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Abstract Let G = (V, E) be a simple graph. N and Z denote the set
of all positive integers and the set of all integers respectively. The sum
graph G*(S) of a finite subset S C N is the graph (S, E) with uwv € E
if and only if u+v € §. G is a sum graph if it is isomorphic to the
sum graph of some S C N. The sum number o(G) of G is the smallest
number of isolated vertices, which result in a sum graph when added to
G. By extending N to Z, the notions of the integral sum graph and the
integral sum number of G are got respectively. In this paper, we prove
that ¢(Cp) = 0(Cr) = 2n—7 and that {(W,) = o(W,,) =2n—8forn > 7.

Keywords The sum graph; The integral sum graph; The sum number;
The integral sum number; Cycle; Path; Wheel.

1. Introduction

Let G = (V, E) be a simple graph with the vertex set V and the edge set E.
The concepts of the sum graph and integral sum graph were introduced by
F.Harary in [2] and [3]. N and Z denote the set of all positive integers and the
set of all integers respectively. The sum graph G*(S) of a finite subset S C N
is the graph (S, F') with uv € E if and only if u+ v € S. G is said to be a sum
graph if it is isomorphic to a sum graph of some S C N and it is said that S
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gives a sum labelling for G in [12]. The sum number o(G) of G is the smallest
number of isolated vertices, which result in a sum graph when added to G.

F.Harary also introduced the corresponding notions of the integral sum
graph and the integral sum number {(G) of G, by extending N to Z in the
above definitions. Obviously ¢(G) < o(G).

To simplify the notations, throughout this paper we may assume that the
vertices of G are identified with their labels.

The vertex w € V is working if the label of w corresponds to an edge uv € E.
G is exclusive if none of the vertices in V is working.

Besides, the complement G of G with order n is the graph K, — E(G) with
the vertex set V and the edge set E(K,) — E(G). A cycle C, = a1az+--a,q)

is a graph with the vertex side {a1,a2,a3, +* ,an-1,an} and the edge side
{a1a2,a2a3, - , @n—1an,ana1}. A wheel W, is a graph with the vertex set
{c,a1,a2,0a3, - - ,an—1,an} and the edge set {cai1,caz, -- ,can} U{araz,aza3, - -,

@n—-1Gn,ana1 }. It is obvious that W, = C, U K.

Finally, some useful results are obtained as follow.
Lemma 1([8]) ¢(Kn) =0(Kn) =2n—3 for n > 4.

Lemma 2([8]) ¢(Cx) ={ g: Z:Z’ i C(Wh) ={ (E;: Z;g,

Lemma 3(2]) Forn >3, o(Cn)= { 2, n#4,

3) n=4.
Lemma 4([11][7}) Forn >3, o(W,) = 2 +2, 7; e\:(:ircli,

Lemma 5([1]) o(P,) =1and {(Pn)=0forn > 2.
_In this paper, we determine the sum numbers and the integral sum numbers
of C, and W, forn > 7.

2. Main results

Let C, = (V,E) and S = V UC, where C, = a1az--aga; and C is the
isolated vertex set. Let |a,| = max{la| : a € V} with a, € V. It is clear
that C; = K; (i = 1,2,3), Cy = 2Kz and Cs = Gs. So ((Ci) = o(Cy) = 0
(¢ =1,2,38); 0(Cy) = 1, C(C4) = 0 and o(Cs) = 2, ((Cs) = 0. Moreover, we
obtained the result that ((Cs) = 0(Cs) = 4 in [13] In this section, we only
consider n > 7.

Lemma 2.1 C, is not an integral sum graph forn > 7.

Proof: By contradiction. If C, is an integral sum graph for n > 6 then
a; +a;j € V for any a;a; € E. Since aya2 ¢ E,0 ¢ V.
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Assume that a, > 0 (A similar argument work for a, < 0). According to
the choice of an, a, +ar € V,a,+a;r >0andar, < 0fork=2,3,.-- ,n—2. So
there exist at least n — 2 distinct positive vertices a,,an + @2, -+ ,an +an—2 in
V. On the other hand, there also exist at least n — 3 distinct negative vertices
ap,as, -+ ,an—2 in V. So there are at most three positive vertices in V. Thus,
n — 2 < 3, contradicting n > 7. Therefore, C,, is not an integral sum graph for
n>7.0

Lemma 2.2 There exists at least one edge a,a;, € F such that a,+a;, € C
forn > 7.

Proof: By contradiction. Suppose to the contrary that e, +a; € V for
any aj € V — {a1,a,-1,0,}. Assume that a, > 0 (A similar argument work
‘for a, < 0). According to the choice of an, an + a; > 0 and a; < 0. Then
there are at least n — 2 distinct positive vertices {a,,a, + a2, - ,an + @n-2}.
Meanwhile, there are at least n — 3 distinct negative vertices {as, a3, - ,an~2}.
So {(n - 2)+ (n~3) < n,ie,n <5, contradictingn > 7. 0

Lemma 2.3 {a,+az, ' ,an+an-2} CCforn>7.

Proof: By contradiction. If not, then there exist a,a;, € E and ax, € V
such that a, + aj, = ax, for n > 7. Assume that a, > 0 (A similar argument
work for a, < 0). According to the choice of a,, a;, < 0 and ax, > 0.

By Lemma 2.2, there exists one edge anaj, € E such that a, + a;, € C for
n > 7. For any a; € V — {a1,an,an-1}, (@n + a;) + ajo = (an +aj,) +a; € S.
Thus, an + aj € {ajo—1,8jy,2jo+1} U C. Then there are at most threc distinct
vertices ajr, ajr,ajm € V —{a1,an,@n-1, a5} such that {a, +a;,an +a,an+
ajm} C {@jo—1, 50, Gjo+1}-

Let Vo = {a1,an,an-1}U{ax,-1,0k,,8x,4+1}. Foranya € V—-Vp, ar, +a €
S and a, + a; € S. Since ax, + a; = (an + a;,) + a1 = (an + @) + @, € S,
an +ar € V — {aj,-1,a5,,a5,4+1}. That is, there are at least n — 5 distinct
positive vertices @, and a, + a; with a; € V — V. Meanwhile, there are at least
n — 6 distinct negative verticesaq; € V — Vp. Son-6<3,ie.,n<9.

By the above, an, + a; € {aj,—1,aj,,a5041} for any a; € V — V5. So we only
need to prove [{a;, ajn,a;m}| =0 for n < 9.

If n =9 then we assume that a, +az = a, with a, € V —{a1,a,, 21,25, }
and ay € {ajo—1,j,@j0+1}. Since n = 9, there exists one vertex a, € V —
({a1, 2n,an-1,a5,} U{a;,ajr,a;n}) such that a, + a, € C and a,a, € E. So
a; +ay =a; + (a, + a.) = (an + a.) + az € S, contradicting a, + a. € C.

If n =8 then |V| #4.

If [Vo| = 6 then |V — V| = 3, that is, n > 9, a contradiction.

If Vol € {83,5}, then there exist two vertices a;,,a;, € V — (Vo U {aj,, a5 }).
Han+az, €V anda,+a;, € V then we may assume that a, +az, = an—; and
an-1ar,—1 € E. So (an-1+ak, -1)+az, = (@n+0s,)+ak, -1 = an-1+ag,-1 €S,
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contradicting an—1 + ax,—1 € C. If there exists one vertex a; € {az,,as,} such
that a, +a. € Cthen azax, € E. So az+ax, = az+{ant+aj,) = (antaz)+a; €
S, contradicting a,, + a; € C.

If n =7 then |[V| #3.

If [Vo| = 6 then |V — Vp| > 3, that is, n > 9, a contradiction.

If |Vo| = 4 then there exists a; € V —V; such that ap+a; € C and azay, € E.
So az + ak, = az + (a, +¢;j,) = (an + az) + a;, € S, contradicting a, +a. € C.

If |Vo| = 6 then ax, = aj, and ax, 41 = an—1. So there exists only one vertex
az € V — Vg such that a, +az € {@jo~1,ajo+1}. By the symmetry of C; and
the above results, we can assume that ax, = aj, = as, @;, = a2 and a; = a3 in
Figure 1. So a7 + a3 € {a4,06}.

Figure 1

(1) Since a7 + a5 € C, (a7 +as) + a1 = (a1 +as) + a7 € S. Soar +as €
{as, a7} uC.

(2) Since az + a5 € C, (ar+as) + a3 = (a3 +as) +a7 € S. Soaz+as €
{al,as,aq} ucC.

(3) Since a7 + a5 € C, (a7+a5)+a4 = (a7+a4)+a5 ¢ S. Soar+a4 €
{as,as} U C.

If a7 + a3 = ag then ag + ag = (a7 +a3) + aq = (a7 + a4) + a3 € S. By (3),
a7 + a4 = as, contradicting a7 + az = as.

Ifa; +a3 =a4 > 0thenar+aq4 € C.

(4) Since ag + a4 = ag + (a7 +a3) =a7 + (as + a3) € 8, ag + a3z = as.

(5) Since a; + a4 = a1 + (a7 + a3) = a7 + (a1 +a3) € S, a1 + a3 € {as,as5}.

If a; + a3 = ap then a) + a5 = a2 + a7 = as (since a7 + a3 = a4). So
(a7 +a4) + a1 = ar + (a1 + aq) = a7 + a5 € S, contradicting a7 + a4 € C. Thus,
a) + az = as.

Since a7 +a3 = a4 and a1+a3 = as, ar+as = a;+a4 € C. So (a1 +aq)+as =
(a1+as)+aq € S. By (1), a1 +as € C. So (a1 +as)+a3z = (aa+as)+a; € S.
By (2), aa + as € {a7} UC. If a3 + a5 = a7 then a4 + as = 2a7, contradicting
the choice of a7. Thus, az +as € C.

Since ag+a3 = ap, az+as = (as+ag)+as = (az+as)+as € S, contradicting
az+as € C.
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Thus, Lemma 2.3 holds. O

Lemma 2.4 For each ara; € E — {ana2, -+ ,anan-2}, ar + a; € C with
n>"7.

Proof: Assume that a,, > 0 (A similar argument work for a, < 0). Then
a, > 0. Let E,, = {anaz, - ,an0,-2}.

(i) Try to prove ax+a; € C for any ara; € E~(E,U{a1a,-}) withn > 7. In
fact, if axa; # aja,—1 then there must exist at least one vertex which is adjacent
to an, in C,, for any arga; € F — E,. We may assume aia, € E by the symmetry
of C,. So ar +a; € S. By lemma 2.3, a, + ax € C. Since (an +ax) +a =
ant(ax+ar) € S, ax+a; € {a1,an-1,an}UC. So there exist at most three edges
agay;, € E—FE, (i = 1,2,3) such that {ax+ay,, ak+ar,, ax+ay, } € {@1,an-1,0.}.

If n > 8 then there exists at most one ay € V such that aray € E —
{arai, ,arar,, arar,}. And there exists ar € {ay,an—1,a,} with ¢ € {1,2,3}
such that a; = ar + a;, and azar € E. Since a, + ap = (ar + ay,) + ar =
(ax + ay) + a1, € S, contradicting ay + ar € C.

If n = 7 then we will prove the claims first. Let C7 = aja2 - - a7a;.

Claim 1 aj + a; € C for any ara; € F — E, with ax € {as,as}.

In fact, by the symmetry of C,,, we only consider ax = as. By the above, we
only need to prove that {ai,,ai,,ar,} = 0. If not, then |{a;,,ar,,a;,}| € {1,2,3}.

(a) If {ai,as,a,}| = 3 then {ay,,a1,,a1,} = {aa4,as,a6}. Suppose that
a2 +a, = aj, a2 +a;, = a7y and a2 + a;, = ag, denoted (1), (2) and (3)
respectively. By (1) ~(2), a1 +a;, = a7+ ai,. By (1) — (3), ag + a;, = a; +ay,.
By (2) — (3), ag + a, = a7 + ai,. Since aj +q;; € S for any i € {1,2,3} and
ag+ar € S and a) +a7 € S, a;, = a4, a1, = ag and ay; = as, which imply that
a; +ag = a7y + a4 € C. Since a7 + a3 = (a2 + ag) + a3 = az + (ag +a3) € S and
(a1 +ag) +a3 = a1+ (as+as) € S, ag+as = az. So ag + a7 = (ag +az) +ar =
(a3 + a7) + ag € S, contradicting a3 + a7 € C. Thus, |{a1,,a,, a1, }| # 3.

(b) If |{ai,,ai,,ai, }| = 2 then we assume that {a;,,a;,} C {a4,0as,as}.

(b.1) Suppose that a; + a;, = a1 and a3 + a;; = a7, denoted (1) and
(2) respectively. By (1) — (2), a1 + ai; = a7 + ay,. Since ai, € {a4,0s,0a6},
ar+a, =ay+ay, € S. Soay, € {a4,a5}—{a,}. Let & € {aq4,as,a6} — {ai,, a1, }.
Thenay+a € Sandart+acC.ayta=(azta,)+ta=(az+a)+a, €85,
contradicting as + o € C.

(b.2) Suppose that az + a;, = a7 and a2 + a;, = ag, denoted (1) and (2)
respectively. By (1) — (2), as + a1, = a7 + a;,. Note that a;, € {a4,as,as}.

If o, = a4 then aj, = a5 and ag + a4 = a7+ a5 € C. So ax + a5 € C.
Since a1 + ag = a; + (a2 + as) = (a1 + as) + a2 € S, a1 + as € {az,a4,07}.
Since a7 +as € C, a1 + (a7 + as) = (a1 + as) + a7 € S. So a; + as = ay.
Since a7 + a3 = (a1 + as) +a3 = (as +as) + a1 € S, az +as € {a;,a4}.
Since ag + a3 = (az + a5) + a3 = (ag + as) + az € S, az + as = aq. Thus,
a3 + (ar + as) = (as + as) + a7 = a4 + a7 € S, contradicting a7 + as € C.

483



If a;, = as then ag + a5 = a7 + ai, ¢ S, contradicting a7 + a;, € S with
ay, € {aq,0as,0a6}.

If a;, = ag then a;, € {a4,as5}. Let @ € {as,as5} — {ar,}. Thenar+a € S
anday +a € C. So a7 + a = (az + ag) + a = (a2 + a) + as € S, contradicting
as+a€C.

(b.3) Suppose that a; + a;, = a1 and a2 + a;, = ag, denoted (1) and
(2) respectively. By (1) ~ (2), a1 + a, = ag + ai,. Since a;, € {aa,as,a6},
ag+a;, =a; +a, €8. So a, #as, i.e., a, € {as,a6}.

If @1, = a4, then a;, = a5 and a; + a5 = a6 + a4. And az + ag € C (since
|{a1nalzrala}| = 2). Thus, a; +as = (a2 + aq) + as = (a2 + ag) + a4 € S,
contradicting as + ag € C.

If a;, = ag then a;, € {a4,as5}. Let a € {aq,a5} —{ar,}. Thena; +a €S
and az +a € C. Thus, a; +a = (ag +ag) + @ = (a2 + @) +ag € S, contradicting
az+a€C.

(¢) If l{ay, a1, }] =1 then assume that a;, € {a4,as,as}, that is, az +
o, = a; with a; € {a1,a6,a7}.

(c.1) Suppose that az +a;, = a; = a7, where a;, € {a4,as,a6}. Then there
exists one vertex a, € {as,as,as} — ({a1,} U {ag}) such that aze, € E and
az +ay € C. So a7 + a, = (a2 + ay,) + ay = (a2 + ;) + a1, € S, contradicting
as+ay, €C.

(c.2.1) Suppose that az + a;, = a; with a;, € {a4,a6} and a; € {a1, a6}
Then there exists one vertex ay € {a4,as,a6} — {a, } such that aza, € E and
az +ay € C. So az +ay = (a2 + a,) + ay = (a2 + ay) + a;, € S, contradicting
ay+ay, €C.

(c.2.2) Suppose that as + a5 = az with a; € {a1,a6,a7}. Then azaq € E
andas+a4 € C. So az +aq = (ag+as)+aq = (a2+aq)+as € §, contradicting
ag+aq €C.

Thus, Claim 1 holds.

Claim 2 ax + a; € C for any axa; € E — E,, with a; € {a3,a4}.

In fact, by the symmetry of C,, we only consider ax = a3. By the above,
we only prove that for any asa; € E — E,, a3 + a; & {a1,a6,a7}. By Claim
1,a3+as € C and a; +as € C for all i € {1,2,3}. Since (a3 + as) + ag =
(a3 +a¢) +as € S, a3 + ag &€ {a1,a6,a7}, i.e. a3+ ag € C. Using the same
methods as above, it is easy to prove Claim 2.

Claim 3 a; + a; € C for any aza; € E — E,, — {a1a¢} with ax € {a;,a6}.
In fact, it is easy to prove Claim 3 by Claim 1 and Claim 2.

(i) Try to prove aj + an—1 € C for n > 7. By contradiction. Suppose that
there exists ay € V — {a1,an_1} such that a; + a,—; = a,. Since n > 7 then
there exists one vertex a,s € V such that aya, € E and either aja, € FE or
@n—10y € E. Then o, +ay, € S. By lemma 2.3, an +ay € C. By (i), a1+ay €
C. If aja, € E then ay + ay = (a1 + @n-1) + 0y = (a1 + ay) + an-1 € S,
contradicting ay + ay € C. If an~10y € E then ay +ay = (a1 + Gn-1) +ay =
(an-1+ ay) + a1 € S, contradicting a; + ay € C.
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Thus, Lemma 2.4 holds. O
Lemma 2.6 C, is exclusive forn>7. O

Lemma 2.7 ¢(C,)>2n—7forn>7.

Proof: Let V = {b;,bs,b3, - ,bn}, S=VUC and C is the isolated vertex
set. Without loss of generality, we can assume that b; < by < -+ < b,. So
bi4+by <bi+bs<by+by<---<b+by <bz+bn<b3+bn< - < by + by
Let Co = {by 4 ba, by + b3, -+ ,by + bn,bo + by, -+« ,bpy + bn}. Then there are
at most four numbers which are not in S, but in Co On the other hand, the
others in Cp are the isolated vertices by Lemma 2.6. Thus, ((C,) = 2n —7.0

Lemma 2.8 ¢(C,) <2n— 7 for n > 7 and n odd.

Proof: We consider the sum labelling of C,, U (2n — 7)K; as follows:
a) = "—'Qﬂ x 10+ 1,

age = (25 —k+1)x10+1, k=1,2,3,.--, 251

G2kl —-lcx 1046, k=1,2,3,- —2—1,

cp=(k+2)x10+2, k—1,2,3, ,n—13,

di=(k+1)x10+7, k=1,2,- ?,“—;,L‘ a3 n-2
Let S = V UC, where C be the lbolated vertex set and C = {cg,di|k =
1,2, ,n=81=1,2 2552, 55,... .pn -2},

Let us verify that thls ldbe]lmg is the sum ]abelhng in detail.

(1) The vertices in S are distinct .

(2) Consider the vertex a;:

(i) Foreachag € V (k =1,2,3,--+, 25), ey +agk = [(n—k—1)+2]x10+2.

Whenk =1,a,+a; =nx 10+2 > (n 1)x104+2=1¢,—3. Soa; +ax &S.

When 2 < k < ﬂ;—l, 1‘;—1 <n—-k-1<n-3(since2 <k< 1'22) So
a1 + Qgk = Cn-k-1 € 5.

(ii) Foreachasry €V (k=1,2,3,---,25 21y a4y +agkr = (—"'—+k)x10+7

When k = Tl’ a) + agky) =N X 10 7>n—-1)x10+7 = d,,—2. So
ay+a, €8S

When 1 < k < 253, a) +agiqr = [(25° +k)+1] x10+7. Since 1 < k < 253,
nfl < "'l+k <n-— 2 Hence, a) +azk+1 = [(352 +k)+1]x10+7 = duiyy € S

(3) Consider the other vertices agy,a € V (1 <k i<zl k# l) Clearly
Qg + ay = [n+1— Il x10+2=[(n—-1~ —l)+2] X 10+2
Since 1 < k, l<ﬂ—‘—-andk;él 1 <n-1-k-1<n-3. Henceasytay =c, €5
w1thm—-n—1—k—land1<k <= 1

(4) Consider the vertlces Qok, Q2L41 E V (1 € k,1 £ 271). Clearly

age+asr = (25 —k+1) x 10+ 1]+ [[x 104-6] = [(B5= ~k+1)+ 1] x 10+ 7.

Since 1 < k,I < "; 1< 25 —k+1<n—2. Since ag +ag41 €S <=
2=l k-l-le{" =3 "‘1}<=>l—ke{0 1} <= l-ke{0,-1} = 1=k
andlc_l+1 ask + agq1 € S <> ag + a2y € S; and 021+2+021+1 #S.

(5) Consider the vertices agri1,a241 € V (1 < k, | < 251 and & # 1).
Clearly,
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a2k4+1 + Aoy = [kX10+6]+[lX10+6] [k+l+1]x10+2=[(k:+l—-
1)+2] x 10+ 2.

Since 1<k, <251, 1<k+1-1<n-2 Hence

agk+1+au €S = k+i-1l=n-2k+l=n-1 =S k=I1= Tl
whlch is a contradiction with k # I. So ask41 +a2t1 =crp-1 €S (1 < k1 <L

o-1 and k # l) for each Q2k+1,a2141 € V.

Thus, the above labelling is the sum labelling. So ¢(C,) < 2n—-T7forn >7

andnodd. O

Lemma 2.9 0(C,) <2n— 7 for n > 8 and n even.

Proof: We consider the following sum labelling of C, J(2n —7)K, forn > 8
and n even:
ak-1=kx10+1,k=1,23,---,%,

wn = | Bk —2)x10+86, k=1, )3, , 2 =3,
2%k = (n k—2)x10+6, L=§ 2,2 1,2,
ce=(k+2)x10+2,k=1,2,3,--- ,n—2,

d=(+1)x10+7, L€ (1,2, -1} {2-3,2-2,n-3,n-2}.

LetS:VUCandC:{ck,d1|k=l,2,~~,n—2;l€{1,2,-~-n-1}—{-'21—
3,3 —2,n~3,n—2}}, where C be the isolated vertex set.

Let us verify that this is the sum labelling in detail.

(1) The vertices in S are distinct.

(2). For agi—1,a911 €V (k=1,2,-- ’T and k # 1), agg—1 + agi—; =
[((k+1-2)+2]x10+2. Sincek=1,2,--- , 25  and k #{,0< k+I-2<n-2.
So agk—1 + a1 = k412 € S.

(3) For agx—1,an €V,

When 1 <1< % -3, age—1 + ax =[(§—3+k—l)+l]x10+7. Since
1<k< -and1<l< 2-3,1<8+4+k-1-3<n-4<n-3. Clearly
agk- 1+a2¢¢34=>——3+k—le{-—-3 5 —2} < k—1€{0,1}. Hence
agk—1 +ay € S <= ay_1 +an ¢Sanda2t+1 +ay & S.

When ! € {%—2,% - 1,325}, Aok—1 + Qo = [(Tl+k—l—3)+ 1] x 10 4+ 7.
Sincel<k<fand $-2<1<%,2-2<n+k-1-3<n-1 Clearly
agk-1tan ¢ S = n+k—-1-3€ {5-2,n-3,n-2} = l-ke {§-1,0,-1}.
Andl-k=5 -1+ (l,k)=(5,1).

Soag-1+ax ¢ S+ (k) =(},1)and k€ {I,I+1} < a1 +a, & S and
ag—1 +az € S and agiyq + agyy € S. Thus, for agk_y,a0 € V, if agk_1a9 € F
then agx_) + a € S; if agk—1a9; & E then agg—; +ay € S.

(4) For agg,ag € V with k # {,

when 1 < k0 < 2 -3, aox +ayy =[n—5—(k+1)+2] x 10 + 2. Since
1<kl<3-3andk#1,1<n—-k-1-5<n-7<n-2 Soax+au=cn €S
withm=n—-k—-1-35.

When1<k< 3-3andle {3-2,3~- , azk+azy = {32 —(k+1)-5]+
2} x10+2. Since 1 < k < ——3and5—2<l< 2l<n-a<dh_(kil)-5<
n—-4<n-2. Thatls a2L+a21—ch€Sw1thh————(k+l)—5

When k,le {3 -2,3-1, "}andk;él a2k+a21—{[2n—-(k+l) 5] + 2} x
10+ 2. Smce—~2<kl< sandk#l,1<n-5<2n~(k+{)-5<n-2.
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Hence ag + agt = ¢, € § with g = 2n — (k +1{) — 5. So for agk,ag € V (k#£1),
agk +agt € S. .

Thus, the labelling is the sum labelling. So 0(C,) < 2n—7forn > 8 and n
even. O

Theorem 2.1 ((C,)=0a(C,)=2n—Tforn>7 D
Corollary 2.1 ((W,)=d(W,)=2n-8forn>7. O
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