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Abstract

This paper generalizes the concept of locally connected graphs. A
graph G is triangularly connected if for every pair of edges e;,e2 €
E(G), G has a sequence of 3-cycles C1,Cs,---,C; such that e; €
Ci,e2 € Crand E(Ci))NE(Ciy1) # @ for 1 < <1—1. In this paper,
we show that every triangularly connected K 4-free almost claw-free
graph on at least three vertices is fully cycle extendable.
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1 Introduction

We use [1] for notations and terminology not defined here, and consider
finite simple graphs only. The neighborhood of a vertex v in G and the
subgraph induced by A C V(G) are respectively denoted by Ng(v) and
G[A]. A graph G is locally connected if for each v € V(G), the subgraph
G[Ng(v)] induced by Ng(v) is connected.

For an integer k > 2, a k-cycle is a 2-regular connected graph with &k edges.
If F is a graph, then we say that G is F-free if it does not contain an
induced subgraph isomorphic to F. A K3 is also called a claw, and a
K, s-free graph is also called a claw-free graph. The vertex whose degree
is 7 in K (r > 3) is called the center of K; ..
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As a generalization of the class of claw-free graphs, the class of almost claw-
free graphs was introduced by Ryjdg€ek in [5]. A dominating set of G is a
subset S of V(G) such that every vertex of G belongs to S or is adjacent
to a vertex of S. For v € S, the vertices in Ng(v) \ S are dominated by
v. The domination number, denoted ¥(G), is the minimum cardinality of
a dominating set of G. If y(G) < k, then we say that G is k-dominated. A
graph G is almost claw-free if the set A of the vertices that are centers of
claws in G is independent and G[Ng(v)] is 2-dominated for each v € A.

A graph G is pancyclic if for every integer k£ with 3 < k < |V(G)|, G has
a k-cycle. G is vertex pancyclic if for each vertex v € V(G), and for each
integer k with 3 < k < |V(G)|, G has a k-cycle Cy such that v € V(Cy).
G is said to be fully cycle extendable if every vertex of G lies on a triangle
and for every nonhamiltonian cycle C there is a cycle C’ in G such that
V(C) € V(C’) and |V(C’)| = |[V(C)| + 1. In [4], Oberly and Summer
proved that every connected, locally connected claw-free graph on at least
three vertices is hamiltonian. Clark [2] proved that, under these conditions,
G is vertex pancyclic. Later, Hendry observed that Clark essentially proved
the following stronger result.

Theorem 1.1 (Hendry, {3]) If G is a connected, locally connected claw-
free graph on at least three vertices, then G is fully cycle ectendable.

Theorem 1.2 (Ryjdéek, [5]) Every connected, locally connected Ky 4-free
almost claw-free graph on at least three vertices is fully cycle extendable.

As a generalization of the concept of locally connected graphs, triangu-
larly connected graphs were introduced in [6]. A graph G is triangularly
connected if for every pair of edges e;,e2 € E(G), G has a sequence of 3-
cycles C1,Cs, -+ ,C) such that e; € Cy,e2 € C; and E(C;) N E(Ciy1) #0
for 1 <7 < 1-1. Clearly, every connected, locally connected graph is
triangularly connected. But not every triangularly connected graph is lo-
cally connected. The graphs in Figure 1 are triangularly connected graphs
which are not locally connected since the subgraphs induced by the neigh-
borhoods of v1,vy and v3 are not connected. Graph A in Figure 1 is not
almost claw-free, and Graph B is almost claw-free.
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Figure 1. Triangularly connected graphs

Let #3(G) denote the graph whose vertex set V(%3(G)) = {C|C a 3-cycle
of G} and edge set E(%3(G)) = {C1C,|C1,Ca € V(%:(G)), and E(Cy)N
E(C,) # 0}. By the definition of triangularly connected graphs, we have

Proposition 1.3 A graph is triangularly connected if and only if both of
the following hold:

(i) For any e € E(G), there exists some C, € V(%(G)) such that e €
E(C,), and

(i) The graph €3(G) is connected.

In [6], Lai et.al considered the hamiltonicity of triangularly connected claw-
free graphs and proved the following.

Theorem 1.4 (Shao, [6]) Every triangularly connected claw-free graph on
at least three vertices is verter pancyclic.

Our goal here is to extend Theorems 1.1 and 1.2 to triangularly connected
graphs.

Theorem 1.5 Every triangularly connected, K 4-free almost claw-free
graph on at least three vertices is fully cycle extendable.

Since a claw-free graph is also a K} 4-free almost claw-free graph, we have
the following corollary.

Corollary 1.6 Every triangularly connected claw-free graph on at least
three vertices is fully cycle extendable.
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The graphs in Figure 2 show Theorem 1.5 is best possible. Graphs A, B in
Figure 2 show that Theorem 1.5 fails if G is only locally 3-dominated, or the
set of centers of claws is not independent. Graph C is a locally connected
almost claw-free graph, Graph D is a triangularly connected graph which
is not locally connected. Both Graph C and Graph D show that Theorem
1.5 fails if G is not K 4-free.

(A) (B)

(€) (D)
Figure 2

2 Theorem 1.5’s proof

Since every vertex of G lies on a triangle, it is sufficient to prove that for
every cycle C of length r < |[V(G)] — 1 there is a cycle C' of length 7 + 1
such that V(C) C V(C’). We argue it by contradiction, and throughout
the proof, we suppose that for every cycle C C G, one of its orientations is
chosen, and for any u € V(C), we denote by ©~ and u* the predecessor and
successor of u on C, respectively. Denote u** = (u*)* and =~ = (u™)~.
For u,v € V(C), Clu,v] or (5['0, u| denotes the (u,v)-path of C with the
same or opposite orientation with respect to the orientation of C; if u =
v, then we define both C[u,v] and (5[1),1;] as a single vertex. Whenever
vertices of an induced K 3 or K4 are listed, its center is always the first
vertex of the list. Let A be the set of all centers of claws in G.

Let C = vyva---v,vy, and B(C) = {B € %3(G)|E(B) N E(C) # 0}. Then
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E(C) € U E(B). If there is some B C B(C) such that |V(B) N
BeB(C)

V(C)| = 2, it is clear that the subgraph of G induced by the edge set

E(C)uU E(B) - (E(C) n E(B)) extends C. So we assume that for each

B € B(C), V(B) C V(C).

Let e € E(G) such that e is incident with exactly one vertex in V(C') and
C. be a 3-cycle with e € C,. Clearly, C. ¢ B(C). As G is triangularly
connected, there is a path P, in €(G) from C, to B(C). Let C, e,C, and
P, be chosen in such a way that, among all cycles with vertex set V' (C), the
path P, is shortest. Let P, = ZyZ, - -+ Z), where Zy = C, and Z; € B(C).
Then k > 1. Moreover, we have the following.

Claim 1 IV(C YNV(C)| =2, E(Z)NE(C)=0 and |V(Z;)NV(C)| =
fori=1,--- [ k—-1.

v: V4 'u'."
Yn
Up
+
h
vy Vi,
Figure 3

Let Zg = uvyvju and Z) = vjv;v5v,. Without loss of genel ality, we assume
that 1 < h < i < j < r (see Figure 3). Obviously, uv ) UY; Tyuvl wl €
E(G). Since v;v; € E(G), we have either v; € A or v; ¢ A. Without loss of
generality, we suppose that v; ¢ A. Then v;-'"'vj‘ € E(G), which implies that
v;' # vy and v} # v . By the choices of € and P, uv) & E(G), otherwise,
P'=ZyZ, - - Z is shorter than P., where Zj = uvpv; or Zj = uvpv;. As
G’[{'vj,u vh, 7 H % K13, we have v;vp € E(G). Similarly, vi v, € E(G)
if v, # v

Claim 2 k= 1.

By contradiction. Suppose that & > 2. Then v, & {v] ,vj}. We consider
the following cases.
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Case Cycle C,

viv;, € E(G) vji()_hC[uj,v,;lC[v,f,vj]
vjv, € E(G) ng[v,:,v;']g[v;,vh]vj
vj'u)-:- € E(G) ij[vh)v;-]C[vj_7v}T]vj

In each of these cases, v; and v, are consecutive on C; and the length of
P, is 1 corresponding to C; which is shorter than the length correspond-
ing to C, a contradiction. So we have v,'{'v;,vjv;,vjv,'f ¢ E(G). Hence
C[{vn, v, vy ,v;}] = K13, which implies that v, € A. Since A is indepen-
dent, we have v; € A and hence obviously v} v; € E(G). We now consider
Gl{vn, vl , vy, vi, 05 }-

Case Cycle C'

vivy € E(G) vjuv,-:g[v;,v;"]é[v{,vj] -

vv, € E(G) vjuv; C vy ,vf ] C oy, v C oy, valv;
vu € E(G) vjuv,-C[v,':',vi‘]C[v;",v;]E[v;,,vj]

v; v, € E(G) vju'u,-C[vh,v[]C[vf,vf]g[v;,vj]
In each case, the cycle C’ extends C. So viv;,v,-v;,viv,':',v;v; ¢ E(G).
Since G[{vh,v,':',v,f,v,-,vj‘}] % Ky and vy v, € E(G), we have v,fv;' €
E(G). As G[{vi,u,v,vx}] % K13 and uvy, uv} & E(G), we have v}, €
— — —

E(G). Thus the cycle v;uC [, v} ] C [v], v | C [vp, ;] again extends C, a
contradiction. So Claim 2 holds.

By Claim 2, v, € {v],v;}. If vp = v, then vjv; € E(G) since
Gl{vj,u,v;,v;}] ¥ Ki3. Thus the cycle v;uClv;, v} ]‘5[11,-’ ,vj] extends

C, a contradiction. So vp = v}.

Claim 3 vjfv], v} v}, vfv;,v]vj,v]v; € E(G). Therefore, vjv; € E(G),

i Vi ¥ Yo

and v; € A.

We argue by contradiction using the following chart.

Case Cycle C’

vfv] € E(G) vjurClv}, v |Cv], vj]
viv} € E(G) vju(a[v,-,vf]C[v;",vj]
viv; € E(G) vju(a[vi,v;]‘a[v-',v;*]v,-
v; vj € E(G) v;uClvi, vy |Co] v} Jv;

v;v; € E(G) vqu[vi,vj‘]eC-f[v,.",vj]
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In each case, the cycle C’ extends C. So v}v], f’v}',v"’v,,v‘v,,v‘v" &’

(G) Thelefore, Gl{vi,v},v 5 ., u}] = K3 and v; € A. Since G[{v;, v},
vy }] 2 K, 4, we have v v; € E(G) (see Figure 4).

- +
. Vi N
N v,

L S0 A

Figure 4

Clalm 4 There is no vertez in Ng(v;) that is adjacent to v and to one of

v} and vy .

By contradiction. Suppose that there is a vertex w € Ng(v;) that is ad-
Jjacent to u and to one of v;" and v; (say v}; the second case is similar).
Clearly, w € V(C), w # v} and w ¢ A. As G[{w, wt,w™,u}] % K 3, we
have wtw= € E(G). Thus, the cycle v;uwClv} w‘]C['w"',v,‘] extends C,
a contradiction. So Claim 4 holds.

Note that G[{v;,v{f,v;,u}] = K13 and G[Ng(v;)] is 2-dominated. By
Claim 4, there is a vertex d in Ng(v;) dominating v;'r and v; . Clearly, du ¢

E(G) and d € V(C). By Claim 3, d & {v],v;,v] }. Sod € Clv}™*,v;"]U
Clo*,v; 7).

Claim 5 d € Clv}*,v;~

By contradiction. Suppose that d ¢ C[v;*,v;"]. Then d € C[v}*+,v] 7]
(see Figure 5). We consider the following cases.

T
'ui Vi v,
d
b+
vl Ui v
Flgure5



Case Cycle C'

d*d~ € E(G) v]uv,C'[ ,d- ]C’[d"‘ T 1dC v, v
v;d~ € E(G) vJu'v,C[d v'*']C['v, ,d]C['v, 5]
vdt € E(G) vjuniCldt, v |Cy , dIClv; , vy]

In each case, the cycle C’ extends C. So d*d~,v;d*,v;d~ ¢ E(G). Thus
Gl{d,d*,d~,v;}] = K\ 3. But v; € A and v;d € E(G), a contradiction. So

de C’['v++ vy 7).

Claim 6 d*d~,d~v],v;vj* ¢ E(G). Therefore, vy d* € E(G), v}* #

vy, v vy, uwof Y ve) ¢ E(G) and vv}t € E(G).

We argue by contradiction using the following chart.

Case Cycle C’
dtd~ € E(G) vjuv;Clvf ]dC[v d-)Cld*, v4]
d-v; € E(G) vJuv,C[ 2N ]C[d‘ "']C[d v;]

t e EG) v;uClws, vy |ICvf+, v Jof v;

In each case, the cycle C’ extends C. So d*d~,d™v;, v} v + ¢ E(G). As
Gl{d,d™,d*,v] # K\ 3, we have v d+ € E(G). Thus v""" # v (oth-
crwise, the cycle v;uClv;, dlv; C[d+, ]v v; would extend C), ;" v; ¢
E(G) (otherwise, the cycle vjuvig[d, v;* }C [vi ,d"‘]C[v, ,v;] would extend
C), and uv}* ¢ E(G) (otherwise, the cycle v;uClv}*, v] v} Clv;, v;] would
again extend C). Noticing that G[{v;,v;",v]",%,v; }] would be isomorphic
to K1 4 if vy € E(G), we have vv; ¢ E(G). Con51der Gl{vf, v}, vy, v}l

Vi Y
As v ¢ A, we have v}t € E(G) (see Figure 6).

v; Yoy

Figure 6

Claim 7 u and vJ'-'"" have no common neighbor in Ng(v;).
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Suppose, by contradiction, that u and v+ have a common neighbor ¢ in
Ng(v;). Clearly, t € V(C) (otherwise, the cycle v;+tC{vi,vf]6[v; 07 ]
extends C). If ¢ = vj, then the cycle v;uClv;, vy ]v_:-'(a['vi' ,0; *]u; extends
C, and so t # v;. As uv}" ¢ E(G) and uwv; ¢ E(G), t ¢ {'u;-',v;}. Since
v; € A, we have t ¢ A, which implies that t¥¢~ € E(G). Thus the cycle
v;utClvf ™, ¢7|C[t+,v; Ju}v; extends C, a contradiction. So Claim 7 holds.

Note that G[Ng(z;)] is 2-dominated and d € Ng(v;) is a vertex dominat-
ing v} and v;. By Claim 7, v and v]* cannot be dominated by a vertex

in Ng(v;). Thus v;.”"' must be dominated by d, and so dv;.H' € E(G).
Therefore the cycle v;uClv;, dJClv; +, v ]Cd*, v} v v; extends C, a con-
tradiction. This contradiction completes the proof.
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