Randomly r-Orthogonal (0, f)-Factorizations of Bipartite (0, mf - (m-1)r)-Graphs

Sizhong Zhou

School of Mathematics and Physics , Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

Abstract

Let G=(X,Y,E(G)) be a bipartite graph with vertex set V(G)=X! Y and edge set E(G), and let g,f be two nonnegative integer-valued functions defined on V(G) such that $g(x) \le f(x)$ for each $x \in V(G)$. A (g,f)-factor of G is a spanning subgraph F of G such that $g(x) \le d_F(x) \le f(x)$ for each $x \in V(F)$; a (g,f)-factorization of G is a partition of E(G) into edge-disjoint (g,f)-factors. Let $F=\{F_1,F_2,^n,F_m\}$ be a factorization of G and G be a subgraph of G with G with G with G is G or orthogonal to G. In this paper it is proved that every bipartite G is G or orthogonal to G and G is a partition of G and G is a partition of G with G is a partition of G and G is a partition of G or G in an G is a partition of G and G is a partition of G in G is a partition of G in G

Keywords: bipartite graph, subgraph, (0, f) -factor, orthogonal factorization.

AMS(2000) subject classification: 05C70

1 Introduction

Orthogonal Factorizations in the graphs are very useful in combinatorial design, network design, circuit layout and so on [1]. Graphs considered in this paper will be finite undirected simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). The degree of a vertex x is denoted by $d_G(x)$. Let g and f be two nonnegative integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for each $x \in V(G)$. Then a (g, f)-factor of G is a spanning subgraph F of G with $g(x) \leq d_F(x) \leq f(x)$ for each $x \in V(F)$. In particular, G is called a (g, f)-graph if G itself is a (g, f)-factor. A subgraph G is called an G-subgraph if G has

E-mail: zsz_cumt@163.com

This research was sponsored by Qing Lan Project of Jiangsu Province.

m edges in total. A (g,f)-factorization $F=\{F_1,F_2,!,F_m\}$ of G is a partition of E(G) into edge-disjoint (g,f)-factors $F_1,F_2,!,F_m$. Let a and b be two nonnegative integers with $a \le b$. If g(x)=a and f(x)=b for each $x \in V(G)$, then a (g,f)-factor is called an [a,b]-factor. Let B be a B subgraph of a graph B. A (g,f)-factorization B for B is B subgraph of a graph B of B such that B is B of B such that B is a B in B of B such that B is a B in B i

A graph denoted by G=(X,Y,E(G)) is a bipartite graph with vertex bipartition (X,Y) and edge set E(G). Alspach et al. [1] posed the following problem: given a subgraph H, does there exist a factorization F of G with some fixed type orthogonal to H? Li and Liu [3] gave a sufficient condition for a graph to have a (g,f)-factorization orthogonal to any given m-subgraph. Lam et al. [4] studied orthogonal factorizations of graphs. Anstee and Caccetta [5] discussed orthogonal matchings. Li et al. [6] studied orthogonal (g,f)-factorizations of (mg+k,mf-k)-graphs. Feng [7] proved that every (0,mf-m+1)-graph has a (0,f)-factorization orthogonal to any given m-subgraph. Liu and Zhu [8] proved that every bipartite (mg+m-1), mf-m+1)-graph has the randomly k-orthogonal (g,f)-factorizations. The purpose of this paper is to solve some problems on orthogonal factorizations for bipartite (0,mf-(m-1)r)-graph G has (0,f)-factorizations randomly r-orthogonal to any given mr-subgraph if $2r \le f(x)$ for any $x \in V(G)$.

2 Preliminary results

Let G be a graph, and let S and T be two disjoint subsets of V(G). We denoted by $E_G(S,T)$ the set of edges with one end in S and the other in T, and by $e_G(S,T)$ the cardinality of $E_G(S,T)$. For $S \subset V(G)$ and $A \subset E(G), G - S$ is a subgraph obtained from G by deleting the vertices in S together with the edges to which the vertices in S incident, and G - A is a subgraph obtained from G by deleting the edges in A, and G[S] (rep. G[A]) is a subgraph of G induced by G (rep. G[A]).

For a subset X of V(G), we write $f(X) = \sum_{x \in X} f(x)$ for any function f defined on V(G), and define $f(\phi) = 0$. Specially, $d_G(X) = \sum_{x \in X} d_G(x)$.

Folkman and Fulkerson [9] obtained the following necessary and sufficient condition for the existence of a (g, f)-factor in a bipartite graph (see Theorem 6.8 in [9]).

Lemma 1 Let G = (X, Y, E(G)) be a bipartite graph and let g and

f be two nonnegative integer-valued functions defined on V(G) such that $g(x) \le f(x)$ for each $x \in V(G)$. Then G has a (g, f)-factor if and only if for all $S \subseteq X, T \subseteq Y$,

$$r_{1G}(S,T,g,f) = f(S) - g(T) + d_{G-S}(T) \ge 0$$

and

$$r_{2G}(S,T,g,f) = f(T) - g(S) + d_{G-T}(S) \ge 0$$

Note that $d_{G-S}(T) = e_G(T, X \setminus S)$ and $d_{G-T}(S) = e_G(S, Y \setminus T)$. Let E_1 and E_2 be two disjoint subsets of E(G) and let $S \subseteq X, T \subseteq Y$. Set

 $E_{iS}=E_i \, ! \, E_G(S,Y \backslash T) \, , \quad E_{iT}=E_i \, ! \, E_G(T,X \backslash S) \qquad \text{for } i=1,2$ and set

$$\alpha_S = \left| E_{1S} \right| , \quad \alpha_T = \left| E_{1T} \right|, \quad \beta_S = \left| E_{2S} \right| , \quad \beta_T = \left| E_{2T} \right|$$
It is easily seen that $\alpha_S \leq d_{G-T}(S)$, $\alpha_T \leq d_{G-S}(T)$, $\beta_T \leq d_{G-S}(T)$, $\beta_S \leq d_{G-T}(S)$.

Liu and Zhu [8] give a necessary and sufficient condition for a bipartite graph to admit a (g, f)-factor containing E_1 and excluding E_2 .

Lemma 2 (Liu and Zhu [8]) Let G = (X,Y,E(G)) be a bipartite graph and let g and f be two nonnegative integer-valued functions defined on V(G) such that $g(x) \le f(x)$ for each $x \in V(G)$, and let E_1 and E_2 be two disjoint subsets of E(G). Then G has a (g,f)-factor F such that $E_1 \subseteq E(F)$ and $E_2 ! E(F) = \phi$ if and only if for all $S \subseteq X$, $T \subseteq Y$,

$$r_{1G}(S,T,g,f) \ge \alpha_s + \beta_T$$

and

$$r_{2G}(S,T,g,f) \ge \alpha_T + \beta_S$$

In the following , we always assume that G is a bipartite (0, mf - (m-1)r)-graph , where $m \ge 1$ and $r \ge 1$ is integers. Define

$$g(x) = \max\{0, d_G(x) - ((m-1)f(x) - (m-2)r)\}\$$

$$\Delta_1(x) = \frac{1}{m} d_G(x) - g(x)$$

$$\Delta_2(x) = f(x) - \frac{1}{m} d_G(x)$$

By the definitions of g(x), $\Delta_1(x)$ and $\Delta_2(x)$, We have the following Lemma.

For all $x \in V(G)$, the following inequalities holds:

(1) If
$$m \ge 2$$
, then $0 \le g(x) < f(x)$
(2) If $g(x) = d_G(x) - ((m-1)f(x) - (m-2)r)$, then

$$\Delta_{\mathsf{I}}(x) \ge \frac{r}{m}$$

$$(3) \qquad \Delta_2(x) \ge \frac{(m-1)r}{m}$$

Proof. (1) Note that G is a bipartite (0, mf - (m-1)r)-graph, where $m \ge 2$ is an integer. Since $0 \le mf - (m-1)r$, we have

$$f(x) \ge \frac{(m-1)r}{m}.$$

Note that f(x) is nonnegative integer-valued function. Then $f(x) \ge 1$.

If
$$g(x) = 0$$
, then $0 \le g(x) < f(x)$.

If
$$g(x) = d_G(x) - ((m-1)f(x) - (m-2)r)$$
, then

$$f(x) - g(x) = f(x) - d_G(x) + (m-1)f(x) - (m-2)r$$

$$= mf(x) - (m-2)r - d_G(x)$$

$$\ge mf(x) - (m-2)r - (mf(x) - (m-1)r) = r \ge 1$$

Hence we get that

$$0 \le g(x) < f(x)$$
(2) If $g(x) = d_G(x) - ((m-1)f(x) - (m-2)r)$, then
$$\Delta_1(x) = \frac{1}{m} d_G(x) - g(x)$$

$$= \frac{1}{m} d_G(x) - [d_G(x) - ((m-1)f(x) - (m-2)r)]$$

$$= \frac{1-m}{m} d_G(x) + (m-1)f(x) - (m-2)r$$

$$\geq \frac{1-m}{m} (mf(x) - (m-1)r) + (m-1)f(x) - (m-2)r$$

$$= (1-m)f(x) + (m-1)r - \frac{(m-1)r}{m} + (m-1)f(x) - (m-2)r$$

$$= \frac{r}{m}$$

(3)
$$\Delta_2(x) = f(x) - \frac{1}{m} d_G(x) \ge f(x) - \frac{1}{m} (mf(x) - (m-1)r)$$

$$= f(x) - f(x) + \frac{(m-1)r}{m} = \frac{(m-1)r}{m}$$

completing the proof.

Lemma 4. For any $S \subseteq X$ and $T \subseteq Y$,

$$r_{1G}(S,T,g,f) = \Delta_1(T) + \Delta_2(S) + \frac{m-1}{m}d_{G-S}(T) + \frac{1}{m}d_{G-T}(S)$$

and

$$r_{2G}(S,T,g,f) = \Delta_1(S) + \Delta_2(T) + \frac{m-1}{m}d_{G-T}(S) + \frac{1}{m}d_{G-S}(T)$$

Proof. We prove only the first equality. The second one can be verified similarly. According to the definition of r_{iG} , we have

$$r_{1G}(S,T,g,f) = d_{G-S}(T) - g(T) + f(S)$$

$$= d_{G}(T) - e_{G}(S,T) - g(T) + f(S)$$

$$= (\frac{1}{m}d_{G}(T) - g(T)) + (f(S) - \frac{1}{m}d_{G}(S))$$

$$+ \frac{m-1}{m}d_{G-S}(T) + \frac{1}{m}d_{G-T}(S)$$

$$= \Delta_{1}(T) + \Delta_{2}(S) + \frac{m-1}{m}d_{G-S}(T) + \frac{1}{m}d_{G-T}(S)$$

Completing the proof.

Lemma 5 (Feng [7]) Let G be a (0, mf - m + 1)-graph, let f be one integer-valued function defined on V(G) such that $f(x) \ge 0$, and let H be an m-subgraph of G. Then G has a (0, f)-factorization orthogonal to H.

3 Main result and proof

In this section, we are going to state our main theorem, and present a proof of it.

Let G be a bipartite graph, let H be an mr-subgraph of G, and let E_1 be an arbitrary subset of E(H) with $|E_1|=r$. Put $E_2=E(H)\setminus E_1$. Then $|E_2|=(m-1)r$. For any two subsets $S\subseteq X$ and $T\subseteq Y$, let g(x), E_{is} , E_{iT} for i=1,2, α_S , α_T , β_S and β_T be defined as in Section 2 and $T_0=\{x\big|x\in T,g(x)=0\}$, $T_1=T\setminus T_0$. It is easily seen that $T=T_0$! T_1 and T_0 " $T_1=\phi$. It follows instantly from the definition of α_S , α_T , β_S and β_T that

$$\begin{split} \alpha_T &= \alpha_{T_0} + \alpha_{T_1} \,, \qquad \beta_T &= \beta_{T_0} + \beta_{T_1} \,, \quad \beta_{T_0} \leq d_{G-S}(T_0) \\ \alpha_S &\leq r, \quad \alpha_T \leq r \,, \qquad \beta_s \leq (m-1)r \,, \qquad \beta_T \leq (m-1)r \\ \alpha_T &\leq r \,, \qquad \beta_T \leq (m-1)r \end{split}$$

The proof of theorem relies heavily on the following lemma.

Lemma 6 Let G = (X,Y,E(G)) be a bipartite (0,mf-(m-1)r)-graph with $m \ge 2$ and $f(x) \ge 2r$ with $r \ge 2$, Then G admits a (g,f)-factor F_1 such that $E_1 \subseteq E(F_1)$ and $E_2 = E(F_1) = \emptyset$.

Proof. by Lemma 2, it suffices to show that for any two subsets $S \subseteq X$ and $T \subset Y$, We have

$$r_{1G}(S,T,g,f) \ge \alpha_S + \beta_T$$

and

$$r_{2G}(S,T,g,f) \ge \alpha_T + \beta_S$$

We prove only the first inequality. The second one can be justified similarly. For S and T, we get that

$$r_{1G}(S,T,g,f) = d_{G-S}(T) - g(T) + f(S)$$

$$= d_{G-S}(T_1) - g(T_1) + f(S) + d_{G-S}(T_0) - g(T_0)$$

$$\geq d_{G-S}(T_1) - g(T_1) + f(S) + \beta_{T_0}$$

$$= \frac{1}{m} d_G(T_1) - g(T_1) + f(S) - \frac{1}{m} d_G(S) + \frac{m-1}{m} d_{G-S}(T_1)$$

$$+ \frac{1}{m} d_{G-T_1}(S) + \beta_{T_0}$$

By Lemma 4 and Lemma 3, we have

$$r_{1G}(S,T,g,f) = \Delta_1(T_1) + \Delta_2(S) + \frac{m-1}{m}d_{G-S}(T_1) + \frac{1}{m}d_{G-T_1}(S) + \beta_{T_0}(S) + \beta_{T_0}(S)$$

$$\geq \frac{r|T_1|}{m} + \frac{(m-1)r}{m}|S| + \frac{m-1}{m}d_{G-S}(T_1) + \frac{1}{m}d_{G-T_1}(S) + \beta_{T_0} \tag{1}$$

Now let us distinguish among four cases.

Case 1. If $S = \phi, T_1 = \phi$, then $\alpha_S = 0, \beta_{T_1} = 0$ In view of (1), we have

$$r_{1G}(S,T,g,f) \ge \frac{r|T_1|}{m} + \frac{(m-1)r}{m}|S|$$

$$+ \frac{m-1}{m}d_{G-S}(T_1) + \frac{1}{m}d_{G-T_1}(S) + \beta_{T_0}$$

$$=\beta_{T_0}=\alpha_S+\beta_{T_1}+\beta_{T_0}=\alpha_S+\beta_T$$
 $S=\phi,T_1\neq\phi$. Then $\alpha_S=0$.

According to the definition of T_1 , It is easy to see that

$$g(x) \ge 1, \quad \forall x \in T_1$$

Note that $g(x) = \max\{0, d_G(x) - ((m-1)f(x) - (m-2)r)\}$. For $\forall x \in$ T_1 . We have

$$g(x) = d_G(x) - ((m-1)f(x) - (m-2)r) \ge 1$$

i.e.

$$d_G(x) \ge (m-1)f(x) - (m-2)r + 1$$

$$\ge 2r(m-1) - (m-2)r + 1$$

$$= mr + 1 \qquad (x \in T_1)$$
(2)

From (1) and (2), we get that

$$r_{1G}(S,T,g,f) \ge \frac{m-1}{m} d_G(T_1) + \beta_{T_0} \ge \frac{m-1}{m} d_G(x) + \beta_{T_0} \qquad (x \in T_1)$$

$$\ge \frac{m-1}{m} (mr+1) + \beta_{T_0} = (m-1)r + \frac{m-1}{m} + \beta_{T_0}$$

$$\geq (m-1)r + \beta_{T_0} \geq \beta_{T_1} + \beta_{T_0} = \beta_T = \alpha_S + \beta_T$$
 If $S \neq \phi, T_1 = \phi$, then $\beta_T = 0$

Thus, we have

$$\begin{split} r_{1G}(S,T,g,f) &= d_{G-S}(T) - g(T) + f(S) \\ &= d_{G-S}(T_1) - g(T_1) + f(S) + d_{G-S}(T_0) - g(T_0) \\ &\geq d_{G-S}(T_1) - g(T_1) + f(S) + \beta_{T_0} \\ &= f(S) + \beta_{T_0} \geq 2r |S| + \beta_{T_0} \geq r + \beta_{T_0} \\ &\geq \alpha_S + \beta_{T_0} = \alpha_S + \beta_{T_0} + \beta_{T_0} = \alpha_S + \beta_{T} \end{split}$$

se 4. $S \neq \phi, T_1 \neq \phi$. Note that $d_{G-T}(S) \geq \alpha_S$. According to (1) and (2), we get that

$$\begin{split} r_{1G}(S,T,g,f) &= \Delta_{1}(T_{1}) + \Delta_{2}(S) + \frac{m-1}{m} d_{G-S}(T_{1}) + \frac{1}{m} d_{G-T_{1}}(S) + \beta_{T_{0}} \\ &\geq \frac{r|T_{1}|}{m} + \frac{(m-1)r}{m} |S| + \frac{m-1}{m} d_{G-S}(T_{1}) + \frac{1}{m} d_{G-T_{1}}(S) + \beta_{T_{0}} \\ &= \frac{r|T_{1}|}{m} + \frac{(m-1)(r-1)}{m} |S| + \frac{m-1}{m} (d_{G-S}(T_{1}) + |S|) + \frac{1}{m} d_{G-T_{1}}(S) + \beta_{T_{0}} \\ &\geq \frac{m-1}{m} d_{G}(x) + \frac{1}{m} d_{G-T_{1}}(S) + \frac{r}{m} + \frac{(m-1)(r-1)}{m} + \beta_{T_{0}} \qquad (x \in T_{1}) \\ &\geq \frac{m-1}{m} (mr+1) + \frac{1}{m} \alpha_{S} + \frac{r}{m} + \frac{(m-1)(r-1)}{m} + \beta_{T_{0}} \\ &\geq (m-1)r + \frac{1}{m} \alpha_{S} + \frac{r}{m} + \frac{(m-1)r}{m} + \beta_{T_{0}} \end{split}$$

$$\geq \beta_{T_1} + \beta_{T_0} + \frac{1}{m} \alpha_S + \frac{m-1}{m} \alpha_S = \alpha_S + \beta_T$$

Completing the proof.

Now we are ready to prove the theorem.

Theorem1. Let G be a bipartite (0, mf - (m-1)r)-graph. Let f be one integer-valued function defined on V(G) such that $f(x) \ge 2r$ for each $x \in V(G)$, and H be an mr-subgraph of G. Then G has a (0, f)-factorization randomly r-orthogonal to H.

Proof. According to Lemma 5, the theorem is trivial for r=1. In the following ,we consider $r\geq 2$. Let $\{A_1,A_2,!,A_m\}$ be any partition of E(H) with $|A_i|=r,1\leq i\leq m$. We prove that there a (g,f)-factorization $F=\{F_1,F_2,!,F_m\}$ of G such that $A_i\subseteq E(F_i)$ for all $1\leq i\leq m$. We apply induction on m. The assertion is trivial for m=1. Suppose the result holds for m-1, let us proceed to the induction step.

Let $E_2=E(H)\setminus A_1$. By Lemma 6, G has a (g,f)-factor F_1 such that $A_1\subseteq E(F_1)$ and E_2 " $E(F_1)=\phi$. Clearly, F_1 is also a (0,f)-factor of G. Set $G'=G-E(F_1)$. It follows from the definition of g(x) that

$$0 \le d_{G'}(x) = d_{G}(x) - d_{F_1}(x) \le d_{G}(x) - g(x)$$

$$\le d_{G}(x) - [d_{G}(x) - ((m-1)f(x) - (m-2)r)]$$

$$= (m-1)f(x) - (m-2)r$$

Hence G' is a bipartite (0,(m-1)f-(m-2)r)-graph. Let $H'=G[E_2]$. Then the induction hypothesis guarantees the existence of a (0,f)-factorization $F'=\{F_2,!,F_m\}$ in G' which satisfies $A_i\subseteq E(F_i), 2\le i\le m$. Hence G has a (0,f)-factorization which is randomly r-orthogonal to H.

Completing the proof.

Remark 1. Apperently, the lower bound 0 in Theorem 1 is sharp in any sense. The upper bound mf - (m-1)r is necessary in the proof of Lemma 3. In this sense, Theorem 1 is the best possible. In the proof of Lemma 6, it is required that $f(x) \ge 2r$ for all $x \in V(G)$. We do not know whether the condition $f(x) \ge 2r$ can be improved.

References

[1] B. Alspach, K. Heinrich, G. Liu, Orthogonal factorizations of graphs, in :J.H.Diuctz, D.R. stinson(Eds.), Contemporary Design Theory: A Collection of Surveys, Wiley, New York, 1992, pp. 13-37.

- [2] Bondy J A , Murty U S R, Graph with Applications. London: MacMillan, 1976.
- [3] G. Li, G. Liu, (g, f)-factorizations orthogonal to a subgraph in graphs, Sci. China Ser.A 49 (1998)267-272.
- [4] P.CB. Lam , G. Li, G. Liu, W.C. shiu, Orthogonal (g, f) -factorizations in networks, Networks 35(4)(2000)274-278.
- [5] R.P. Anstee, L. Caccetta, Orthogonal matchings, Discrete Math. 179(1998)37-47.
- [6] G. Li, C. Chen, G. Yu, Orthogonal factorizations of graphs, Discrete Math. 245(2002)173-194.
- [7] H. Feng, On orthogonal (0, f) -factorizatons, Acta Mathematica Scientia, 19(3)(1999)332-336.
- [8] G. Liu, B. Zhu, some problems on factorizations with constraints in bipartite graphs, Discrete Applied Math. 28(2003)421-434.
- [9] J. Akiyama, M. Kano, Factors and factorizations of graphs a survey, J. Graph Theory 9 (1985) 1-42.