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Abstract

Let G=(X,Y,E(G)) be a bipartite graph with vertex set V(G)= X
1Y and edge set E(G), and let g, f be two nonnegative integer-valued
functions defined on V(G) such that g(x) < f(x) foreach x e V(G). A
(g, f) factor of G is a spanning subgraph F of G such that g(x)<
do(x) < f(x) for each xeV(F); a (g, f) -factorization of G is a
partition of E(G) into edge-disjoint (g, f) -factors. Let F ={F,,F,," ,
F,} bea factorization of G and H be a subgraph of G with mr edges.
If F,1<i<m,hasexactly r edgesin common with H, we say that F is
7 -orthogonal to H'. In this paper it is proved that every biparite (0, mf —
(m—1)r) -graph has (0, f) -factorizations randomly r -orthogonal to any
given subgraph with mr edgesif 2r < f(x) forany xe V(G).
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1 Introduction

Orthogonal Factorizations in the graphs are very useful in combinatorial
design, network design, circuit layout and so on [1]. Graphs considered in this
paper will be finite undirected simple graphs. Let G be a graph with vertex set
V(G) andedgeset E(G).The degree of a vertex x isdenoted by d(x).
Let gand f be two nonnegative integer-valued functions defined on
V(G) suchthat g(x)< f(x) foreach xe€V(G).Thena (g, f)-factor
of G is a spanning subgraph F of G with g(x)<d,(x)< f(x) for
each x € V(F). In particular, G iscalleda (g, f)-graphif G itselfisa
(g, f)-factor. A subgraph H of G is called an m -subgraph if H has
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m edges in total. A (g, f)-factorization F ={F,F,,! ,F,} of G isa
partition of E(G) into edge-disjoint (g, f)-factors F|,F,,! ,F,.Let a
and b be two nonnegative integers with a<b . If g(x)=a and
f(x)=b for each xeV(G), then a (g, f) -factor is called an
[a,b]-factor. Let H bea mr -subgraph of a graph G . A (g, f) -factorization
F={F,F, | ,F,} is r-othogonal to H if |E(H)" E(F)|=r
for 1<i<m . If for any partition {A,A,,! ,A,} of E(H) with
Ml:r there is a (g, f) -factorization F ={F,,F,,! ,F, }of G such
that A < E(F,),1<i<m, then we say that G has (g, f) -factorizations
randomly 7 -orthogonal to H . Other definitions and terminologies can be
found in [2].

A graph denoted by G =(X,Y,E(G)) is a bipartite graph with vertex
bipartition (X,Y) and edge set E(G). Alspach et al. [1] posed the
following problem: given a subgraph H , does there exist a factorization F
of G with some fixed type orthogonal to H ? Li and Liu [3] gave a sufficient
condition for a graph to have a (g, f) -factorization orthogonal to any given
m -subgraph. Lam et al. [4] studied orthogonal factorizations of graphs . Anstee
and Caccetta [5] discussed orthogonal matchings. Li et al. [6] studied orthogonal
(g, f) -factorizations of (mg +k,mf —k) -graphs. Feng [7] proved that
every (0,mf —m+1)-graph has a (0, f') -factorization orthogonal to any
given m -subgraph. Liu and Zhu [8] proved that every bipartite (mg +m — 1,
mf —m+1) -graph has the randomly K -orthogonal (g, f) -factorizations.
The purpose of this paper is to solve some problems on orthogonal
factorizations for bipartite (0,mf —(m—1)r) -graphs. It is shown that a
bipartite (0,mf —(m—1)r)-graph G has (0, f) -factorizations randomly
r -orthogonal to any given mr -subgraph if 2r < f(x) forany xeV(G).

2 Preliminary results

Let G be a graph , and let S and T be two disjoint subsets of
V(G). We denoted by E;(S,T) the set of edges with one end in S and
the other in T, and by e,(S,T) the cardinality of E;(S,T). For
ScV(G) and Ac E(G),G-S is a subgraph obtained from G by
deleting the vertices in S together with the edges to which the vertices in §
incident , and G— A is a subgraph obtained from G by deleting the edges
in A, and G[S](rep.G[A]) is a subgraph of G induced by S (rep. A).

For a subset X of V(G), we write f(X) = zxe X f(x) for any function

f defined onV(G) and define f (¢) =0 .Specially,d;(X) = ), _ dg(x).
Folkman and Fulkerson [9] obtained the following necessary and sufficient

condition for the existence of a (g, f) -factor in a bipartite graph (see Theorem

6.8 in [9]).
Lemmal Let G=(X,Y,E(G)) beabipartite graphand let g and
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J be two nonnegative integer-valued functions defined on V(G) such that
g(x)< f(x) for each x€V(G). Then G has a (g, f)-factor if and
onlyifforall Sc X, TcY,

r]c,‘(SaT,g1f)=f(S)_g(T)"'dG_s(T)ZO

and

rzo(S’T’g9f)=f(T)_g(S)+dG_7'(S)ZO
Note that d; ((T)=e;(T,X\S) and d; ,(S)=¢,(S,Y\T). Let
E, and E, betwodisjoint subsetsof E(G) andlet Sc X,T Y .Set

Eis =Ei ! EG(S,Y\T), EiT =E,. ! EG(T,X\S) for i=1,2

and set

) =|ElS| » Oy =|E17'|’ By =|Ezs| . Br =|Ezrl
It is easily seen that ag<d; ,(S), a,<d, (T), p, <d, ((T),
Bs <d;_ . (S).

Liu and Zhu [8] give a necessary and sufficient condition for a bipartite
graph to admita (g, f)-factor containing E, and excluding E,.

Lemma 2 ( Liu and Zhu [8]) Let G=(X,Y,E(G)) be a bipartite
graphandlet ¢ and f be two nonnegative integer-valued functions defined
on V(G) such that g(x)< f(x) for each xeV(G), and let E, and
E, be two disjoint subsets of E(G). Then G has a (g, f)-factor F
such that E, C E(F) and E, ! E(F)=¢ ifandonlyif forall Sc X,
TCY,

ne(S.T, 8, flzas+p;
and

he(S.T, g8, f)Za, + f

In the following , we always assume that G is a bipartite (0, mf —(m —
1)r)-graph,, where m>1 and r=>1 isintegers. Define

g(x) =max{0,d;(x) - ((m-1) f(x)—(m-2)r)}

A =L d (x)-g(®)
m

A,(0) = F(x) —%dc(x)
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By the definitions of g(x),A;(x) and A,(x),We have the following
Lemma.
Lemma3. Forall x € V(G) the following inequalities holds:
(1) If m=2,then 0< g(x)< f(x)
@ I g(x)=d;(x)-((m-1)f(x)-(m=2)r), then

A (x) 2—
m

(m-Dr

B3 A=

Proof. (1) Note that G is a bipartite (0,mf —(m—1)r) -graph, where
m =2 isaninteger. Since 0<mf —(m—1)r,wehave

(m-Dr

fx)=

Note that f (x) is nonnegative integer-valued function . Then f(x) 21.
If g(x)=0,then 0< g(x)< f(x).
If g(x)=dg;(x)—((m—-1)f(x)-(m—2)r),then
fx)-g(x)= f(x)-dg(x)+(m=1) f(x)-(m-2)r
=mf (x)-(m=-2)r—d;(x)
2mf(x)=(m-2)r —(mf(x)—(m-Dr)=r 21
Hence we get that
0<gx < f(x)
@ If g(x)=dgs(x)-((m-1)f(x)—(m—2)r),then

A(%) = ~d () - g(x)
m
=%dc(x)—[dc(x)—((m—l)f(x)—(m—2)r)]

=1_”’d (x)+(m=1) f(x) - (m=2)r
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zI"Tm(mf(x)—(m—lm+(m~1)f(x>—(m—2)r

=(1-m)f(x)+(m-Dr-

(m;l)r +(m—=1) f(x) - (m~2)r

I
'

() A0 = £~ dy(x) 2 ()= (mf () (m-D)r)
m ni

(m=-NDr (m-Dr
m  om

=f(x)— f(x)+

completing the proof.
Lemmad4. Forany SC X and TCY,

rlc(S,T,gaf)=A.(T)+Az(S)+ﬂn*;—ldG_s(T)+%dc_T(5)
and
(5,78, F) = 8,(S)+ 4,(T) + 2 )+ dGS(T)

Proof. We prove only the first equality. The second one can be verified similarly.
According to the definition of 7, we have

16 (S.T,8,f)=dg_s(T)-g(T)+ f(S)
=dg(T)—¢e5(S,T)~g(T)+ f(S)

= (R d, (1) - 8T+ (F(S) -~ (5)
m m

1
+”’7da S(T)+— dG ~(S)
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A+, +"La e, s)
m m

Completing the proof.

Lemma 5 (Feng [7]) Let G be a (0,mf —m+1) -graph, let f be
one integer-valued function defined onV (G ) such that f(x) >0, and let H
be an m -subgraph of G . Then G has a (0, f) -factorization orthogonal
to H.

3 Main result and proof

In this section, we are going to state our main theorem ,and present a proof
of it.

Let G be a bipartite graph, let H be an mr -subgraph of G, and let
E, be an arbitrary subset of E(H) with IE,\ =r.Put E,=E(H)\E,.
Then |E2| =(m—1)r . For any two subsets SC X and TCY et
g(x),E E. for i=1,2,0,,0,,B; and B, be defined as in Section 2
and T, ={xTx€T,g(x) =0} , T,=T\T, . It is easily seen that
T=T,!T and T, " T, =¢. It follows instantly from the definition of
ag, o, Bs and S that

ar =a,; +a;, Br =,B,0 +Br. Br, <dgs(Ty)
ag<r, o <r, B, <(m-Dr, B, <(m-Dr
ap <r, pr <(m-Dr
The proof of theorem relies heavily on the following lemma.

Lemma 6 Let G=(X,Y,E(G))be a bipartite (0,mf —(m—1)r)-
graph with m>2and f(x)22r with r>2 Then G admits a (g, f)-
factor F, suchthat E, ¢ E(F)) and E, " E(F))=¢.

Proof . by Lemma 2, it suffices to show that for any two subsets § < X and
T cY,Wehave

rhe(S,T,8, f)zas+pB;

and

(S, T,8, f)z o, + B

We prove only the first inequality . The second one can be justified similarly.
For S and T, we getthat

rlG(S’T’g’f) =do-s(T)"8(T)+f(S)
=dg s(T) - 8T+ f(S)+d;_(Ty) - &(Ty)
2d;_(T)-gT)+ f(S)+ By,
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= La,@y-emy+ £8)-Lays)+ L, 1)
m m m

1
"'_da—r. (S)+ ﬁn.
m
By Lemma 4 and Lemma 3, we have

o(S.T.8. 1) = (1) +8y(8) + 7 ! o5 ()4 dG,(S)+BT

r|T| (m— l)r
m

1]+ E=dy_ (1)) +— dGT(S)+/37~ )

Now let us dnstmgulsh among four cases.
Casel. If S=¢,7,=¢, then a;=0,5.=0

In view of (1), we have

(m-Dr

T,
’iG(S’ngaf)Z%"' ISI

m

1
+T——dc S(T)+ ~dg.(8)+ By,

=P, =05+ P+ B, =as+ B,
Case2. S=¢,7,#¢.Then a =
According to the definition of T}, Itis easy to see that

gx)21, VxeT
Note that g(x) = max{0,d;(x)—((m~1) f(x)—(m—-2)r)}. For Vxe
T,. We have

8(x) =ds(x)=((m=1 f(x)—(m-2)r)21

ie.
de(x)2(m=-1)f(x)—(m-2)r+1
22rm-1)—-(m-2)r+1

=mr+1 (xeT)) )]
From (1) and (2), we get that
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m-1 m-1
T.G(S,T,g,f) 2——dc(7})+ﬂ7;)2 G
m m

(xeT)

(mr+1)+,37 =(m- 1)r+

+ﬂ,0

2(m-Dr+p, 2+, =Br =05+ B
Case 3 If S#£¢,7,=¢,then B =0
Thus, we have

n6(S.T,8,f)=dss(T)~ 8T+ f(S5)
=d;_s(T))-g(M)+ f(S)+d;_ (Ty) - g(Ty)
2d;_s(T))-g(T)+ f($)+ B,
= F(S)+ B 22r|S|+ B 2r+ B

20 +ﬂ1‘ =0 +ﬁ7, +ﬁ1;, =a; +f;
Case 4. ST #¢.
Note that d;_ T(S)>as According to (1) and (2) , wegetthat

0(S.T8,) = BT+ Ay(8)+ P2l o (1) + - ()4 B

|T| (m- l)r
m

|s| GS(T)+ dGT(S)+,BT

T,
S l,:fr 1)|s| " s 0[S+ do ()4

m

(m- 1)(r 1)

G,(S)+ + + By, (xeT)

m- 1 (m I)(r-1)

2 (mr+l)+ o+
m

+ P,

m

(m-Dr

z2(m-r+— L oy +— .
m m

+Pr,
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1 m-—1
2,(3.,i +:3n, +;as+————m o, =05+

Completing the proof.

Now we are ready to prove the theorem.

Theoreml. Let G be a bipartite (0,mf —(m—1)r)-graph . Let f

be one integer-valued function defined on V(G) such that f(x)>2r for
each xeV(G), and H be an mr -subgraph of G . Then G has a
(0, f) -factorization randomly r -orthogonal to H .
Proof. According to Lemma 5, the theorem is trivial for # =1. In the
following ,we consider r>2. Let {A,A,,! ,A,} be any partition of
E(H) with IAI =r,1 <i<m.We prove that there a (g, f) -factorization
F={F,F,,! ,F,} of G suchthat A c E(F) forall 1<i<m.We
apply induction on m . The assertion is trivial for m =1.Suppose the result
holds for m —1 ,let us proceed to the induction step.

Let E,=E(H)\A.ByLemma6, G hasa (g, f)-factor F, such
that A C E(F) and E, " E(F))=¢. Clearly, F, is also a (0, f) -
factor of G . Set G'=G — E(F,). It follows from the definition of g(x)
that

0<d,(x)=dg(x) —dg(x) <dg(x)-g(x)
Sdg(x)-ldg(x)=((m=1) f(x) ~ (m~2)r)]

=(m-1)f(x)-(m-2)r
Hence G’ is a bipartite (0,(m—1)f —(m—2)r) -graph. Let H'=GIE,].
Then the induction hypothesis guarantees the existence of a (0, f) -
factorization F'={F,,! ,F,} in G' which satisfies A c E(F),2<i
<m.Hence G hasa (0, f) -factorization which is randomly r -orthogonal
to H.
Completing the proof.

Remark 1. Apperently, the lower bound 0 in Theorem 1 is sharp in any
sense . The upper bound mf —(m—1)r is necessary in the proof of Lemma 3.
In this sense , Theorem 1 is the best possible . In the proof of Lemma 6 , it is
required that f(x)2>2r for all x€V(G). We do not know whether the
condition f(x)=2r canbeimproved.
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