matrix and

i( Y2 Y ),
d d
is an type (i, s) subspace. Hence the desired result follows. a

3. Main results

Theorem 3.1 Let 1 <d<v—1Then

(1)Lo(d,2v) is atomic.

(2) Lo(d,2v) is not a geometric lattice .
Proof. (1) Since the set of all the atoms of Lo(d,2v) consists of all the 1-
dimensional totally isotropic subspaces, which is intersecting trivially with
W and orthogonal to W, then Lo(d,2v) is atomic.

(2) For any A € Lo(d,2v), define

dimA fA#YV,
A) =
r(4) {2d +1 otherwise.
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Then r is the rank function of Lo(d,2v).
Now suppose that 1 <d < v —1, let

A={(100---0100---0000---0000---0)
v—d d v—d d

B=(000---0100---0000-.-0000-.-0)
v—d v—
then 7(AV B) =2d+ 1 and (A A B) = 0. It follows that

MAAB)+7r(AVB)=r(AVB)=2d+1>r(A)+r(B)=2.

Hence Lo(d, 2v) is not a geometric lattice. O

Theorem 3.2 Let 1 <d<v-1.Then
(1)L g(d,2v) is atomic.
(2) Lr(d, 2v)is a geometric lattice if and only ifd=10ord=v —1.

Proof. (1) Since the symplectic group acts transitively on the set of sub-
spaces of the same type, we may assume that W has the matrix represen-
tation of the form
W=I¢-49 0 0 0).
v—d d v-d d

For each element A € Lg(d,2v) with dimA = {, since the subgroup fixing
W of classical group acts transitively on the set {U | U € P and dimU =},
we may assume that

0o I 0 0 0 0 0
A= ( 0 0 0 0 0 I® 0 0 )
0 0 0 0 0 0 It=2s) ¢
v—d s [-2s d+s—1 v—d s 1=2s d+s=1

Let Band Cy,Cs,...,Ci_g,, D1,Do,... yDaps—t, B, Fa, ... , Egys—1 bethe
subspaces of type (2d,d) of V with the following matrix representations

0 I 0 0 0 0 0 0

0 0 I(~2s) 0 0 0 0 0
|0 0 0 Id+s=) ¢ 0 0 0

0 0 0 0 0 I6) 0 0

0 0 0 0 0 0 J(t=29) 0

0 0 0 0 0 0 0 Ild+s=l)

v—d s 1—2s d+s-1 v—d s 1-2s d+s-1
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0 I() 0 0 0 0 0 0
L; 0 J(t-29) 0 0 0 0 0
c=| O 0 0 J@+s-h 0 0 0 0
7| o 0 0 0 0 I® 0 0
0 0 0 0 0 0 J(t=29) 0
0 0 0 0 0 0 0 [{d+s=1)
v—d s 1-2s d+s-1 v—d 8 1—-2s d+s-1
where 1 < ¢ <! — 2s and satisfying
1 ifp=it=1
Li)pe = ’
( ')p * {0 otherwise.
0 16 0 0 0 0 0 0
0 0 JU-29) 0 0 0 0 0
D. | M 0 0 Id+s=h ¢ 0 0 0
71 o 0 0 0 0 I(9) 0 0
0 0 0 0 0 0 I(-29) 0
0 0 0 0 0 0 0 I(d+s=1)
v—d s 1-2s d+s-1 v—d s 1-2s d+s—1
where 1 < j < d+ s — [ and satisfying
1 ifp=jt=1
M), =
(M )P ot {0 otherwise.
0 I 0 0 0 0 0 0
0 0 I-29) 0 0 0 0 0
g| O 0 0 J@+s=l) g 0 0 0
=1 o 0 0 0 0o I® 0 0
0 0 0 0 0 0 J-29) 0
N 0 0 0 0 0 0 [{d+s=1)
v—-d s 1-2s d+s-1 v—d s 1-2s d+s—1

where 1 < k < d + s — | and satisfying

1 ifp=kit=1
No),, =
(Ni)p,e {0 otherwise.

Then B and Cl, 02, . ,Cl—2s; Dl,Dz, ceny Dd+3_z, El, Ez, ‘e ,Ed-t—s—-l
are atoms of Lgr(m, s,d,2v) satisfying

BVvCiVCaV...VCi_osVDiVDa V.. .VDyys—1VE, VEsV...VE s = A

P
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Therefore, Lp(d,2v) is an atomic lattice.
(2) For any A € Lp(d,2v), define

9d+1—-dimA A%V,
' _ 3
7”(A)_{o A=V

Then ' is the rank function of Lg(d, 2v).

If d = 1,it is clear that Lp(d,2v) is a gecometric.

Ifd=v — 1,for any A, B € Lp(d,2v).

If dim(A + B) < 2d and W N (A + B) # {0}, it is clear that Lr(d,2v) is
a geometric lattice.

If dim(A+ B) < 2d and WN(A+ B) = {0},r(AAB) = 2d+1—-dim(A+
B)r(AV B) =2d+1 - dim(A N B). It follows that

(AN B) +r(AV B) =r(A) + r(B).
Hence the desired result follows.
If dim(A+ B) =2d + 1,then 7(AAB) =r(V) =0,r(AVB)=2d+1~—
dim(A N B). It follows that
(AAB)+r(AVB) = 2d+1-dim(ANB) = 4d+2—dimA—dimB = r(A)+r(B).

Hence the desired result follows.

Now suppose that 2 <d <v-—-2.
Let B and C be two subspaces of type (2d, d) of V with the following matrix
representations of the form

0 I¥9 0o 0
B ‘( 0 0o 0 [9 ) '
v—d d v—d d

I 0 J4&) 0 0 0
C=(0 0 0 I ¢ 0).

and

0 0 0 0 0 I

2 v—d-2 2 d-2 wv-d d
Then B and C are the elements of Lg(d,2v) satisfying r(BAC) =7r(V) =
0,r(BvVC)=2d+1—-(2d—-2)=3and

r(BVC)+r(BAC)=3>2=r(B)+r(C).
It follows that L g(d, 2v) is not a geometric lattice whenever 2 < d < v—2.01
Theorem 3.3. Let 1 < d < v — 1.The Characteristic polynomial of
Lp(d,2v) is
2d d
X(Lr(d,2v),t) = 24F1 = Y5 " | M(3,5,2d) | ¢~ Dx(L(r i, 1)-

i=0 s=0
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Proof. For convenience, we write L = Lp(d,2v). For subspaces of type
(¢,8) U € Lr(d,2v) let
LV={QeL|Q2U}.

Note that LY = L. Since LYV = L(R,,-),x(LU,t) = x(L(r,i),t). Since {0}-
subspace is the maximum element and V' is the minimum element in L, the
characteristic polynomial of L is

X(Lyt) = Y p(V, Uyt
UelL

By the Mdébius inversion formula

t2d+l = Z X(LU,t)-

UelL
Hence, By Lemma, 2.1 we obtain as
X(L,t) = 8241 = 37 3 (LY,1)
UeL\V
= $24+1 _ Z X(LU, t)
UeL dim(U)<2d

2d d
= 2d+1 _ Z Z | M(i,5,2d) | ¢~ Dx(Lip,0t)-

i=0 s=0
as desired. O

Acknowledgement

This work is supported by the National Natural Science Foundation of
China under Grant No. 60776810 and the Natural Science Foundation of
Tianjin City in China under Grant No. 08JCYBJC13900.

References

(1] M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin, 1979.

[2] Z.Wan, Y. Huo, Lattices generated by orbits of subspaces under finite
classical groups (in Chinese), 2nd Edition, Science Press, Beijing, 2002.

[3] J. Guo, J. Nan, Lattices generated by orbits of flats under finite affine-
symplectic groups,Linear Algebra Appl (2009) doi:10.1016/j.1a2.2009.03.
002.

[4] K. Wang and J. Guo, Lattices generated by orbits of totally isotropic
flats under finite affine-classical groups, Finite Fields Appl 14 (3) (2008)
571-578.

466



[5] K. Wang and Z. Li, Lattices associated with vector spaces over a finite
field, Linear Algebra Appl 429 (2008), 439-446.

[6] Y. Gao, J. Xu, Lattices generated by orbits of subspaces under finite
singular pseudo- symplectic groups II, Finite Fields Appl 15(3) (2009)
360-374.

[7] Y. Gao, Lattices generated by orbits of subspaces under finite singular
unitary group and its characteristic polynomials, Lincar Algebra Appl
368 (2003), 243-268.

[8] Y. Huo and Z. Wan, Lattices generated by transitive sets of subspaces
under finite pseudo-symplectic groups, Comm. Algebra 23 (1995), 3753-
3777.

(9] Y. Huo and Z. Wan, On the geometricity of lattices gencrated by orbits
of subspaces under finite classical groups, J. Algebra 243 (2001), 339-
359.

[10] S. Gao, J. Guo and W. Liu, Lattices gencrated by strongly closed sub-
graphs in d- bounded distance-regular graphs, Europ. J. of Combin 28
(2007) 1800-1813.

[11] J. Guo, S. Gao and K. Wang, Lattices generated by subspaces in d-
bounded distance-regular graphs, Discrete Math 308 (22)(2008), 5260-
5264.

(12] Z. Wan, Geometry of Classical Groups over Finite Ficlds, 2nd edition,
Science Press,Beijing/New York, 2002.

467



