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Abstract. Given a graph G and a non-negative integer g, the g-extra-
connectivity of G (written k4(G))is the minimum cardinality of a set of ver-
tices of G, if any, whose deletion disconnects G, and every remaining compo-
nent has more than g vertices. The usual connectivity and superconnectivity
of G correspond to ko(G) and «,(G), respectively. In this paper, we determine
Kg(Pry X Pny X +++ X P,,) for 0 < g < s, where x denotes the Cartesian product
of graphs. We generalize x,(Q.) for 0 < g < n, n > 4, where @, denotes the
n-cube.
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1 Introduction

The topology of interconnected network is often modeled by a connected graph of
communication links. In the network the connectivity «(G) is an important factor
determining the reliability and fault tolerance of the network. Here, we consider
the extraconnectivity which corresponds to a kind of conditional connectivity
introduced by Harary [3].

Let G be a connected undirected graph, and P be a graph-theoretic property,
Harary (3] defined the conditional connectivity x(G;P) as the minimum cardi-
nality of a set of vertices of G, if any, whose deletion disconnects G and every
remaining component has property P. Let g be a non-negative integer and let
P, be the property of having more than g vertices. Fabrega and Fiol [2] defined
the g-extraconnectivity ky,(G) of G as k(G;P,;). Given a graph G and a non-
negative integer g, the g-extraconnectivity of G(written x,(G)) is the minimum
cardinality of a set of vertices of G, if any, whose deletion disconnects G, and
every remaining component has more than g vertices.

The Cartesian product of two graphs G and H, denoted by G x H, is the
graph with vertex set V(G) x V(H) such that two vertices (u1,u2) and (v1,v2) are
adjacent iff either 4, = v, with viv; € E(H) or uz = vz with uyv, € E(G). Let
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G = Pu, X Ppy %« » X Pp,, where Pp, denotes the path with n; vertices. 1f n; = 2
for all i, then G is s-cube, denoted by Q,, which has been studied by [4,5,6,7,9].
We assign the vertices of each path P,, a natural ordering by {1,2,:- ,n:}.
Thus we can use the s—dimensional array z1z2-- -z, to denote the vertex of G,
where 1 < z; < ny,i = 1,2,---,s. Clearly, any two vertices £ = ;22 - -- x5 and
Yy =w1y2 -+ ys are adjacent iff there is exactly an integer 7 such that z; =y +1
oryi — 1 and z; = y; for j # i. We use G} to denote the subgraph induced
by {z1- - Tie1Tig1-- 25|l < T < M, 1 < ¢ < 5,8 # i} By definition, we see
that G} 2 Gi = ... GF X Py X +++ X Poy_; X Poy X -+« X Pn,. Sometimes
we express G as G OG- QOGH. fv =212+ Zic11Tig1 -+ Ts = v} €
V(G}), we use vf denote vertex z1Zz--- Li—15Tit1- - Tn,. Clearly, v} .- o]
P.,. Let B C G, we use B} denote the subgraph of G} which use ¢ to instead
of j of the ith coordinate of the vertices of B. Clearly, B = B}. It is well known
that k(G x H) > &(G) + x(H), we have £(Pp, X Pny X -+ X Pp,) =s—1, and
K1(Pny X Pny X +-+ X Pp,) =2s—1formn; > 3,i=1,2,---,s(see [8]). In this
paper, we derive K£g(Pn; X Pp, X -+ X Pp,) wheng < sforn; >2,i=1,2,.:-,s.
We abbreviate P,, X Py, X --+ X P,, as G in the following sections. We use
N¢(v) to denote the set of the neighbors of v in G, Ng(A) to denote the set
(Uveviay Na(@)) \ V(4), Cs(A) to denote the set Ne(A) U V(A). We follow

Bondy [1] for terminologies not given here.

2 Preliminaries

Before discussing the k4(G), we give the following Lemmas.

Lemma 2.1. Assume n; > 3,i =1,2,---,8, G = P X Py, x--- X Py,
ACG. If|V(A)| =g +1,9 <s, then [Ng(A)| > s+ (s+1)g — 29 — (9).

Proof. By induction on |[V(A4)|. Clearly, the result holds for [V(A)| = 1.
Assume that the result holds for all A with |[V(A)| < h. Next we show that the
result is true for A with |[V(A)| = h + 1. We directly use g + 1 instead of h + 1
in the following.

Let A; = G?NA. We first show that G can be decomposed into Gi O GI (- -+
@O G} for some 7 such that at least two subgraphs of {A4;,5 = 1,2,-- ,n;} are
nonempty. Note that |V(A4)| > 2, let £ = z1z2-- 2, and y = 192+ Ys be
two distinct vertices of A. Without loss of generality, we assume z; # y,, and
z. = 1,ys = 2, thus z € V(G!),y € V(G?), that is V(A1) # 8, V(42) # 0.

Without loss of generality, we consider G = GO G2 - G2 in the fol-
lowing. Assume all the nonempty subgraphs of {A4;|A; = GINA} are Ay, Aa, -+ -,
Am, and [V(Ai)] = N;. Clearly, N; < |V(A)], by induction, |Ng:(A:)| 2
s—1+s(Ni — 1) = 2(N; — 1) — (Vi;7"). Since Ngi (A:i) N Ng; (A;) =0 if i # j, it
not difficult to see that |[Ng(A)| > 2, |Ngi (A:i)] 2 s+ (s + 1)g — 29 — (§) for
m>3,orm=2and N; > 2,i=1,2. Next we assume that m = 2 and N; = 1(or
N; = 1,7 # i). Without loss of generality, we consider N} = 1{or N> = 1). If
N =1, then |[Ng(4)| > 25— 1=s+ (s + 1)g — 29 — (§). Assume that Ny > 2.
It is easy to see that [Ngi(41)] + |Ngz2(42)] 2 s+ (s +1)g — 29 — () — 1(since
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INg: (Ai)] 2 s —1+4s(N; —1) = 2(N; = 1) - (%;"")). Note that (A2) = Ngs(Az).
Since V((A2)3) C Ng(A) and Ny > 2, we have that |Ng(4)] > [Ner(A)| +
NGz (A2)l +1V ((A2)9)] > s+(s+1)g—29~ () =142 > s+ (s +1)g— 29— () (if
Nz =1, we have that [Ng(A)| 2 [Ng1(A1)| + |Ngz2(42)] + V((A2)) > s+ (s +
Dg—-29-(§)-1+1=s+(s+1)g—29— (%) O

Corollary 2.2. Assume G = Pp X Pny X+ X P,,,n: 22, AC G, |V(A)]| =
g+1,9 < s. Let k be the number of K of {Py,,i =1,2,---,s}, where K> is the
complete graph of two vertices, then |[Ng(A4)| 2 s+(s+1)g—2g— (%) —min{g, k}.

Proof. Combining the structure of G and a similar argument of Lemma
2.1, the result holds. O

Remark 2.8. Let hs(g) = s + (s + 1)g — 29 — (3), h.(g) is increasing
when 0 € g < s — 1, the maximum of hs(g) is hy(s — 1) = hy(s) = ’(’2—“)
By the proof of Lemma 2.1, we have hs—1(g1) + - - hs—1(g:) > hs(g) when 0 <
91,7, <s,t >23and (g1 +1)+--- (9. +1) > g+ 1. In particular, if ¢t = 2, then
heo1(g1) + he1(g2) > he(g) for i > 2,i=1,2and (g1 + 1)+ (g2 +1) > g+1
(see [9] for the detail).

Lemma 2.4. Let G =Gi!Q---OG»,BCG, |V(B)|>s, ni 238, i=
1,2,---,s. If there exists a subgraph G3' such that V(B N G7') = §, then
ING(B)| 2 51,

Proof. Let B; = BNGL,i=1,2, - ,ns, without loss of generality, assume
BN GE =0. We verify the result by considering two cases.

Case 1. There exists a B; such that |V(B;)| > s.

Let Tp; be a subgraph of B; such that |V(Tg,)] = s. By Lemma 2.1, we
have [Ng: (Bi)| = (s — 1) + s(s — 1) = 2(s = 1) — (*37), that is [Cg:i(Bs)| 2
(s—=1)+s(s—1)=2(s—1)— (*3') +s = ﬂ"’;’—l! Clearly, there are at least ﬂ’g’—'l
internally disjoint paths between Cg; (B:) and G*. Therefore [N:(B)| > 251

Case 2. All B; satisfy |V(B:)] < s.

Assume that all By, Bs,--- , By, are nonempty. If m > 2, |V(B;)| 2 2,i =
1,2, by Remark 2.3, we have > 72, [V(B;)| > s. It is sufficient to show that
INg(B)| > 2£1) if there exists a B; such that |V(B;)] = 1. By a similar
argument of the last part of Lemma 2.1, we complete this proof. O

Corollary 2.5. Let G =G} Q---OGCBCG, |V(B)|>s, ni>2 i=
1,2,---,s. If there exists a subgraph G§* such that V(B N G,,) = @, and the
number of Ks of {Pn”Pnz, R ,P"‘} is k, then |NG(B)I > s!s;-ll — k.

Proof. By a similar argument of Lemma 2.4 and Corollary 2.2, the result
holds. O

Lemma 2.6. Let BC G, |V(B)|>s+1,n:>3,i=12,---,s If [V(G)\
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8 1
V(Ca(B))| = s + 1, then |[Ng(B)| > %241,

Proof. By induction on s. In particular, s = 2, then G is a grid, it is easy
to see that |[Ng(B)| 2 x1(G) =2s—1=3 = i(%” Assume that the result is
true for s < h. Next we show that it holds for s = h. We directly use s instead
of h in the following.

Let G =G} --- O G, we verify the result by considering two cases.

Case 1. There exists a G* such that V(BN G}) = 0.

By the Lemma. 2.4, we have [Ng(B)| 2 ﬂ";"—ll

Case 2. Al V(B;) #0.

If there exists a G, such that |V (B;)| > s—1 and |V(G§)\V(CG§ (B:i))| = s-1,
by induction, we have |[Ng: (Bi)| = fi‘i;—lz Since ns > 3, and k(G2) = s—1,j #1,
we have [NG(B)| 2 |Ngi (Bi)l + Xz; 6(G5) > 25570 +2(s — 1) > 24 for
s > 3. If each pair {|V(B:)|,|V(GL) \ V(Cc,(B:))|} has one element less than

s — 1, without loss of generality, we assume |V(B;)| < s — 1. Since |[V(B)| 2 s,
by Remark 2.3, we have |[Ng(B)| > X0, [Ng: (B:)| > <51, O

Corollary 2.7. Let BCG,|V(B)|=s+1,n >2,i=1,2,---,s, and the
number of Kz of {Pn,, Pny,-++, Pn,} is k. If [V(G)\V(Ca(B))| > s+ 1, then
|Ng(B)| > 24 — k.,

Lemma 2.8. Any two vertices z,y of G = Py, X Pp, X +++ X Pp, have at
most two common neighbors for s > 2 if they have any. Furthermore, if z and
y exactly have two distinct coordinates, then = and y exactly have two common
neighbors if they have any.

Proof. Let z = z122--- s,y = 11¥y2- - Ys be two vertices of G. By defini-
tion, if z and y have common neighbor, then their coordinate have one or two
is distinct. Clearly, they have one or two common neighbors. Furthermore, if
z and y exactly have two distinct coordinates, say ¢ and j, then y; = z; +1
orx; — 1, yj = zj + 1 or z; — 1. Without loss of generality, we assume that
Yi =Ti + l,yj =z; + 1, then 2y - - - Zi—1YiTit1 " Ts and z; - - - Tj—1YjTij41Ts
are two common neighbors of z and y. O

Lemma 2.9. Let n; > 3,i = 1,2,---,8, G = Py, X Ppy X+ X Py, =
G!O---OG? and u = 11--:1 € V(G3), us = 11-+:2.-:1 € N(u),A =
Glu,u1,uz, -+ ,u4),1 < i < g < s, where u; denotes the neighbor of v which
the ith coordinate is different from w's. Then |Ng(4)| = s+ (s +1)g — 29 — (3)
and G — Cg(A) is a connected subgraph of G with property Pg.

Proof. By lemma 2.8, it is easy to see that [Ng(A)| = s+(s+1)g—2g— (%).

Next we show G — Cg(A) is connected. By inductionon s. If s =2, G is a
grid, the result is clear. Assume that it is true for s — 1 > 2. Next we verify the
Lemma for s.
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Clearly, A C G}UG? and |V (Cs(A)NG?)| < 1. By induction, G — Ce(A) is
connected for all i. That is, if z,y € V(G} — Cg(A)), then z connects to y. Next
we assume that z{ € V(G?),y? € V(G3),i < j. Since n, > 3, then ziait! ... g7
is a path of G — Cg(A) from z% to z* € V(G?*). Similarly, yiyi*!...y™ is a
path of G — Cc(A) from y? to y* € V(G2*). Since z”* connects y™*, we have
z! connects to yJ. O

Corollary 2.10. Letn; >2,i=1,2,---,5,G =P, X Pyy x -+ x P, =
GO OG? and u = 11---1 € V(G!), wi = 11--.2--.1 € N(u), 4 =
Glu,u1,u2,- -+ ,uy],1 < i < g, where u; denotes the neighbor of « which the
ith coordinate is different from u's. The number of K3z of {P,,, Pnyy -+, Pn,}
is k. Then |[Ng(A)| > s+ (s + 1)g — 29 — (3) — min{g,k}, for 0 < g < 5 and
G - Cg(A).

Proof. By a similar argument of Lemma 2.9. O

3 Main results

Now we come to our main results.

Theorem 3.1. Let G = P, X Ppy X+ X Pn,,ni 23,i=1,2,---,50<
g < s, then ky(G) =s+ (s+1)g—29— (§).

Proof. Let u = (1,1,---,1), us = (1,1,--+,2,--- ,1)(1 < i < g) be the
neighbors of u, where u; denotes the neighbor of u which the ith coordinate is
different from ws. Then Glu,uy,us, -+ ,ug] & K),y. By Lemma 2.9, we have
INc(A)| = s+ (s+1)g—2g — (3) and G — Ci(A) has property P,. Thus we have
£o(G) < s+ (s +1)g — 2 — (5.

Next we show that £,(G) > s+ (s + 1)g ~ 29 — (§). Suppose F is a vertex
cut set of G such that every component of G — F has property P, and |F| <
s+ (s+1)g — 29 — (3) — 1. We will show that it is impossible. If there exists
a component A of G — F such that |V(A)] < s, we have g +1 < |V(A)] < s.
By Lemma 2.1, we have |F| > s + (s + 1)g — 2g — (2), a contradiction. If every
component of G — F has size more than s, we derive a contradiction by Lemma
2.6. O

Corollary 3.2. Let G =P, X Py XX Py, ,ni 22(i = 1,2,--- ,5). The
number of K2 of {Pn,, Pny,--- , Pn,} is k.

(i) 0 <k < 4, then k(G) > s+ (s + 1)g — 2g — (%) — min{g,k}, for
0<g<s5—2ry(C) = _f fors—1<g<s.

(i) If 5§ <k < s, then k4(G) > s+ (s + 1)g — 29 — (3) — min{g, k}, for
0<9g<s-3; ng(G)=ﬂi2’-*—'-)-—k,fors—2Sg_<_s.

(i) Ifk = s, then ky(G) > s+(s+1)g—2g—(3) —min{g, k}, for 0 < g < s—4;
f@(G):"s%l—s, fors—3<g<s.
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Proof. We only give the proof of (iii). Assume that A is the same subgraph
as Theorem 3.1. By Corollary 2.10, we have that |[Ng(A)| = s(”—;'ll —-sifg=s,
and by Corollary 2.7, we have that |[Ng(B)| > 5’2—“1 — s for any subgraph B
with order more than s. Thus k4(G) < 3“’;’—1 sforg<s.

Let f(g) =s+(s+1)g—29- (3 ) — min{g, k}. It is easy to see that f(1) <
f@@) < < f(s—4) < f(s—3) = f(s) < f(s—2) = f(s —1). By Corollary 2.2,
we have k4(G) = f(g) for g < s —4 and ky(G) = f(s—3) = f(s) = = ’“ -s. 0O

Corollary 3.3. x4(Qn) = (g+1)n—2g—(§) for 0 < g < n—4 and

Kg(Qn) = ninsl) "2“ ~nforn—3<g<n,whereQn=Prx Py x---x P2 is awell
known networks (see [9] for a detail proof)

Proof. By (iii) of Corollary 3.2, Corollary 3.3 is clearly true. O

Remark 3.4. There are also some other known results can be obtained
directly by Theorem 3.1 and Corollary 3.3, such as the results about hypercube
of [6] and the results of {8].

Acknowledgement The authors thank the anonymous referees for their
helpful comments and suggestions.

References

(1] F.Haray, Conditional connectivity. Networks, 13 (1983) 346-357.

[2] J. Fabrega and M.A. Fiol, On the extraconnectivity of graphs. Discrete
Mathematics, 155 (1996) 49-57.

[3] J. Meng and Y. Ji, On a kind of restricted edge connectivity of graphs.
Discrete Appl. Math, 117 (2002) 183-193.

[4] S. Latifi, M. Hegde and M. Naraghi-Pour, Conditional connectivity mea-
sures for large multiprocessor systems. IEEE. Trans. on Computers, 43(2)
(2002), 218-222.

[5] Y.Saad and M. Schultz, Topological properties of hypercubes. IEEE Trans.
on Compters, 37(7) (1988) 867-872.

[6] J. Xu, Q. Zhu, X. Hou and T. Zhou, On restricted connectivity and extra
connectivity of hypercubes and foled hypercubes. J. of Shanghai Jiaotong
Univ. 10(2) (2005) 203-207.

[7] W. Yang and J. Meng, Extraconnectivity of Hypercubes. Applied Mathe-
matics Letters, 6(22) (2009) 887-891.

[8] M. Fu, J. Meng and X. Liang, Super connectivity of Cartesian product of
paths. Infomation Processing Letters, in press.

[9] J.A. Bondy and U.S.R. Murty, Graph theory with application. Macmillan,
London, 1976.

520



