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ABSTRACT. We define an r-capacitated dominating set of a graph
G = (V,E) as a set {v1,...,vx} C V such that there is a partition
(V1,..., Vi) of V where for all ¢, v; € V;, v; is adjacent to all of
V; — {vi}, and |V|| < r + 1. 7(G) is the minimum cardinality of an
r-capacitated dominating set. We show properties of 7., especially
as regards the trivial lower bound |V|/(r +1). We calculate the value
of the parameter in several graph families, and show that it is related
to codes and polyominoes. The parameter is NP-complete in general
to compute, but a greedy approach provides a linear-time algorithm
for trees.

1 Introduction

A dominating set S C V of a graph G = (V| E) is a set of vertices such
that every vertex in V — S is adjacent to, or is dominated by, at least one
vertex in S. The minimum cardinality of a dominating set in G is called
the domination number of G and is denoted y(G). For more information
on dominating sets in graphs, see [6].

Gunther et al. [3] considered [r, s]-dominating sets S, where every
vertex in S is assigned to dominate exactly r of its neighbors (adjacent
vertices), and every vertex in V' must be dominated by ezactly s vertices
of S. (This can be thought of as an orientation of a spanning subgraph G*
of G such that every vertex has in-degree s and out-degree either 0 or r.)
A similar type of dominating set, called a k-bounded star packing, is
studied in [4]. In this case a vertex can be assigned to dominate at most
k vertices, while every vertex in V must be dominated by a vertex other
than itself.

In this paper we consider a similar type of dominating sct, motivated by
a design constraint of computer networks. One wishes to place a minimum
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number of servers in a network so that every node in the network either
has a server or is adjacent to a node with a server. However, the number of
neighbors that a server can serve is limited due to its bandwidth capacity.

Formally, an r-capacitated dominating set (rCDS) of a graph G
is a set S = {v1,vs,...,0x} C V for which there exists a partition IT =
{V1,V2,..., Wi} of V satisfying the following three conditions for every i,
1<i<k:

)vweV,
(ii) |V;| £ r+1, and
(iii) v; is adjacent to all other vertices in V;.

In an 7CDS, each vertex v; is assigned to, or serves, at most r other ver-
tices. The minimum cardinality of such a set S is called the r-capacitated
domination number of G and is denoted 7.(G). Such a set S is called a
S--set of G.

Consider the special case 7 = 1. A 1CDS is equivalent to a partition
of V into K;s and Kass. Further, finding a smallest “J;-set is equivalent
to finding the maximum number of vertex-disjoint Kss, that is, finding a
maximum matching. We denote the matching number by 8;(G) and the
edge cover number by a;(G). Gallai showed that &y (G) + 51(G) = |V|. It
follows that

For any graph G, 11(G) = a1(G).

Although capacitated domination is similar to several other models, it
appears to be new. Chen et al. [1] and Lu et al. [9] considered this question
in the context of directed graphs, specifically tournaments. The latter paper
called it bounded domination.

In this paper we study the basic properties of capacitated dominating
sets, determine exact values of J.(G) for various classes of graphs, and
bounds on T, (G) for cubic graphs G. While the parameter is NP-complete
in general, we exhibit a greedy algorithm for determining <,.(T") for any
tree T

2 Values

There is a trivial lower bound that is useful:
Observation 1 For any graph G with n vertices, 1.(G) 2 [n/(r + 1)].

Clearly one obtains equality in the bound for complete graphs. Also,
for the case r = 2 there is equality if the graph has a hamiltonian path; for
example, T = [n/3] for the path and cycle of order n.
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2.1 Complete bipartite graphs

An interesting case is the determination of 7,.(G) for complete bipartite
graphs.

Theorem 1 Let r > 1 be an integer and consider the complete bipartite
graph K(a,b) with a < b.

(i) If b > ra, then .(K(a,b)) = b—a(r —1).

(@) If b < ra, then (a +b)/(r + 1) < T (K(a,b)) < (a+b)/(r + 1) + 2.
To be specific, define z = [(rb—a)/(r® — 1) and y = |(ra — b)/(r2 - 1)).
Further, definec as0 ifz+yr = a and zr +y = b; else 1 frxt+yr>a-1
orxzr+y 2 b—1; and 2 otherwise. Then N, =z +y +e¢.

PROOF. Let K(a,b) have bipartition (4, B) with |A| = a. Suppose a set S
has o vertices from A and 8 vertices from B. Then it can handle at most
a + Br vertices of A and at most ar + 3 vertices of B. Indeed, it follows
that S is an rCDS if and only if « + 8r > a and ar + 8 > b.

It follows that 71.(K(a,b)) is equal to the solution 8 of the integer
program:

mina + 3, such that a + fr > a, ar + 8 > b, 0 < a < q, and
0<B<h

Ifb > ra, then the integer program has the solution & = a and 8 = b—ra.

So we consider the case where b < 7a. Relaxed to a linear program, the
minimum is achieved at o* = (rb—a)/(r%> ~ 1) and B* = (ra — b)/(r* - 1).
If o* and B* are integral, we are done. So assume that at least one is not
integral.

We set z = |a*] and y = |B*]. Since & > o* + * and is integral, it
follows that & > z + y + 1. On the other hand, the point & = z + 1 and
B =y+ 1is feasible, and so 6 < z +y + 2.

Now, if cither (z,y + 1) or (z + 1,y) lies in the feasible region, then
6 = z +y+ 1. But, if neither (z,y + 1) nor (z + 1,y) lies in the feasible
region, then there cannot be an integral point of the line o + B=z+y+1
that is feasible (see Figure 1), and so 8 =z + y + 2. QED

2.2 The hypercube

The domination numbers of the cubes are in general not known. So we
consider the case for small r. Since all cubes have a hamiltonian path,

T1(Qa) = 2471 and 2(Qq) = [24/3].
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Figure 1: Rounding the solution to the linear program

Theorem 2 For d > 2, Ta(Qq) = 2¢72.

ProoF. The lower bound is the trivial one (Observation 1).

There are two ways to see the upper bound. The first is that the cube Q4
contains the prism Coa—: 00 K3. A 3CDS of the prism is obtained by taking
every fourth vertex on the one cycle and every fourth vertex on the other
cycle, offset by 2. The second way is that Qs contains a perfect dominating
set—so that "13(Q3) = 2—and 2¢~3 copies of Q3 form a spanning subgraph
of Qq. QED

The second proof also shows that, for example,
T7(Qa) = 2°7°

for d > 7. And in general we get exact results whenever r is 1 less than a
power of 2, because then @, has a perfect dominating set (e.g., Hamming’s
[5] perfect 1-error-correcting code).

This leaves open the question of what, for example, is the asymptotics
for T14(Qa)- Is it possible to mostly achieve the trivial lower bound rounded
up?

2.3 Cubic graphs

Let G be a cubic graph. As noted before, 7 (G) is the edge cover number
while T3(G) is the ordinary domination number. In this respect Reed [10]
showed that v(G) < 3n/8; recently Kostochka and Stodolsky (8] showed
that there are connected cubic graphs G with ¥(G) > 8/23 — o(1).

So consider the case r = 2. The following simple lemma is surely known:

Lemma 1 The vertex set of a regular graph can be partitioned into sets
such that each set is spanned by either Py or Pj.
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PROOF. Say graph G is r-regular. Start with a maximum matching M
covering vertices S. Then V — S is an independent set and so each vertex
in V — S has r edges to S; on the other hand, every vertex in S has at most
7 — 1 edges to V — S. By Hall’s theorem it follows that there is a matching
N from V — S into S. An edge of M cannot be incident with two edges of
N as this contradicts the maximality of M. It follows that cach edge of M
is incident with at most one edge of N and hence lies in a P or P;. This
establishes the result. QED

Corollary 1 For any regular graph G, 71,.(G) < 5,(G).

It follows that T(G) < n/2 for any regular graph of order n. Indeed,
it is not hard to show that To(G) < n/2 for any connected cubic graph G
other than K. And further, that there is some small constant € > 0 such
that T2(G) < (1/2 - €)n for such cubic graphs. But the true maximum
value of T remains wide open.

2.4 Grids

Define the grid G ; as the grid with s rows and ¢ columns (that is, P,OF,).
The grids all have hamiltonian paths: It follows that “;(G,.) = [st/2]
“and T2(G,y) = [ st/3]. Further, T4(G.,.) is just the domination number
¥(Gs,¢), which remains an unsolved problem. So the new question is r = 3.

2.4.1 T3 in grids where both sides are even

The grid of height 2 has maximum degree 3, and so Ta(G2,) = |t/2] + 1,
since this is just the domination number (found by Jacobson and Kinch [7]).

Theorem 3 If both s and t are multiples of 4, then T13(G, ) = rs/4.

PRrooF. The lower bound is just the trivial lower bound (Observation 1).
The upper bound follows since G4 4 can be partitioned into four K 1,35 (see
Figure 2). QED

It is to be noted that the parameter —3 in a grid is related to packing
rectangles with what is called a T-tetromino: this is a tile formed by
sticking together four unit squares to form a T shape. Walkup [11] showed
that a rectangle is packable by a T-tetromino iff both sides of the rectangle
are a multiple of 4.

Theorem 4 If both s and t are even, but at least one is not a multiple of
4, then Ta(Gs,e) = st/d+ 1.
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Figure 2: An efficient 3CDS of G4 4 and the associated T-tetromino packing

ProoF. The lower bound is from Walkup. For the upper bound, one can
tile the rectangle whose sides are a multiple of 4. So that leaves either a
rectangular strip or an L-shaped strip which is 2 units wide. The value
for the rectangular strip was calculated above. By starting in the elbow
of the L, the L-shaped strip can be tiled with T-tetrominoes to leave at
most 4 holes, which can be handled by two dominators. See Figure 3 for
an example. QED

L
4 x 8 case —’——

STeATRAS

Figure 3: An almost T-tetromino packing of Gg,10

2.4.2 T3 in grids where one side is 3

Theorem 5 Fort > 1, TI3(Gs,) = [4t/5].

PROOF. Here is the upper bound. The picture of Figure 4 shows that
Ts(Gs,s) < 4. Say a = |t/5]). Then repeat the picture of Figure 4 a times,
and take the middle vertex in the remaining ¢ — 5a columns.

The lower bound is more complex. This is the outline: We define a
“near-set” as a 3CDS of a grid restricted to some initial segment of the
columns: this is essentially a 3CDS except for possibly the final column.
We then show that one can partition the collection of near-sets into a finite
number of classes, based on (the properties of) their final column; this then
yields a table that gives the class of near-set as one adds each column.
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Figure 4: Ts-set of G35

Finally, by simultaneous induction, we calculate the minimum cardinality of
each class of near-set. The proof was generated with help from a computer
(but can be checked by hand).

The collection of near-sets can be partitioned into classes, where the
class captures what one needs to know about the last column: what it
needs and what it offers. The table given in Figure 5 shows the claimed 17
classes and a sample configuration for each (dark vertices).

Lemma 2 There are 17 classes of near-sets. An example of each is given
in the table in Figure 5. Further, that table gives the correct transitions for
adding columns.

Proor. We first need to show that the partition is correct.

There are 8 classes for the near-set S’ where the last column X is empty:
thesc correspond to which subset of X is dominated. If two or more vertices
in X are in S, then the last column is dominated, and these vertices can
handle their neighbors-to-come. If the only vertex v in X NS’ is the top or
bottom vertex, then there are two possibilities, depending on whether all
the vertices of X are dominated or not (v has only three neighbors and so
can handle its neighbor-to-come). Finally, if the only vertex v in X NS’
is the middle vertex, then there are at least two possibilities: v can handle
its neighbor-to-come or it cannot. Note that if both the top and bottom
vertex of X are undominated by any other vertex, we might as well use v
to dominate them, since otherwise there must be a vertex w € S in the
next column on the edge that handles one of these, and w can handle the
middle vertex of that column.

The verification of the entries of the table is left to the reader. (It was
computer generated.) QED

Finally, one lets f;(s) denote the minimum cardinality of a near-set in
class i. It can then be calculated that the values of f; are given in the
following table. The notation ~ means that no such near-set cxists; for
s 2> 4 the values are obtained by adding [4s/5] throughout.
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valid at end

§ 1 -l -1 -1- false
§ 2 - -1 -1- true
i 3(f10]2(3]4 true
; 4 J|11 ] 2|3 |4 true
——% 514 - ]12| - |4 false
_§ 6 (| 13712 3 |4 true
_i 7 |14(12( 3 ]4 true
_I 8 115112 | 3 | 4 true
g 9 |116])12| 3 | 4 true
g Y -1-1-1= false
E% ny-{-1-1- false
g 1211712 | 3 |4 true
g B -1-1]11514 false
E Ml -12]-14 false
E§ 151 1]2)3]4 true
%ﬂ 6] - | -1 -4 false
g% 7Y -1 -1-1- false

Figure 5: The table for extending near-sets in grids of height 3
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12345678 9 101112 13 14 15 16 17
s=11 01121223~ ~~ ~ ~v ~v ~v ~ ~
$s=2|~22323332 12 2 2 2 3 ~ ~
s=3| 333433443 2 3 3 3 33 2 2

s>4: (add [4s/5])

smod5=0{ 011111121 0O01 0O0O0 O O
smod5=1(-100101121 0 01 000 0 O
smod5=2(-100101110-1 00 00 0 0 O
smod5=3(-100100110-1 00 0 0 0 ~1 -1
smod5=4/-100000010-1 0 0-1 0 0 -1 -1

Now, only certain classes of near-sets correspond to 3CDSs (viz. 2, 3, 4,
6,7, 8,9, 12, 15). If one takes the minimum of f;(s) over these classes, one
obtains [4s/5], as required. QED

2.4.3 T in grids where one side is odd

We believe that if one side is odd, then T3(G, ) is at lcast a lincar factor (in
max(s, t)) more than st/4. In particular, we believe that, if s is odd, then
there exists a constant €, > 0 such that J3(P; O FP,) > (1 +¢,)st/4 — O(1).
For s = 3, we saw above that it is €3 = 1/15.

With the help of a computer we can show that such a constant exists
for s =5, 7,9 and 11, as follows. For an s x t rectangle, we define a sloppy
tiling with T-tetrominoes as a tiling of the rectangle where one is allowed
to slop over the left and right ends.

Theorem 6 There is no sloppy tiling for odd Gs 7, G79, Go 17 and Gi1 43.

PRrROOF. Exhaustive computer search. QED

For example, since onc nceds at lecast an extra 1/4 for every 5 x 7
rectangle, this shows that T3(Gs,) > 9t/7.

3 Algorithmics

It can be shown that computing the parameter 7, is NP-hard. For example,
testing whether 7.(G) = n/(r + 1) is cquivalent to asking whether G has
a spanning subgraph consisting of stars K ,. This is covered by problem
GT12 in [2].

Also, there is a realization algorithm. Given a set S of vertices, one
wants to know whether S is an rCDS. Consider the subgraph H induced
by the edges joining S and V —S; if one allows each vertex in S a capacity of
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r, the question is whether there is what is called a b-matching that saturates
V — S. (Equivalently, one can in H replicate each vertex of S so that there
are r copies of it, and then ask for a matching that covers V — S.)

3.1 Tree Algorithm

In this section, we present a linear-time algorithm for finding 7, (T") for any
tree T and value of r > 1. The tree algorithm is unusually simple: a greedy
algorithm suffices.

The algorithm starts at the leaves and moves up to the root, marking
vertices as either dominated or in the 7CDS as it moves up. For each vertex
v, there is a counter ¢ that is initialized to the value of r. This counter is
used to determine whether or not a vertex can dominate any other vertices.

By ordering the vertices with a pre-order traversal, all the children of a
node are visited before it. When a vertex v is visited, the action depends
on the value of the counter. Suppose first that ¢(v)} < r. Then mark v as
being in the dominating set S; further, if ¢(v) > 0 then mark the vertex’s
parent p as covered. Suppose second that ¢(v) = r. Then, if v has been
marked as covered, we are done. Otherwise it must be dominated by itself
or its parent. So check the parent’s counter: If ¢(p) > 0, then decrement it,
mark vertex v as covered and proceed; If ¢(p) = 0, then p cannot dominate
any more vertices, so mark v as in the set S.

Pseudocode for tree algorithm
for(vertices v in postorder)
if( e(v)=0 ) {
mark v as in S
} else if( O<c(v)<r ) {
mark v as in 8§
mark parent(v) as covered
} else if( c(v)=r and v not covered {
if( c(parent(v))>0 {
mark v as covered
c(parent(v)) --
} else
mark v as in S

}

The running time is linear. The correctness of this algorithm can be
seen by viewing any typical vertex v in the tree T If ¢(v) < 7, then at least
one of v’s children is relying on v to dominate it. Also, if 0 < ¢(v) < r, then
v has to be in the dominating set and can still dominate other vertices. If
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c(v) = r then no child of v needs to be dominated and v can dominate
itself, or if its parent can still dominate more vertices, v can be dominated
by its parent. Formally, the algorithm finds a minimum rCDS such that
no other minimum set is “closer” to the root.

4 Open Questions

Apart from the questions about cubic graphs and hypercubes alrcady men-
tioned, one can also look at the upper parameter. Define the maximum
cardinality of a minimal rCDS. It seems that the parameter for r = 1
is 3n/5 &£ O(1) for the path P,. In particular, this means that the case
7 =1 is not related to the minimum size of maximal matching, unlike the
relationship between 7; and the matching number.
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