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Abstract

We investigate the relationship between geodetic sets, k-geodetic sets,
dominating sets and independent sets in arbitrary graphs. As a conse-
quence of the study we provide several tight bounds on the geodetic number
of a graph.
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1 Introduction

The concepts of a geodetic set and the geodetic number of a graph were intro-
duced by Harary et al., [12] and studied further by several authors [3-7,9, 10, 16-
19]. Some of those works are devoted to study some variations of the concept
of a geodetic set. We cite, for instance, studies on k-geodetic sets {10, 17], edge
geodetic sets [1], Steiner geodetic sets [19] and geodetic sets in digraphs [8,9, 14].
Other published articles on this issue are devoted to study geodetic sets in some
particular kind of graphs, for instance, the geodetic number of the Cartesian
product of graphs was recently studied in (3,10, 11]. Among the applications of
geodetic sets (or geodominating sets) we emphasize the article [18] on communi-
cation overlap in networks.

In this paper we contribute to increase the knowledge about geodetic sets.
Particularly, we investigate the relationship between geodetic sets, k-geodetic
sets, dominating sets and independent sets in arbitrary graphs. As a consequence
of the study, we provide several tight bounds on the geodetic number of a graph.
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We begin by stating some notation and terminology. In this paper I' =
(V, E) denotes a connected simple graph of order n = |V| and size m = |E|,
and T denotes the complement graph of ' We denote two adjacent vertices
uw and v by u ~ v, the degree of a vertex v € V by é(v) and the minimum
and maximum degree of ' by § and A, respectively. For a vertex v € V and a
set X C V, the number of neighbors v has in X is denoted by dx(v), that is,
dx(v) = |{u € X : u ~ v}|. The distance d(u,v) between two vertices u and v is
the length of a shortest u — v path in I'. A u — v path of length d(u,v) is called
u — v geodesic. We define I{u,v] to be the set of all vertices lying on some u —v
geodesic of ', and for a nonempty set S C V,

I[S) = U I[u,v].

u,vES

A set S C V is a geodetic set in ' if I[S] = V and a geodetic set of minimum
cardinality is called a minimum geodetic set. The cardinality of 2 minimum
geodetic set in I is called the geodetic number of I' and it is denoted by g(I'). A
vertex v € V is geodominated by a pair z,y € V if v lieson an = —y geodesic of T.
Analogously, for an integer k > 1, a vertex v is k-geodominated by a pairz,y € V
if v lies on an x — y geodesic of ' and d(z,y) = k. A subset S C V is a (total)
k-geodetic set if each vertex (v € V) v € S = V' \ S is k-geodominated by some
pair of vertices of (S \ {v}) S. The minimum cardinality of a (total) k-geodetic
set of I is the (total) k-geodetic number of I' and it is denoted by (gt (T)) g, ().
Note that g(T") < g,(T) for every k € {1,..., D}, where D denotes the diameter
of . Moreover, if I" contains total k-geodetic sets, then g, (T') < g!(T'). A subset
S C V is called a dominating set if every vertex v € S is adjacent to an element
of S. The minimum cardinality of a dominating set is the domination number
of " and it is denoted by (). The maximum cardinality of an independent set
in T, which is called the independence number of I', is denoted by a(T") and the
minimum cardinality of an independent dominating set of I" is denoted by #(T).
We refer to the book {2] for concepts on graph theory.

2 Results

Theorem 1. Let T be a graph of minimum degree § > 2. If T’ does not contain
cycles of length 3 or 5, then every independent dominating set in I' is a geodetic
set.

Proof. Let S be an independent dominating set in I" and let v € S. If 65(v) > 2,
then v is 2-geodominated by S. Otherwise, dg(v) = 1 and, as a consequence,
there exist « € S and w € § such that v ~ u and v ~ w. Moreover, as I is a
triangle free graph and S is an independent dominating set, there exists z € S
different from u such that z ~ w. If d(u, z) = 2, then there exists y € S different
from v and w which is adjacent to w and z. Therefore, uyzwvu is a cycle of
length 5, a contradiction. In consequence, d(u,z) = 3 and v is 3-geodominated
by the vertices u and z. a
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Corollary 2. Let T be a graph of minimum degree § > 2. If T does not contain
cycles of length 3 or 5, then g(T") < i(T').

One example of a graph where g(I') = #([’) = 2 is the 3-cube graph " =
Kz X Kg X Kg.

Let D denote the diameter of I'. It was shown in [4] that g(T') <n—-D+1.
Let us see the following result which, imposing an additional condition, improves
this bound.

Remark 3. LetT' be a graph of order n and diameter D, and let A be the set of
all vertices on a path which determines the diameter. If V \ A contuins subsets
Si, i € {1,...,k}, such that S;NS; = B, i # j, and the induced subgraphs (S;)
are isomorphic to Ps, then

g)<n—-D—k+1.

Proof. Let A = {ug,...,up} and let S; = {v;,w;, 2}, i € {1,...,k}, such that
v; ~ w; ~ 2. Then § =V \ {ws,...,wk,u1,u2,...,up_1} is a geodetic set of
cardinality n — D — k + 1. ]

Recall that a vertex v is an extreme vertez in a graph if the subgraph induced
by its neighborhood is complete. It is known that every geodetic set contains all
extreme vertices of a graph.

Figure 1: {6,7,8,9,10} is a minimum geodetic set, but its complement is not a
dominating set. Note that the vertex 10 is an extreme vertex.
Remark 4. Let I be a graph without extreme vertices. If S is e minimum

geodetic set (or a minimum 2-geodetic set) in T', then S is a dominating set and,
as a consequence, g,(I') < n —~(T).

Proof. We suppose that S is not a dominating set, that is, there exists v € §
such that N(v) = {u € V : u ~ v} C S. Since v is not an extreme vertex, there
exist two nonadjacent vertices z,y € N(v), in consequence, v is geodominated
(2-geodominated) by = and y. Hence, S’ = S\ {v} is a geodetic set (2-geodetic
set), a contradiction. a

For the cycle graph C,, of order n = 5,7 we have g,(Cs) = 3 and g,(C7) = 4,
in consequence, g,(C,) =n — y(C,).

Remark 5. For any nonempty graph I' of order n without extreme vertices,

9,(l) < [Anflj.
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Proof. It is well-known (see, for instance, [13]) that for any graph of maximum
degree A and order n, the domination number is bounded by ¥(I') > zi7-

Therefore, by Remark 4 we have, g,(T') <n —(T) S n - 5547 = 2. a

The above bound is tight. It is achieved for the cycle graph I' = Cs where
A =2and g,(T") = 3. As the next result shows, the above bound can be improved
for the case of triangle free graphs.

Theorem 6. For any triangle free graph " of order n, minimum degree § > 2
and independence number a(T’),

(i) 9,(0) < min {n - o(r), | 2250 |},

(i) 9,(T) < | &)
Proof. Let S be an independent set in I. Since I is a triangle free graph and

8 > 2, every vertex in S has two nonadjacent neighbors in 5. Therefore, S is a
2-geodetic set. As a consequence,

9,(T) £ n—aT). (1)

On the other hand, we can consider a partition {X,Y} of S such that the edge-
cut set between X and Y has maximum cardinality. Suppose |X| < |Y|. If we
take W = SU X, for every y € Y it is satisfied oy (y) + dw(y) = d(y) = 2
and, as S is a dominating set, dw (y) = dx(y) + ds(y) = Sy (y) + 1, therefore,
dw(y) =2 2. Since T is a triangle free graph, W is a 2-geodetic set, in consequence,
g,(I') < |W]| = |X|+ a(T). Using that n = |X| + |Y| + a(T") > 2|X| + o(T’), we
obtain 2g,(I") — a(T") < n. Hence,

9,(T) <

n + a(I)
—3 )

Therefore, (i) follows. We note that (ii) is a direct consequence of combining (1)
and (2). a

Figure 2: {2,4,5,7} is a 2-geodetic set in the left hand side graph and
{1,2,4,6,8,9} is a 2-geodetic set in the right hand side graph.

The above bounds are tight. For instance, (i) and (ii) are achieved for
the graphs in Figure 2. For the complete bipartite graphs K, (r,s > 2) we
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have «(T") = max{r,s} and g,(I') = min{r,s,4}. Hence, if min{r,s} < 4, then
9, (¥r,5) = n — a(K,,).
Note that in the above proof we have shown the following useful remark.

Remark 7. Let T be a triangle free graph I’ of order n and minimum degree
d > 2. If S is an independent set in T, then S is a 2-geodetic set.

Theorem 8. Let I’ be a graph of minimum degree § > 2. If T does not contain
cycles of length 3 or 5, then the verter set of T' is partitionable into a geodetic
set and a 2-geodetic set.

Proof. The result is a direct consequence of combining Remark 7 and Theorem
1. ]

Note that, from the above results, we obtain the following inequality chain
for graphs of minimum degree § > 2 without cycles of length 3 or 5:

9([) (") < aT') < m — g, () < n — g(I).
As a consequence, n
< —.
9) < 5
We consider next the case of total 2-geodetic sets in a graph.

Theorem 9. Let I be a graph of order n, minimum degree § and mazimum
degree A.

(¢) If S is a total 2-geodetic set in T' and S is an independent set, then |S| >

né
A+46-2 |

(#1) If S is an independent 2-geodetic set in T, then |S| > [%] .
(i) gi(T) 2 [2].

Proof. If S is a total 2-geodetic set, then ds(v) > 2, for every v € S. Moreover,
if S is an independent set, then 85(v) = 8(v), for every v € 5. Thus,

AlS| 2 D" 6(v)

vES

=) 8s(v) + ) _ b5(v)
veS vES

=Y "ds(v) + ) _ ds(v)
vES veS

=> ds(v)+ ) _8(v)
veS u€§

> 2[S| + 6(n — |9]).
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Therefore, (i) follows. On the other hand, if S is an independent set, then
05(v) = 8(v), for every v € S and, if S is a 2-geodetic set, then ds(v) 2> 2, for
every v € S. Hence,

AISIZ ) 8(v) =) d5(v) = D ds(v) 2 2(n - |S)).

veS veS veS

Thus, (ii) follows. Finally, if S is a total 2-geodetic set, then ds(v) > 2, for every
v € V. Thus,

AISI2 Y 6(w) =) 8s(v) + ) 8s(v) 2 2IS| + 2(n — |S)).

veS vES veS

Therefore, (iii) follows. O

Figure 3: In both graphs S = {1,2,3,4,9,10,11,12} is a total 2-geodetic set. In
the left hand side graph, S is an independent set.

In the left hand side graph of Figure 3, the set S = {1,2,3,4,9,10,11,12}
is a total 2-geodetic set and S is an independent set. In this case, Theorem 9 (i)
leads to the exact value of |S|. Bound (ii) is achieved, for instance, for any cycle
graph Cy;, t > 2, and bound (iii) is achieved for both graphs in Figure 3.

Theorem 10. For any graph T’ of order n and mazimum degree A,

2n
9.(T) 2 [A(A DRIk - 1) + 2] '

Proof. Let S be a k-geodetic set in I. We know that every vertex in S lies
on a path of length & which begins and ends in S. For every vertex u, the
number of paths of length k beginning in u is bounded above by A(A — 1)k-1.
If we consider all vertices in S, we have that the number of path of length &

beginning and ending in S is at most lﬂﬂ%ﬁ, and the number of vertices of
— k-

S which can lie on those paths is bounded above by w. Therefore,
n— |Sl S |$|A!A~]2)k-l!k-—l). O

The above bound is achieved for the cycle graph Ci; of order kt where
9, (th) =t
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2.1 On geodetic sets in [' and dominating sets in T

Theorem 11. If S is a geodetic set in T' and it is not a 2-geodetic set, then S
is a dominating set in L.

Proof. We suppose that S is not a dominating set in T'. Then, there exists v € §
adjacent to every vertex of S in I, so the distance between any two vertices in S
is at most 2. As a consequence, S is a 2-geodetic set in I', a contradiction. 0O

Corollary 12. If g(T) # g,(T'), then g(I') > y(T).

Corollary 18. For any graph T of diameter D > 3 and every k € {3,..., D},
9.(T) 2 ().

The above two bounds are tight. For the cycle graph of order 6 we have
93(Cs) = 9(Cs) = 2 = 4(C) and, for the 3-cube graph, we have ¢3(Q3) =
9(Qs) = 2 =(Qa). _

One example of a graph where, ¢,(I') < 4(I') is the graph obtained by
removing one edge from the complete graph K, n > 5. The resultant graph
satisfies g,(F) =2 and y(T) =n - 1.

It is easy to see that if a graph I' has diameter two or three, then every
geodetic set in I" is a dominating set. As a consequence, g(I') > v(T"). For
instance, we take the 3-cube graph Q3 and the cycle graph Cj, where g(Q3) =

¥(Qs3) = 2 = g(Cy) = v(Ch).

Theorem 14. IfT" is o graph of diameter D > 4, then every geodetic set in T
is a dominating set in T,

Proof. We suppose that S C V is not a dominating set in T. Then there exists
a vertex of S adjacent, in I, to every vertex of S. As a consequence, for every
z,y € S, d(z,y) < 2, and, if S is a geodetic set in I', then every vertex in S
is adjacent to some vertex of S. Thus, for every a,b € S, d(a,d) < 4. As a
consequence, D < 4, a contradiction. a

Corollary 15. For any graph T of diameter D > 4, g(T') > (T).

Examples of equality in Corollary 15 are the cycle graphs Cy, with t > §
and the grid graphs P, x P, with s+ ¢ > 7. For both familics of graphs we have

o(T) = 2 = ().

2.2 Geodetic sets in Cartesian products of graphs

We recall that the Cartesian product of two graphs I’} = (W}, Ey) and I’y =
(V2, Ey) is the graph I'; x I'y = (V, E), such that V = {{a,b) : a € V|, b€ Va}
and two vertices (a,b) € V and (c,d) € V are adjacent in I'; x I if and only if,
either (@ = c and bd € E») or (b =d and ac € E)).

The geodetic number of the Cartesian product of graphs has been studied
in {3,11]. In the refereed articles the authors obtain relationships between the
geodetic number of the Cartesian product of graphs and the geodetic number of
its factors. In this section we obtain an upper bound on the geodetic number of
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the Cartesian product of graphs in terms of the order of its factors. We begin
with the following well known lemma [15].

Lemma 16. Let I'; = (V;, E;) be a connected graph, i € {1,2}. For any
(a,b),(c,d) € Vi x V2,

e I, xr,[(a,b), (c,d)] = Ir,[a,c] x I, [b,d].
o I, xr,[(ay ), (c,d)} = Ir, xr, [(a,d), (c,b)].
Theorem 17. Let T; = (V;, E;) be a connected (nontrivial) graph, i € {1,2}.
For anyu € V; and v € V3,
S=Wx {vhu({u} x )\ {(v,v)} CV1 x V;
is a geodetic set in Iy x T'g.

Proof. Let ue W}, v € Vo and & = (V) x {v}) U ({u} x V2). By Lemma 16 we
have,

U Irxnlb), (@)= | Infwa x U Inlb,0] = Vi x Va.
(u,b),(a,v)€S’ aeWVy beVy

Now, let S = S\ {(u,v)} and suppose (a,b) € S. If (a,b) # (u,v), from
dr, xr,((a,v), (v,b)) = dr,(a,u) + dr, (v, b) we have (a,b) € Ir, xrz[(a,v), (u,b)].
Now suppose (a,b) = (u,v). Since I'; and I'; are connected graphs, there exist
z € V; and y € V2, such that u ~ z and v ~ y, so (u,v) € Ir,xr,[(z,v), (u,¥)].
Therefore, S is a geodetic set in I'y x I'y. O

Corollary 18. For any connected graph T'; of order n; > 2, i € {1,2},
g(T1 xT2) £nyp+ng—2.

One example where g(T'y x'z) =ny +n2 —2isT' = K, x Ko, n > 2, since
9(K,) =n and g(K, x K2) =n.

2.3 Geodetic sets in line graphs

The line graph £(I") of a simple graph I is obtained by associating a vertex with
each edge of the graph I' and connecting two vertices with an edge if and only if
the corresponding edges of I' meet at one endvertex.

Theorem 19. Let I' = (V,E) be a connected graph, let S C E and X =
Uees{u € V : u € e}. If S is a geodetic set in L(T), then X is a geodetic
set in I'. Moreover, if S is a k-geodetic set in L(T'), then X is a (k — 1)-geodetic
set in I

Proof. For two vertices e;,ep of L£(I'), such that d(e;,ep) = k, we define the
interval I Z(r) [e1,e2] to be the set of all vertices lying on some e, — ez geodesic of
L(T). As T is connected, for every u € V' \ X there exists e = uv € E'\ S. Since

S is a geodetic set in L£(T'), there exists an integer k and edges e;, ez € S, such
that e € I E(r)[elv e2). Thus, there exist an endvertex in e; and other endvertex

in eg, say u,us, such that v € I#'l[ul, ug). Therefore, the results follow. 0O
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Corollary 20. For any graph T, g(T') < 2¢(L(l)) and g,_,(T) < 2g,(L(T)).

The above bounds are attained, for instance, in the case of the graph I" of
Figure 4, where g(I') = g, (') = 4 = 2g,(£(T)) = 2g(L(T)). Other examples are
the cycle graphs of order n = 2¢, where g,_, (Ca,) = 4 = 2¢,(£(C2:)).

] 2 3 4
12 23 34

27

36

56 . 67 18
§ 6 7 8

Figure 4: {1,4,5,8} is a 3-geodetic set in " and {15,48} is a 4-geodetic set in
L(D).
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