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ABSTRACT

A graph labeling is an assignment of integers (labels) to the vertices and/or
edges of a graph. Within vertex labelings, two main branches can be distinguish:
difference vertex labelings that associate each edge of the graph with the differ-
ence of the labels of its endpoints. Graceful and edge-antimagic vertex labelings
correspond to these branches, respectively. In this paper we study some connec-
tions between them. Indeed, we study the conditions that allow us to transform
any a-labeling (an special case of graceful labeling) of a tree into an (a, 1)- and
(a, 2)-edge antimagic vertex labeling.

1. Introduction

Let G be a graph of order m and size n. An injective function f :
V(G) — {1,2,..,n + 1} is a graceful labeling of G if when cach edge zy is
assigned the label |f(z) — f(y)|, the resulting edge labels (or weights) are
distinct. A graph that admits a graceful labeling is said to be graceful. A
graceful labeling f of a graph G is said to be an a-labeling if there exists
an integer A such that for each edge zy of G either f(z) < A < f(y) or
J(y) £ A < f(z). This number ), is called the boundary value of f. A
graph that admits an a-labeling is called an a-graph. These labelings were
introduced by Rosa [5] in the mid sixties.

An a-graph is necessarily bipartite and for any of its a-labelings the
vertices whose labels do not exceed the boundary value form one of the
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sets of the bipartition. When a positive constant is added to each label
larger than the boundary value, each induced weight increases by the same
constant. Clearly, if the constant is added to all the labels the set of induced
weights remains the same. If f is a graceful labeling of a graph of size n, its
complementary labeling f, defined by f(v) = n+2 — f(v) for all v € V(G)
is also graceful. For more information about graceful and a-labelings the
reader is referred to [3).

Simanjuntak, Bertault, and Miller [6] define an (a, d)-edge-antimagic
vertex labeling for a graph G of order m and size n as an injective mapping
f:V(G) = {1,2,..,m} such that the set {f(z) + f(y) : zy € E(G)} is
{a,a + d,a + 2d, ...,a + d(n — 1)} for two non-negative integers a and d.
We use the notation (a,d)-EAV to refer to these labelings. A bijection
f:V(G)UE(G) — {1,2,...,m + n} is called (a,d)-edge-antimagic total
labeling of G if the set of edge weights {f(z)+ f(y)+ f(zy) : zy € E(G)} is
{a,a+d,a+2d,...,a+d(n —1)} for two non-negative integers a and d. For
this labeling we use the notation (a,d)-EAT. An (a,d)-EAT labeling f of a
graph G is said to be super if the vertices of G receive the labels 1,2,...,m.
A graph that admits an (a,d)-EAV labeling or a super (a, d)-EAT labeling
is called an (a, d)-EAV graph or a super (a, d)-EAT graph, respectively.

Sugeng, Miller, and Baca [7] proved that if G is a graph of order m and
size n, that admits a super (a,d)-EAT labeling, then d < 2—";‘_'_"1—‘5 From
here, the following lemma can be proved.

LEMMA 1.1. Let T be a tree of order at least 2. If T is super (a,d)-FAT,
then d < 3.

2. Connections Between Sum and Difference Labelings

LEMMA 2.1. Let T be a tree of order m. If T admits an a-labeling, then
T also admits an (a,1)-EAV labeling.

Proof. = Suppose that f is an o-labeling of 7' with boundary value A.
Let {A, B} be the bipartition of V(T'); without loss of generality, we may
assume that the vertex labeled A belongs to A. Consider the following
vertex labeling of T":

[ flv), ifve A
g(v) = {m+1+)\—f(v),ifv€B-

We claim that this is a (A + 2, 1)-EAV labeling of T' In fact, the labels
assigned by g to the vertices of A are 1,2, ..., A, and those assigned to the
vertices of B are A + 1, + 2,...,m. Thus, g is an injective function from
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Fig. 1. (a, 1)-EAV labelings of a trec that is not an a-tree

V(T) to {1,2,...,m}. Moreover, if uv is an edge of T, with u € A and v € B,
g(u)+g(v) = m+1+A—(f(v)~ f(u)). Since f is an a-labeling, {f(v)—f(x) :
wv € E(T)} equals {1,2,...,m — 1}, then A+ 2 < g(u) + g(v) < A+ m.
In other terms, {g(u) + g(v) : wv € E(T)} equals {A + 2, A +3,.., A +m}.
Therefore, g is a (A + 2,1)-EAV labeling of . W

In general the converse of this lemma does not hold; there are (a, 1)-
EAV trees that are not a-trees; in Figure 1 we show an example that
support this statement.

The next lemma proves that under certain conditions an (a, 1)-EAV
graph is also super (g, 0)- and super (a, 2)-EAT.

LEMMA 2.2. Let G be a graph of order m and size n. If G admits an
(a,1)-EAV labeling, then G also admits a super (m+n+a,0)-EAT labeling
and a super (m + 1+ a,2)-EAT labeling.

Proof.  Let g be an (a, 1)-EAV labeling of G. Now we transform g into
a total labeling by defining it on the edges of G.

First, let g(uv) = m+n+a—(g(u)+g(v)) for each edge uv of G; since g
isan (a, 1)-EAV labeling, a < g(u)+9(v) < n—1+a, thus m+1 < g(uv) <
m+n. Each edge uv of G has weight g(u) + g(v) + g(uv) = m +n +a and
therefore g is a super (m + n + a,0)-EAT labeling of G.

Consider now g(uwv) = m + 1 + g(u) + g(v) — a, for each edge uv of G.
Notice that m 4+ 1 < g(uv) < m + n. Thus cach edge uv of G has weight
g(u) + g(v) + g(uwv) = m + 1 + 2(g(u) + g(v)) — a; therefore, the set of
edge weights is {m +1+a,m+3+a,..,m+2n — 1+ a} and g is a super
(m+1+a,2)-EAT labeling of G. M

As consequence of the last two lemmas we have that every a-tree also
admits labelings of the types super (g, 0)- and super (a, 2)-EAT.

The following results are related to (a, 2)-EAV labelings of trees. Notice
that if a tree of size n is (a, 2)-EAV, then a = 3. In fact, since the edge-
weights are a,a +2,...,a + 2(n — 1), the inequality a +2(n — 1) < 2n + 1
holds, which implies that a < 3; therefore a = 3. In [1], Baca ct al. proved
(in Theorem 5) that if G is a graph of order m and size n such that G has
an (a,d)-EAV labeling, then G also has super (a+m+1,d+1)- and super
(a+m+n,d—1)-EAT labelings. As consequence of this theorem, we have
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the following corollaries.

COROLLARY 2.1. Let T be a tree of order m. If T admits a (3, 2)-EAV
labeling, then T also admits a super (m + 4,3)-EAT labeling.

COROLLARY 2.2. Let T be a tree of order m. If T admits a (3, 2)-EAV
labeling, then T also admits a super (2m + 2,1)-EAT labeling.

In our next results we establish a relationship between a-labelings and
(3, 2)-EAV labelings of trees. As we mentioned before, any a-graph is
bipartite; thus, when G is an a-graph we denote by {A, B} the bipartition
of its vertex set. Without loss of generality, we may assume that |A]| > |B].
Note that if G is an o-graph of size n, there exists an a-labeling that
assigns its boundary value to a vertex of A. In fact, if f is an a-labeling
of G with boundary value A and the vertex labeled A is not in A, then its
complementary labeling f assigns its boundary value n+ 1+ A to a vertex
of A.

LEMMA 2.3. Let T be an a-tree. If |A|—|B| <1, then T is (3, 2)-EAV.

Proof  Let f be an a-labeling of a tree T of order m with boundary
value A. Suppose that the vertex labeled A belongs to A. Consider the
following labeling of the vertices of T*:

[2f) -1, ifveA
9(v) = {2(m +1-f(v),ifv € B.

We claim that g is a (3, 2)-EAV labeling of T In fact, notice that g is an
injective function that assigns the labels {1,3,...,2A—1}U{2,4, ..., 2(m—A)}
to the vertices of T. Since |A| — |B] < 1, A = [%] and this union is
{1,2,...,m}. Furthermore, {g(v) +g(u) : wv € E(T)} = {2m+1-2(f(v) -
f(u)) : wv € E(T)}. Since f is an a-labeling, {f(v) — f(u) : wv € E(T)} =
{1,2,...,m—1}, we have that {g(v)+g(v) : w € E(T)} = {8,5,...,2m—1}.
Thus, g is a (3, 2)-EAV labeling of T. I

So far, we have proved that if 7' is a (3, 2)-EAV tree with |A| —|B| <1,
then T is super (a,d)-EAT for every d € {1,3}. In the next two lemmas
we prove that the converse of this statement also holds, which allow us to
characterize (3, 2)-EAV trees.

LEMMA 2.4. Let T be a tree of order m. If |A| — |B| > 1, then there is
no (8, 2)-EAV labeling of T.

Proof. By contradiction. Suppose that g is a (3, 2)-EAV labeling of
T; so all edge weights induced by g are odd numbers. Thus, for each edge
uv € E(T), g(u) and g(v) have different parity, which implies that the labels
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assigned to the vertices in A have the same parity. Since |4| — |B| > 1, we
have that [4| > [2], but in the set of labels {1,2,...,m} there are [%]
odd numbers and | 2| even nunbers, then not all vertex labels in A have
the same parity, which is a contradiction. Hence, there is no (3, 2)-EAV
labeling of . M

LEMMA 2.5. Let T be a tree of order m. If T does not admit an a-
labeling, then neither admits an (3, 2)-EAV labeling.

Proof. By contradiction. Suppose that g is a (3, 2)-EAV labeling of 7.
Thus, if v € A, g(v) € {1,3,...,m} when m is odd or g(v) € {1,3,...,m—1}
when m is even, and if v € B, g(v) € {2,4,...,m — 1} when m is odd or
g(v) € {2,4,...,m} when m is even.

Consider the labeling f : V(T') — {0,1, ...,m — 1} defined by

2 +1, iflve A
f) = -3’—'—9&& ,ifv € B.
Thus, f assigns to the vertices of A the labels {1,2,...,[2]} and to the
vertices of B the labels {m,m -1, ..., [%] +1}.

Let z,y € V(T) such that z € A and y € B; thus, f(y) - f(z) =
Mﬂ(ﬁ&ﬂﬂl Since {g(z) + g(y) : zy € E(T)} = {3,5,...,2m — 1},
we have {M)i&(ﬂl) i xy € V(T)} = {m —-1,m — 2,...,1}. Then
{fly) = flz): zy € E(T)} ={1,2,. — 1}, that is, the welghts induced
by f on the edges of T are the ﬁrst m — 1 positive integers, which implies
that f is a graceful labeling of T. Since the labels of the vertices in A are
less than the labels of the vertices in B, f is an a-labeling of T which is a
contradiction. Therefore, T does not admit a (3, 2)-EAV labeling. Wl

Using these two lemmas the following theorem can be proved.

THEOREM 2.1. A tree T is (3, 2)-EAV if and only if T is an «-tree and
[|A| = |B|| <€ 1, where {A, B} is the bipartition of its vertex-set.

REMARK 2.1. As a consequence of these results we have that any a-
tree with |4| — [B| < 1 admits a super (a,d)-EAT labeling for every d €
{0,1,2,3}.

3. Constructing Suitable a-Trees
Some methods for constructing a-trees are known; among them, there

are two that produce trees that satisfy the conditions of Theorem 2.1. In

509



this section we present these constructions extending the number of known
trees that are super (a,d)-EAT.

In [4] Koh et al. provide a method for constructing bigger graceful
trees from a given pair of graceful trees. Let 71 and T3 be two trees where
{wy,w2,...,wn} and {v1,v2, ..., vn} are their corresponding vertex sets. Let
v* be an arbitrary fixed vertex in 7. Based upon the tree 77, an isomorphic
copy X; of T is adjoined to each vertex w; (i = 1,2,...,m) in such a way
that v* and w; are identified. The m copies of T2 just introduced are
pairwise disjoint and no extra edges are added. Such a new tree was called
Ty A Ts. They proved that if Ty and T, are both graceful, then 71 A T3 is
also graceful (see Theorem 3 in [4]).

If T} is the path P,, the labeling of P» A T3 is obtained by Koh et al.,
has the additional property required to be an a-labeling. In fact, let g and
h be graceful labelings of P, and T», respectively. Consider the labeling
f:V(PAT) — {1,2,...,2n} defined as follows: for each v in X;,i=1,2,

_ [ (g(w;) — )n + h(v), if d(v*,v) is even
flw) = { (2 — g(w;))n + h(v), if d(v*,v) is odd.

Since we already know that f is a graceful labeling we just need to prove
that it is an a-labeling.

Let {A;, B;} be the bipartition of the vertex set of X;. Then A = A,UB>
and B = Bj U A, form the bipartition of V (P, AT;). Notice that |A| = |B|.
Suppose that {Ag,Bo} is the bipartition of V(T3), hence {1,2,...,n} =
{h() : v € Ao} U {h(v) : v € Bo}. If v* € By, then {h(v) : v € Ao} =
{f(v) : v € By} and {h(v) : v € Bg} = {f(v) : v € Az}. Either way, one of
the partite sets of P A T has assigned the labels 1,2, ...,n and the other
the labels n + 1,7 + 2,...,2n. Thus, f is an o-labeling of P, A T whose
boundary value is A = n.

Since the partite sets of V(P2 AT5) have the same cardinality, the tree
T = P, AT satisfies the conditions of Theorem 2.1, and the lemmas 2.1,
2.2, and 2.3. Thus, the following proposition can be proved.

PROPOSITION 3.1. Every graceful tree produces a super (a,d)-EAT tree
for every d € {0,1,2,3}.

In Figure 1 we show an example of the a-labeling of P> A T3 obtained
using the construction of Koh et al., we also exhibit the graceful labelings
of P, and T3. In Figure 2 we show the super (36, 0)- and (24, 2)-EAT
labelings of P> A T» obtained using Lemma 2.2, when the edge labels are
eliminated we have the (9, 1)-EAV labeling obtained using Lemma 2.1. In
Figure 4 we have the super (30, 1)- and (18, 3)-EAT labelings obtained
using Corollary 2.2 and Corollary 2.1, respectively; when the edge labels
are eliminated we have the (3, 2)-EAV labeling obtained using Lemma 2.3.
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Fig. 2. Super (36, 0)- and (24, 2)-EAT labelings of Py ATy

Since the selection of the vertex v* € T in the previous construction is
arbitrary, each graceful tree T3 of order m produces m a-labeled trees of
the form P, ATs. In other words, every graceful tree produces at least one
super (a,d)-EAT tree for every d € {0,1,2,3}.

In [2] we prove that given to a-graphs G; and Gs, there exists an a-
graph G that results of the identification of suitable vertices u € V{(G)) and
v € V(G3). Some of the a-trees produced using this idea satisfy the condi-
tions of Theorem 2.1 and the previous lemmas. In the next proposition we
study the case where G; and G5 are isomorphic to an a-tree.

PROPOSITION 3.2. Every a-tree produces a super (a,d)-EAT tree for
every d € {0,1,2,3}.

Proof.  Let Ty be an a-tree of size n with bipartition {A, B}. Let f
be an a-labeling of Ty that assigns its boundary value A to a vertex in A.
For i = 1,2, X; is a copy of Tp; we define a labeling g of the vertices of

X, U X5 as follows:
2/6®,2_7_® (132 (19) 26 y(D_lL @
17 18

LEOHE  O@ED-OIOO

O»@% YD @

Fig. 3. Super (30, 1)- and (18, 3)-EAT labelings of P, A T
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Fig. 4. Super (2n + 5, 3)-EAT labeling of S, 2.5

f('l)), ifve A
g(v) = {n—{-f('u), ifvebB
n+A+1-— f(v),ifveV(Xs).

The labeling g assigns the labels {1,2, ..., A}U{n+A+1,n+A+2,...,2n+1}
to the vertices of X;. The induced weights are {n + 1,n + 2, ...,2n}. The
labeling g assigns the labels {A + 1, A +2,...,A + n} to the vertices of X».
Since g restricted to X> is just a translation of the complementary labeling
T of f, we have that the induced weights are {1,2,...,n}. Both X; and X,
have a vertex labeled A. In X, A is assigned to a vertex in A;; in X, A is
assigned to a vertex in Bs. Thus, identifying both vertices labeled A we have
a tree T with an a-labeling of boundary value n. Since the cardinalities of
the bipartite sets of T differ by one, we have that T satisfies the conditions
of Theorem 2.1 and lemmas 2.1 and 2.3 and therefore T' admits labelings
of the kind super (a,d)-EAT for every d € {0,1,2,3}. I

To conclude this work, in Figure 4 we present a super (a, 3)-EAT label-
ing of a family of caterpillars that do not satisfy the conditions of Theorem
2.1, which provides a counterexample for a conjecture posed by Sugeng et
al. In [8] Sugeng et al. studied (a, d)-EAT labelings of caterpillars, they use
the symbol Sy, ,,....n, to represent the caterpillar of diameter r + 2 whose
spine’s vertices have degrees ni,na,...,n;, respectively. They conjecture
that if ||A| — |B|| > 1 there is no super (a, 3)-EAT labeling of Sy, n,,....n.
where { A, B} is the bipartition of the vertex set of the caterpillar. In Figure
5 we exhibit a super (a, 3)-EAT labeling of the caterpillar S, 2, for n > 3.
Notice that in this case |A| =2, |B| =2n—1and ||A| - |B||=2n-3 > 3.

So far, this is the only counterexample that we have found.
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