The sum numbers and the integral sum numbers of $\overline{C_n}$ and $\overline{W_n}$

Haiying Wang^{1*} Jingzhen Gao² †

1. The School of Information Engineering
China University of Geosciences(Beijing)
Beijing 100083, P.R.China

 Department of Mathematics and Science Shandong Normal University Jinan, Shandong, 250014,P.R.China

Abstract Let G = (V, E) be a simple graph. N and Z denote the set of all positive integers and the set of all integers respectively. The sum graph $G^+(S)$ of a finite subset $S \subset N$ is the graph (S, E) with $uv \in E$ if and only if $u + v \in S$. G is a sum graph if it is isomorphic to the sum graph of some $S \subset N$. The sum number $\sigma(G)$ of G is the smallest number of isolated vertices, which result in a sum graph when added to G. By extending N to Z, the notions of the integral sum graph and the integral sum number of G are got respectively. In this paper, we prove that $\zeta(\overline{C_n}) = \sigma(\overline{C_n}) = 2n-7$ and that $\zeta(\overline{W_n}) = \sigma(\overline{W_n}) = 2n-8$ for $n \geq 7$.

Keywords The sum graph; The integral sum graph; The sum number; The integral sum number; Cycle; Path; Wheel.

1. Introduction

Let G = (V, E) be a simple graph with the vertex set V and the edge set E. The concepts of the *sum graph* and *integral sum graph* were introduced by F.Harary in [2] and [3]. N and Z denote the set of all positive integers and the set of all integers respectively. The *sum graph* $G^+(S)$ of a finite subset $S \subset N$ is the graph (S, E) with $uv \in E$ if and only if $u + v \in S$. G is said to be a *sum graph* if it is isomorphic to a sum graph of some $S \subset N$ and it is said that S

^{*}E-mail: whycht@126.com.

[†]This research is supported by 2008 Foundation of China University of Geosciences (Beijing)(NO.51900961144) and National Nature Science Foundation of China (NO.10671014).

gives a sum labelling for G in [12]. The sum number $\sigma(G)$ of G is the smallest number of isolated vertices, which result in a sum graph when added to G.

F. Harary also introduced the corresponding notions of the integral sum graph and the integral sum number $\zeta(G)$ of G, by extending N to Z in the above definitions. Obviously $\zeta(G) < \sigma(G)$.

To simplify the notations, throughout this paper we may assume that the vertices of G are identified with their labels.

The vertex $w \in V$ is working if the label of w corresponds to an edge $uv \in E$. G is exclusive if none of the vertices in V is working.

Besides, the complement \overline{G} of G with order n is the graph $K_n - E(G)$ with the vertex set V and the edge set $E(K_n) - E(G)$. A cycle $C_n = a_1 a_2 \cdots a_n a_1$ is a graph with the vertex side $\{a_1, a_2, a_3, \dots, a_{n-1}, a_n\}$ and the edge side $\{a_1a_2,a_2a_3,\cdots,a_{n-1}a_n,a_na_1\}$. A wheel W_n is a graph with the vertex set $\{c, a_1, a_2, a_3, \cdots, a_{n-1}, a_n\}$ and the edge set $\{ca_1, ca_2, \cdots, ca_n\} \cup \{a_1a_2, a_2a_3, \cdots, a_n\}$ $a_{n-1}a_n, a_na_1$. It is obvious that $\overline{W_n} = \overline{C_n} \cup K_1$.

Finally, some useful results are obtained as follow.

Lemma 1([8])
$$\zeta(K_n) = \sigma(K_n) = 2n - 3$$
 for $n \ge 4$.

Lemma 2([8])
$$\zeta(C_n) = \begin{cases} 3, & n = 4, \\ 0, & n \neq 4. \end{cases}$$
; $\zeta(W_n) = \begin{cases} 5, & n = 3, \\ 0, & n \neq 3. \end{cases}$

Lemma 3([2]) For
$$n \ge 3$$
, $\sigma(C_n) = \begin{cases} 2, & n \ne 4, \\ 3, & n = 4. \end{cases}$

Lemma 3([2]) For
$$n \ge 3$$
, $\sigma(C_n) = \begin{cases} 2, & n \ne 4, \\ 3, & n = 4. \end{cases}$
Lemma 4([11][7]) For $n \ge 3$, $\sigma(W_n) = \begin{cases} \frac{n}{2} + 2, & n \text{ even,} \\ n, & n \text{ odd.} \end{cases}$

Lemma 5([1])
$$\sigma(P_n) = 1$$
 and $\zeta(P_n) = 0$ for $n \ge 2$.

In this paper, we determine the sum numbers and the integral sum numbers of $\overline{C_n}$ and $\overline{W_n}$ for $n \geq 7$.

2. Main results

Let $\overline{C_n} = (V, E)$ and $S = V \cup C$, where $C_n = a_1 a_2 \cdots a_n a_1$ and C is the isolated vertex set. Let $|a_n| = \max\{|a| : a \in V\}$ with $a_n \in V$. It is clear that $\overline{C_i} = \overline{K_i}$ (i = 1, 2, 3), $\overline{C_4} = 2K_2$ and $\overline{C_5} = C_5$. So $\zeta(\overline{C_i}) = \sigma(\overline{C_i}) = 0$ $(i=1,2,3);\ \sigma(\overline{C_4})=1,\ \zeta(\overline{C_4})=0\ \text{and}\ \sigma(\overline{C_5})=2,\ \zeta(\overline{C_5})=0.$ Moreover, we obtained the result that $\zeta(\overline{C_6}) = \sigma(\overline{C_6}) = 4$ in [13]. In this section, we only consider $n \geq 7$.

Lemma 2.1 $\overline{C_n}$ is not an integral sum graph for $n \geq 7$.

Proof: By contradiction. If $\overline{C_n}$ is an integral sum graph for $n \geq 6$ then $a_i + a_j \in V$ for any $a_i a_j \in E$. Since $a_1 a_2 \notin E$, $0 \notin V$.

Assume that $a_n>0$ (A similar argument work for $a_n<0$). According to the choice of $a_n, a_n+a_k\in V, a_n+a_k>0$ and $a_k<0$ for $k=2,3,\cdots,n-2$. So there exist at least n-2 distinct positive vertices $a_n,a_n+a_2,\cdots,a_n+a_{n-2}$ in V. On the other hand, there also exist at least n-3 distinct negative vertices a_2,a_3,\cdots,a_{n-2} in V. So there are at most three positive vertices in V. Thus, $n-2\leq 3$, contradicting $n\geq 7$. Therefore, $\overline{C_n}$ is not an integral sum graph for $n\geq 7$. \square

Lemma 2.2 There exists at least one edge $a_n a_{j_0} \in E$ such that $a_n + a_{j_0} \in C$ for $n \geq 7$.

Proof: By contradiction. Suppose to the contrary that $a_n + a_j \in V$ for any $a_j \in V - \{a_1, a_{n-1}, a_n\}$. Assume that $a_n > 0$ (A similar argument work for $a_n < 0$). According to the choice of a_n , $a_n + a_j > 0$ and $a_j < 0$. Then there are at least n-2 distinct positive vertices $\{a_n, a_n + a_2, \cdots, a_n + a_{n-2}\}$. Meanwhile, there are at least n-3 distinct negative vertices $\{a_2, a_3, \cdots, a_{n-2}\}$. So $(n-2) + (n-3) \le n$, i.e., $n \le 5$, contradicting $n \ge 7$. \square

Lemma 2.3 $\{a_n + a_2, \dots, a_n + a_{n-2}\} \subseteq C$ for $n \ge 7$.

Proof: By contradiction. If not, then there exist $a_n a_{j_1} \in E$ and $a_{k_1} \in V$ such that $a_n + a_{j_1} = a_{k_1}$ for $n \ge 7$. Assume that $a_n > 0$ (A similar argument work for $a_n < 0$). According to the choice of a_n , $a_{j_1} < 0$ and $a_{k_1} > 0$.

By Lemma 2.2, there exists one edge $a_n a_{j_0} \in E$ such that $a_n + a_{j_0} \in C$ for $n \geq 7$. For any $a_j \in V - \{a_1, a_n, a_{n-1}\}, (a_n + a_j) + a_{j_0} = (a_n + a_{j_0}) + a_j \notin S$. Thus, $a_n + a_j \in \{a_{j_0-1}, a_{j_0}, a_{j_0+1}\} \cup C$. Then there are at most three distinct vertices $a_{j'}, a_{j''}, a_{j'''} \in V - \{a_1, a_n, a_{n-1}, a_{j_0}\}$ such that $\{a_n + a_{j'}, a_n + a_{j''}, a_n + a_{j'''}, a_{n-1}\}$.

Let $V_0 = \{a_1, a_n, a_{n-1}\} \cup \{a_{k_1-1}, a_{k_1}, a_{k_1+1}\}$. For any $a_l \in V - V_0$, $a_{k_1} + a_l \in S$ and $a_n + a_l \in S$. Since $a_{k_1} + a_l = (a_n + a_{j_1}) + a_l = (a_n + a_l) + a_{j_1} \in S$, $a_n + a_l \in V - \{a_{j_1-1}, a_{j_1}, a_{j_1+1}\}$. That is, there are at least n-5 distinct positive vertices a_n and $a_n + a_l$ with $a_l \in V - V_0$. Meanwhile, there are at least n-6 distinct negative vertices $a_l \in V - V_0$. So $n-6 \le 3$, i.e., $n \le 9$.

By the above, $a_n + a_l \in \{a_{j_0-1}, a_{j_0}, a_{j_0+1}\}$ for any $a_l \in V - V_0$. So we only need to prove $|\{a_{j'}, a_{j''}, a_{j'''}\}| = 0$ for $n \leq 9$.

If n = 9 then we assume that $a_n + a_x = a_y$ with $a_x \in V - \{a_1, a_n, a_{n-1}, a_{j_0}\}$ and $a_y \in \{a_{j_0-1}, a_{j_0}, a_{j_0+1}\}$. Since n = 9, there exists one vertex $a_z \in V - (\{a_1, a_n, a_{n-1}, a_{j_0}\} \cup \{a_{j'}, a_{j''}, a_{j'''}\})$ such that $a_n + a_z \in C$ and $a_z a_y \in E$. So $a_z + a_y = a_z + (a_n + a_x) = (a_n + a_z) + a_x \in S$, contradicting $a_n + a_z \in C$.

If n = 8 then $|V_0| \neq 4$.

If $|V_0| = 6$ then $|V - V_0| \ge 3$, that is, $n \ge 9$, a contradiction.

If $|V_0| \in \{3,5\}$, then there exist two vertices $a_{x_1}, a_{x_2} \in V - (V_0 \cup \{a_{j_0}, a_{j_1}\})$. If $a_n + a_{x_1} \in V$ and $a_n + a_{x_2} \in V$ then we may assume that $a_n + a_{x_1} = a_{n-1}$ and $a_{n-1}a_{k_1-1} \in E$. So $(a_{n-1}+a_{k_1-1})+a_{x_1} = (a_n+a_{x_1})+a_{k_1-1} = a_{n-1}+a_{k_1-1} \in S$,

contradicting $a_{n-1}+a_{k_1-1}\in C$. If there exists one vertex $a_x\in\{a_{x_1},a_{x_2}\}$ such that $a_n+a_x\in C$ then $a_xa_{k_1}\in E$. So $a_x+a_{k_1}=a_x+(a_n+a_{j_1})=(a_n+a_x)+a_{j_1}\in S$, contradicting $a_n+a_x\in C$.

If n=7 then $|V_0| \neq 3$.

If $|V_0| = 6$ then $|V - V_0| \ge 3$, that is, $n \ge 9$, a contradiction.

If $|V_0|=4$ then there exists $a_x\in V-V_0$ such that $a_n+a_x\in C$ and $a_xa_{k_1}\in E$. So $a_x+a_{k_1}=a_x+(a_n+a_{j_1})=(a_n+a_x)+a_{j_1}\in S$, contradicting $a_n+a_x\in C$.

If $|V_0|=5$ then $a_{k_1}=a_{j_0}$ and $a_{k_1+1}=a_{n-1}$. So there exists only one vertex $a_x\in V-V_0$ such that $a_n+a_x\in\{a_{j_0-1},a_{j_0+1}\}$. By the symmetry of $\overline{C_7}$ and the above results, we can assume that $a_{k_1}=a_{j_0}=a_5$, $a_{j_1}=a_2$ and $a_x=a_3$ in Figure 1. So $a_7+a_3\in\{a_4,a_6\}$.

Figure 1

- (1) Since $a_7 + a_5 \in C$, $(a_7 + a_5) + a_1 = (a_1 + a_5) + a_7 \notin S$. So $a_1 + a_5 \in \{a_6, a_7\} \cup C$.
- (2) Since $a_7 + a_5 \in C$, $(a_7 + a_5) + a_3 = (a_3 + a_5) + a_7 \notin S$. So $a_3 + a_5 \in \{a_1, a_6, a_7\} \cup C$.
- (3) Since $a_7 + a_5 \in C$, $(a_7 + a_5) + a_4 = (a_7 + a_4) + a_5 \notin S$. So $a_7 + a_4 \in \{a_5, a_6\} \cup C$.

If $a_7 + a_3 = a_6$ then $a_6 + a_4 = (a_7 + a_3) + a_4 = (a_7 + a_4) + a_3 \in S$. By (3), $a_7 + a_4 = a_5$, contradicting $a_7 + a_2 = a_5$.

If $a_7 + a_3 = a_4 > 0$ then $a_7 + a_4 \in C$.

- (4) Since $a_6 + a_4 = a_6 + (a_7 + a_3) = a_7 + (a_6 + a_3) \in S$, $a_6 + a_3 = a_2$.
- (5) Since $a_1 + a_4 = a_1 + (a_7 + a_3) = a_7 + (a_1 + a_3) \in S$, $a_1 + a_3 \in \{a_2, a_5\}$.

If $a_1 + a_3 = a_2$ then $a_1 + a_4 = a_2 + a_7 = a_5$ (since $a_7 + a_3 = a_4$). So $(a_7 + a_4) + a_1 = a_7 + (a_1 + a_4) = a_7 + a_5 \in S$, contradicting $a_7 + a_4 \in C$. Thus, $a_1 + a_3 = a_5$.

Since $a_7 + a_3 = a_4$ and $a_1 + a_3 = a_5$, $a_7 + a_5 = a_1 + a_4 \in C$. So $(a_1 + a_4) + a_5 = (a_1 + a_5) + a_4 \notin S$. By (1), $a_1 + a_5 \in C$. So $(a_1 + a_5) + a_3 = (a_3 + a_5) + a_1 \notin S$. By (2), $a_3 + a_5 \in \{a_7\} \cup C$. If $a_3 + a_5 = a_7$ then $a_4 + a_5 = 2a_7$, contradicting the choice of a_7 . Thus, $a_3 + a_5 \in C$.

Since $a_6 + a_3 = a_2$, $a_2 + a_5 = (a_3 + a_6) + a_5 = (a_3 + a_5) + a_6 \in S$, contradicting $a_3 + a_5 \in C$.

Thus, Lemma 2.3 holds. □

Lemma 2.4 For each $a_k a_l \in E - \{a_n a_2, \dots, a_n a_{n-2}\}, a_k + a_l \in C$ with $n \geq 7$.

Proof: Assume that $a_n > 0$ (A similar argument work for $a_n < 0$). Then $a_n > 0$. Let $E_n = \{a_n a_2, \dots, a_n a_{n-2}\}$.

(i) Try to prove $a_k+a_l\in C$ for any $a_ka_l\in E-(E_n\cup\{a_1a_{n-1}\})$ with $n\geq 7$. In fact, if $a_ka_l\neq a_1a_{n-1}$ then there must exist at least one vertex which is adjacent to a_n in $\overline{C_n}$ for any $a_ka_l\in E-E_n$. We may assume $a_ka_n\in E$ by the symmetry of $\overline{C_n}$. So $a_k+a_l\in S$. By lemma 2.3, $a_n+a_k\in C$. Since $(a_n+a_k)+a_l=a_n+(a_k+a_l)\notin S$, $a_k+a_l\in \{a_1,a_{n-1},a_n\}\cup C$. So there exist at most three edges $a_ka_{l_i}\in E-E_n$ (i=1,2,3) such that $\{a_k+a_{l_1},a_k+a_{l_2},a_k+a_{l_3}\}\subseteq \{a_1,a_{n-1},a_n\}$.

If $n \geq 8$ then there exists at most one $a_{l'} \in V$ such that $a_k a_{l'} \in E - \{a_k a_{l_1}, a_k a_{l_2}, a_k a_{l_3}\}$. And there exists $a_x \in \{a_1, a_{n-1}, a_n\}$ with $i \in \{1, 2, 3\}$ such that $a_x = a_k + a_{l_i}$ and $a_x a_{l'} \in E$. Since $a_x + a_{l'} = (a_k + a_{l_i}) + a_{l'} = (a_k + a_{l'}) + a_{l_i} \in S$, contradicting $a_k + a_{l'} \in C$.

If n=7 then we will prove the claims first. Let $C_7=a_1a_2\cdots a_7a_1$.

Claim 1 $a_k + a_l \in C$ for any $a_k a_l \in E - E_n$ with $a_k \in \{a_2, a_5\}$.

In fact, by the symmetry of $\overline{C_n}$, we only consider $a_k = a_2$. By the above, we only need to prove that $\{a_{l_1}, a_{l_2}, a_{l_3}\} = \emptyset$. If not, then $|\{a_{l_1}, a_{l_2}, a_{l_3}\}| \in \{1, 2, 3\}$.

- (a) If $|\{a_{l_1}, a_{l_2}, a_{l_3}\}| = 3$ then $\{a_{l_1}, a_{l_2}, a_{l_3}\} = \{a_4, a_5, a_6\}$. Suppose that $a_2 + a_{l_1} = a_1$, $a_2 + a_{l_2} = a_7$ and $a_2 + a_{l_3} = a_6$, denoted (1), (2) and (3) respectively. By (1) (2), $a_1 + a_{l_2} = a_7 + a_{l_1}$. By (1) (3), $a_6 + a_{l_1} = a_1 + a_{l_3}$. By (2) (3), $a_6 + a_{l_2} = a_7 + a_{l_3}$. Since $a_1 + a_{l_4} \in S$ for any $i \in \{1, 2, 3\}$ and $a_6 + a_7 \notin S$ and $a_1 + a_7 \notin S$, $a_{l_1} = a_4$, $a_{l_2} = a_6$ and $a_{l_3} = a_5$, which imply that $a_1 + a_6 = a_7 + a_4 \in C$. Since $a_7 + a_3 = (a_2 + a_6) + a_3 = a_2 + (a_6 + a_3) \in S$ and $(a_1 + a_6) + a_3 = a_1 + (a_6 + a_3) \notin S$, $a_6 + a_3 = a_2$. So $a_2 + a_7 = (a_6 + a_3) + a_7 = (a_3 + a_7) + a_6 \in S$, contradicting $a_3 + a_7 \in C$. Thus, $|\{a_{l_1}, a_{l_2}, a_{l_3}\}| \neq 3$.
 - (b) If $|\{a_{l_1}, a_{l_2}, a_{l_3}\}| = 2$ then we assume that $\{a_{l_1}, a_{l_2}\} \subset \{a_4, a_5, a_6\}$.
- (b.1) Suppose that $a_2+a_{l_1}=a_1$ and $a_2+a_{l_2}=a_7$, denoted (1) and (2) respectively. By (1) (2), $a_1+a_{l_2}=a_7+a_{l_1}$. Since $a_{l_2}\in\{a_4,a_5,a_6\}$, $a_7+a_{l_1}=a_1+a_{l_2}\in S$. So $a_{l_1}\in\{a_4,a_5\}-\{a_{l_2}\}$. Let $\alpha\in\{a_4,a_5,a_6\}-\{a_{l_1},a_{l_2}\}$. Then $a_1+\alpha\in S$ and $a_2+\alpha\in C$. $a_1+\alpha=(a_2+a_{l_1})+\alpha=(a_2+\alpha)+a_{l_1}\in S$, contradicting $a_2+\alpha\in C$.
- (b.2) Suppose that $a_2 + a_{l_1} = a_7$ and $a_2 + a_{l_2} = a_6$, denoted (1) and (2) respectively. By (1) (2), $a_6 + a_{l_1} = a_7 + a_{l_2}$. Note that $a_{l_1} \in \{a_4, a_5, a_6\}$.

If $a_{l_1}=a_4$ then $a_{l_2}=a_5$ and $a_6+a_4=a_7+a_5\in C$. So $a_2+a_6\in C$. Since $a_1+a_6=a_1+(a_2+a_5)=(a_1+a_5)+a_2\in S$, $a_1+a_5\in \{a_2,a_4,a_7\}$. Since $a_7+a_5\in C$, $a_1+(a_7+a_5)=(a_1+a_5)+a_7\not\in S$. So $a_1+a_5=a_7$. Since $a_7+a_3=(a_1+a_5)+a_3=(a_3+a_5)+a_1\in S$, $a_3+a_5\in \{a_1,a_4\}$. Since $a_6+a_3=(a_2+a_5)+a_3=(a_3+a_5)+a_2\in S$, $a_3+a_5=a_4$. Thus, $a_3+(a_7+a_5)=(a_3+a_5)+a_7=a_4+a_7\in S$, contradicting $a_7+a_5\in C$.

If $a_{l_1} = a_5$ then $a_6 + a_5 = a_7 + a_{l_2} \notin S$, contradicting $a_7 + a_{l_2} \in S$ with $a_{l_2} \in \{a_4, a_5, a_6\}$.

If $a_{l_1} = a_6$ then $a_{l_2} \in \{a_4, a_5\}$. Let $\alpha \in \{a_4, a_5\} - \{a_{l_2}\}$. Then $a_7 + \alpha \in S$ and $a_2 + \alpha \in C$. So $a_7 + \alpha = (a_2 + a_6) + \alpha = (a_2 + \alpha) + a_6 \in S$, contradicting $a_2 + \alpha \in C$.

(b.3) Suppose that $a_2 + a_{l_1} = a_1$ and $a_2 + a_{l_2} = a_6$, denoted (1) and (2) respectively. By (1) - (2), $a_1 + a_{l_2} = a_6 + a_{l_1}$. Since $a_{l_2} \in \{a_4, a_5, a_6\}$, $a_6 + a_{l_1} = a_1 + a_{l_2} \in S$. So $a_{l_1} \neq a_5$, i.e., $a_{l_1} \in \{a_4, a_6\}$.

If $a_{l_1}=a_4$, then $a_{l_2}=a_5$ and $a_1+a_5=a_6+a_4$. And $a_2+a_6\in C$ (since $|\{a_{l_1},a_{l_2},a_{l_3}\}|=2$). Thus, $a_1+a_6=(a_2+a_4)+a_6=(a_2+a_6)+a_4\in S$, contradicting $a_2+a_6\in C$.

If $a_{l_1} = a_6$ then $a_{l_2} \in \{a_4, a_5\}$. Let $\alpha \in \{a_4, a_5\} - \{a_{l_2}\}$. Then $a_1 + \alpha \in S$ and $a_2 + \alpha \in C$. Thus, $a_1 + \alpha = (a_2 + a_6) + \alpha = (a_2 + \alpha) + a_6 \in S$, contradicting $a_2 + \alpha \in C$.

- (c) If $|\{a_{l_1}, a_{l_2}, a_{l_3}\}| = 1$ then assume that $a_{l_1} \in \{a_4, a_5, a_6\}$, that is, $a_2 + a_{l_1} = a_x$ with $a_x \in \{a_1, a_6, a_7\}$.
- (c.1) Suppose that $a_2 + a_{l_1} = a_x = a_7$, where $a_{l_1} \in \{a_4, a_5, a_6\}$. Then there exists one vertex $a_y \in \{a_4, a_5, a_6\} (\{a_{l_1}\} \cup \{a_6\})$ such that $a_7 a_y \in E$ and $a_2 + a_y \in C$. So $a_7 + a_y = (a_2 + a_{l_1}) + a_y = (a_2 + a_y) + a_{l_1} \in S$, contradicting $a_2 + a_y \in C$.
- (c.2.1) Suppose that $a_2 + a_{l_1} = a_x$ with $a_{l_1} \in \{a_4, a_6\}$ and $a_x \in \{a_1, a_6\}$. Then there exists one vertex $a_y \in \{a_4, a_5, a_6\} \{a_{l_1}\}$ such that $a_x a_y \in E$ and $a_2 + a_y \in C$. So $a_x + a_y = (a_2 + a_{l_1}) + a_y = (a_2 + a_y) + a_{l_1} \in S$, contradicting $a_2 + a_y \in C$.
- (c.2.2) Suppose that $a_2 + a_5 = a_x$ with $a_x \in \{a_1, a_6, a_7\}$. Then $a_x a_4 \in E$ and $a_2 + a_4 \in C$. So $a_x + a_4 = (a_2 + a_5) + a_4 = (a_2 + a_4) + a_5 \in \dot{S}$, contradicting $a_2 + a_4 \in C$.

Thus, Claim 1 holds.

Claim 2 $a_k + a_l \in C$ for any $a_k a_l \in E - E_n$ with $a_k \in \{a_3, a_4\}$.

In fact, by the symmetry of $\overline{C_n}$, we only consider $a_k = a_3$. By the above, we only prove that for any $a_3a_l \in E - E_n$, $a_3 + a_l \notin \{a_1, a_6, a_7\}$. By Claim 1, $a_2 + a_6 \in C$ and $a_i + a_5 \in C$ for all $i \in \{1, 2, 3\}$. Since $(a_3 + a_5) + a_6 = (a_3 + a_6) + a_5 \notin S$, $a_3 + a_6 \notin \{a_1, a_6, a_7\}$, i.e. $a_3 + a_6 \in C$. Using the same methods as above, it is easy to prove Claim 2.

Claim 3 $a_k + a_l \in C$ for any $a_k a_l \in E - E_n - \{a_1 a_6\}$ with $a_k \in \{a_1, a_6\}$. In fact, it is easy to prove Claim 3 by Claim 1 and Claim 2.

(ii) Try to prove $a_1+a_{n-1}\in C$ for $n\geq 7$. By contradiction. Suppose that there exists $a_y\in V-\{a_1,a_{n-1}\}$ such that $a_1+a_{n-1}=a_y$. Since $n\geq 7$ then there exists one vertex $a_{y'}\in V$ such that $a_ya_{y'}\in E$ and either $a_1a_{y'}\in E$ or $a_{n-1}a_{y'}\in E$. Then $a_y+a_{y'}\in S$. By lemma 2.3, $a_n+a_{y'}\in C$. By (i), $a_1+a_{y'}\in C$. If $a_1a_{y'}\in E$ then $a_y+a_{y'}=(a_1+a_{n-1})+a_{y'}=(a_1+a_{y'})+a_{n-1}\in S$, contradicting $a_1+a_{y'}\in C$. If $a_{n-1}a_{y'}\in E$ then $a_y+a_{y'}=(a_1+a_{n-1})+a_{y'}=(a_{n-1}+a_{n-1})+a_{n-1}\in S$, contradicting $a_1+a_{y'}\in C$.

Thus, Lemma 2.4 holds. □

Lemma 2.6 $\overline{C_n}$ is exclusive for $n \geq 7$.

Lemma 2.7 $\zeta(\overline{C_n}) \geq 2n-7$ for $n \geq 7$.

Proof: Let $V = \{b_1, b_2, b_3, \cdots, b_n\}$, $S = V \cup C$ and C is the isolated vertex set. Without loss of generality, we can assume that $b_1 < b_2 < \cdots < b_n$. So $b_1 + b_2 < b_1 + b_3 < b_1 + b_4 < \cdots < b_1 + b_n < b_2 + b_n < b_3 + b_n < \cdots < b_{n-1} + b_n$. Let $C_0 = \{b_1 + b_2, b_1 + b_3, \cdots, b_1 + b_n, b_2 + b_n, \cdots, b_{n-1} + b_n\}$. Then there are at most four numbers which are not in S, but in C_0 . On the other hand, the others in C_0 are the isolated vertices by Lemma 2.6. Thus, $\zeta(\overline{C_n}) \geq 2n - 7$. \square

Lemma 2.8 $\sigma(\overline{C_n}) \leq 2n-7$ for $n \geq 7$ and n odd.

Proof: We consider the sum labelling of $\overline{C_n} \cup (2n-7)K_1$ as follows:

$$a_1 = \frac{n+1}{2} \times 10 + 1,$$

$$a_{2k} = (\frac{n-1}{2} - k + 1) \times 10 + 1, \ k = 1, 2, 3, \dots, \frac{n-1}{2},$$

$$a_{2k+1} = k \times 10 + 6, \ k = 1, 2, 3, \cdots, \frac{n-1}{2},$$

$$c_k = (k+2) \times 10 + 2, \ k = 1, 2, 3, \dots, n-3,$$

$$d_k = (k+1) \times 10 + 7, \ k = 1, 2, \dots, \frac{n-5}{2}, \frac{n+1}{2}, \frac{n+3}{2}, \dots, n-2.$$

Let $S = V \cup C$, where C be the isolated vertex set and $C = \{c_k, d_l | k = 1, 2, \cdots, n-3; l = 1, 2, \cdots, \frac{n-5}{2}, \frac{n+1}{2}, \frac{n+3}{2}, \cdots, n-2\}.$

Let us verify that this labelling is the sum labelling in detail.

- (1) The vertices in S are distinct.
- (2) Consider the vertex a_1 :
- (i) For each $a_{2k} \in V$ $(k = 1, 2, 3, \dots, \frac{n-1}{2})$, $a_1 + a_{2k} = [(n-k-1)+2] \times 10 + 2$. When k = 1, $a_1 + a_2 = n \times 10 + 2 > (n-1) \times 10 + 2 = c_{n-3}$. So $a_1 + a_2 \notin S$. When $2 \le k \le \frac{n-1}{2}$, $\frac{n-1}{2} \le n k 1 \le n 3$ (since $2 \le k \le \frac{n-1}{2}$). So $a_1 + a_{2k} = c_{n-k-1} \in S$.
- (ii) For each $a_{2k+1} \in V$ $(k = 1, 2, 3, \dots, \frac{n-1}{2}), a_1 + a_{2k+1} = (\frac{n+1}{2} + k) \times 10 + 7.$ When $k = \frac{n-1}{2}, a_1 + a_{2k+1} = n \times 10 + 7 > (n-1) \times 10 + 7 = d_{n-2}$. So $a_1 + a_n \notin S$.

When $1 \le k \le \frac{n-3}{2}$, $a_1 + a_{2k+1} = \left[\left(\frac{n-1}{2} + k \right) + 1 \right] \times 10 + 7$. Since $1 \le k \le \frac{n-3}{2}$, $\frac{n+1}{2} \le \frac{n-1}{2} + k \le n-2$. Hence, $a_1 + a_{2k+1} = \left[\left(\frac{n-1}{2} + k \right) + 1 \right] \times 10 + 7 = d_{\frac{n-1}{2} + k} \in S$.

- (3) Consider the other vertices $a_{2k}, a_{2l} \in V$ $(1 \le k, l \le \frac{n-1}{2}; k \ne l)$. Clearly $a_{2k} + a_{2l} = [n+1-k-l] \times 10 + 2 = [(n-1-k-l)+2] \times 10 + 2$. Since $1 \le k, l \le \frac{n-1}{2}$ and $k \ne l, 1 \le n-1-k-l \le n-3$. Hence $a_{2k} + a_{2l} = c_m \in S$ with m = n-1-k-l and $1 \le k, l \le \frac{n-1}{2}$.
- (4) Consider the vertices a_{2k} , $a_{2l+1} \in V$ $(1 \le k, l \le \frac{n-1}{2})$. Clearly $a_{2k} + a_{2l+1} = [(\frac{n-1}{2} k + 1) \times 10 + 1] + [l \times 10 + 6] = [(\frac{n-1}{2} k + 1) + 1] \times 10 + 7$. Since $1 \le k, l \le \frac{n-1}{2}$, $1 \le \frac{n-1}{2} k + l \le n 2$. Since $a_{2k} + a_{2l+1} \notin S \iff \frac{n-1}{2} k + l \in \{\frac{n-3}{2}, \frac{n-1}{2}\} \iff l k \in \{0, -1\} \iff l k \in \{0, -1\} \iff l = k$ and k = l + 1, $a_{2k} + a_{2l+1} \notin S \iff a_{2k} + a_{2k+1} \notin S$; and $a_{2l+2} + a_{2l+1} \notin S$.
- (5) Consider the vertices $a_{2k+1}, a_{2l+1} \in V$ $(1 \le k, l \le \frac{n-1}{2} \text{ and } k \ne l)$. Clearly,

 $a_{2k+1} + a_{2l+1} = [k \times 10 + 6] + [l \times 10 + 6] = [k + l + 1] \times 10 + 2 = [(k + l - 1) + 2] \times 10 + 2.$

Since $1 \le k, l \le \frac{n-1}{2}, 1 \le k+l-1 \le n-2$. Hence

 $a_{2k+1}+a_{2l+1} \notin S \iff k+l-1=n-2 \iff k+l=n-1 \iff k=l=\frac{n-1}{2},$ which is a contradiction with $k \neq l$. So $a_{2k+1}+a_{2l+1}=c_{k+l-1} \in S$ $(1 \leq k,l \leq \frac{n-1}{2})$ and $k \neq l$ for each $a_{2k+1},a_{2l+1} \in V$.

Thus, the above labelling is the sum labelling. So $\sigma(\overline{C_n}) \leq 2n-7$ for $n \geq 7$ and n odd. \square

Lemma 2.9 $\sigma(\overline{C_n}) \leq 2n-7$ for $n \geq 8$ and n even.

Proof: We consider the following sum labelling of $\overline{C_n} \bigcup (2n-7)K_1$ for $n \geq 8$ and n even:

$$a_{2k-1} = k \times 10 + 1, \ k = 1, 2, 3, \dots, \frac{n}{2},$$

$$a_{2k} = \begin{cases} (\frac{n}{2} - k - 2) \times 10 + 6, & k = 1, 2, 3, \dots, \frac{n}{2} - 3, \\ (n - k - 2) \times 10 + 6, & k = \frac{n}{2} - 2, \frac{n}{2} - 1, \frac{n}{2}, \end{cases}$$

$$c_k = (k+2) \times 10 + 2, \ k = 1, 2, 3, \dots, n-2,$$

 $d_l = (l+1) \times 10 + 7, \ l \in \{1, 2, \dots, n-1\} - \{\frac{n}{2} - 3, \frac{n}{2} - 2, n-3, n-2\}.$

Let $S = V \cup C$ and $C = \{c_k, d_l | k = 1, 2, \dots, n-2; l \in \{1, 2, \dots, n-1\} - \{\frac{n}{2} - 3, \frac{n}{2} - 2, n - 3, n - 2\}\}$, where C be the isolated vertex set.

Let us verify that this is the sum labelling in detail.

- (1) The vertices in S are distinct.
- (2). For $a_{2k-1}, a_{2l-1} \in V$ $(k = 1, 2, \dots, \frac{n-1}{2} \text{ and } k \neq l)$, $a_{2k-1} + a_{2l-1} = [(k+l-2)+2] \times 10 + 2$. Since $k = 1, 2, \dots, \frac{n-1}{2}$ and $k \neq l$, 0 < k+l-2 < n-2. So $a_{2k-1} + a_{2l-1} = c_{k+l-2} \in S$.
 - (3) For $a_{2k-1}, a_{2l} \in V$,

When $1 \leq l \leq \frac{n}{2} - 3$, $a_{2k-1} + a_{2l} = [(\frac{n}{2} - 3 + k - l) + 1] \times 10 + 7$. Since $1 \leq k \leq \frac{n}{2}$ and $1 \leq l \leq \frac{n}{2} - 3$, $1 \leq \frac{n}{2} + k - l - 3 \leq n - 4 < n - 3$. Clearly $a_{2k-1} + a_{2l} \notin S \iff \frac{n}{2} - 3 + k - l \in \{\frac{n}{2} - 3, \frac{n}{2} - 2\} \iff k - l \in \{0, 1\}$. Hence $a_{2k-1} + a_{2l} \notin S \iff a_{2l-1} + a_{2l} \notin S$ and $a_{2l+1} + a_{2l} \notin S$.

When $l \in \{\frac{n}{2} - 2, \frac{n}{2} - 1, \frac{n}{2}\}$, $a_{2k-1} + a_{2l} = [(n+k-l-3)+1] \times 10 + 7$. Since $1 \le k \le \frac{n}{2}$ and $\frac{n}{2} - 2 \le l \le \frac{n}{2}$, $\frac{n}{2} - 2 \le n + k - l - 3 \le n - 1$. Clearly $a_{2k-1} + a_{2l} \notin S \iff n + k - l - 3 \in \{\frac{n}{2} - 2, n - 3, n - 2\} \iff l - k \in \{\frac{n}{2} - 1, 0, -1\}$. And $l - k = \frac{n}{2} - 1 \iff (l, k) = (\frac{n}{2}, 1)$.

So $a_{2k-1} + a_{2l} \notin S \iff (l,k) = (\frac{n}{2},1)$ and $k \in \{l,l+1\} \iff a_1 + a_n \notin S$ and $a_{2l-1} + a_{2l} \notin S$ and $a_{2l+1} + a_{2l} \notin S$. Thus, for $a_{2k-1}, a_{2l} \in V$, if $a_{2k-1}a_{2l} \in E$ then $a_{2k-1} + a_{2l} \notin S$.

(4) For $a_{2k}, a_{2l} \in V$ with $k \neq l$,

when $1 \le k, l \le \frac{n}{2} - 3$, $a_{2k} + a_{2l} = [n - 5 - (k + l) + 2] \times 10 + 2$. Since $1 \le k, l \le \frac{n}{2} - 3$ and $k \ne l, 1 \le n - k - l - 5 \le n - 7 < n - 2$. So $a_{2k} + a_{2l} = c_m \in S$ with m = n - k - l - 5.

When $1 \le k \le \frac{n}{2} - 3$ and $l \in \{\frac{n}{2} - 2, \frac{n}{2} - 1, \frac{n}{2}\}, a_{2k} + a_{2l} = \{[\frac{3n}{2} - (k+l) - 5] + 2\} \times 10 + 2$. Since $1 \le k \le \frac{n}{2} - 3$ and $\frac{n}{2} - 2 \le l \le \frac{n}{2}, 1 < \frac{n}{2} - 2 \le \frac{3n}{2} - (k+l) - 5 \le n - 4 < n - 2$. That is, $a_{2k} + a_{2l} = c_h \in S$ with $h = \frac{3n}{2} - (k+l) - 5$.

When $k, l \in \{\frac{n}{2} - 2, \frac{n}{2} - 1, \frac{n}{2}\}$ and $k \neq l$, $a_{2k} + a_{2l} = \{[2n - (k+l) - 5] + 2\} \times 10 + 2$. Since $\frac{n}{2} - 2 \leq k, l \leq \frac{n}{2}$ and $k \neq l, 1 < n - 5 \leq 2n - (k+l) - 5 \leq n - 2$.

Hence $a_{2k} + a_{2l} = c_g \in S$ with g = 2n - (k+l) - 5. So for $a_{2k}, a_{2l} \in V$ $(k \neq l), a_{2k} + a_{2l} \in S$.

Thus, the labelling is the sum labelling. So $\sigma(\overline{C_n}) \leq 2n-7$ for $n \geq 8$ and n even. \square

Theorem 2.1
$$\zeta(\overline{C_n}) = \sigma(\overline{C_n}) = 2n - 7$$
 for $n \ge 7$. \square

Corollary 2.1
$$\zeta(\overline{W_n}) = \sigma(\overline{W_n}) = 2n - 8 \text{ for } n \ge 7.$$

Acknowledgements

The authors are very grateful to Professor Liang Sun for his helpful comments and suggestions.

References

- D.Bergstrand, F.Harary, K.Hodges, G.Jennings, L.Kuklinski & J.Wiener, The sum number of a complete graph, Bulletin of the Malaysian Mathematical Society. Second Series, no.1,12(1989),25-28.
- [2] Frank Harary, Sum graph over all the integers, Discrete Mathematics, 124(1994): 99-105.
- [3] Frank Harary, Sum graph and difference graphs, Congressus Numerantium, 72(1990): 101-108.
- [4] Wenjie He, Yufa Shen ,Lixin Wang, Yanxun Chang, Qingde Kang & Xinkai Yu, Note The integral sum number of complete bipartite graphs $K_{r,s}$, Discrete Mathematics, 239(2001): 137-146.
- [5] L.S.Melnikov & A.V.Pyatkin, Note Regular integral sum graphs, Discrete Mathematics, 252(2002): 237-245.
- [6] M.Miller, J.Ryan, Slamin & W.F.Smyth, Labelling wheels for minimum sum number, The Journal of Combinatorial Mathematics and Combinatorial Computing, 28(1998): 289-297.
- [7] M.Miller, J.F.Ryan & W.F.Smyth, The sum number of the cocktail party graph, Bulletin of the Institute of Combinatorics and its Applications, 22(1998):79-90.
- [8] Ahmad Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab Gulf Journal of Scientific Research, no.1, 14(1996): 1-14.
- [9] W.F.Smyth, Sum graphs of small sum number, Colloquia Mathematica Societatis János Bolyai, 60(1991): 669-678.
- [10] M.Sutton, A.Draganova & M.Miller, Mod sum number of wheels, Ars Combinatoria 63(2002): 273-287.

- [11] M.Sutton & M.Miller, On the sum number of wheels, Discrete Mathematics, 232(2001): 185-188.
- [12] Yan Wang & Bolian Liu, Some results on integral sum graphs, Discrete Mathematics, 240(2001): 219-229.
- [13] Haiying Wang, Some results on the sum graph and the integral sum graph, to submit.