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Abstract

An orientation of a simple graph G is called an oriented graph. If
D is an oriented graph, §( D) its minimum degree and A(D) its edge-
connectivity, then A(D) < §(D). The oriented graph is called max-
imally edge-connected if A(D) = §(D) and super-edge-connected, if
every minimum edge-cut is trivial. In this paper we show that an
oriented graph D of order n without any clique of order p + 1 in its
underlying graph is maximally edge-connected when

n§4|\M}—l.
p—1

Some related conditions for oriented graphs to be super-edge-connected
are also presented.

Keywords: oriented graph, edge-connectivity, super-edge-connectivi-
ty, cliqgue number
1. Introduction and terminology
We consider finite digraphs without loops and multiple edges. A digraph

without any directed cycle of length 2 is called an oriented graph. For a
digraph D the vertex sct is denoted by V(D) and the edge set (or arc set)
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by E(D). If zy is an arc, then we also write  — y and say = dominates y.
We define the order of D by n = n(D) = |V(D)| and the size by |E(D)].
For a vertex v € V(D) of a digraph D let d*(v) = d}(v) its out-degree
and d~(v) = dp(v) its in-degree. The minimum out-degree and minimum
in-degree of a digraph D are denoted by d+ = 6¥(D) and 6— =6~ (D) and
8 = §(D) = min{d+ (D), 6 (D)} is its minimum degree.

A digraph D is strongly connected or simply strong if for every pair u,v
of vertices there exists a directed path from » to v in D. A digraph D is k-
edge-connected if for any set .S of at most k — 1 edges the subdigraph D - S
is strong. The edge-connectivity A = A(D) of a digraph D is defined as the
largest value of k such that D is k-edge-connected. Because of A(D) < 6(D),
we call a digraph D mazimally edge-connected if A(D) = 6(D). A digraph
is super-edge-connected or super-A, if every minimum edge-cut is trivial,
that means, that every minimum edge-cut consists of edges adjacent to or
from a vertex of minimum degree.

For two disjoint vertex sets X and Y of a digraph D let (X,Y’) be the
set of edges from X to Y. If D is a digraph, then its underlying graph
G(D) is the graph obtained by replacing each arc of D by an undirected
edge joining the same pair of vertices. If D is an oriented graph with the
property that the underlying graph G(D) contains no complete subgraph
of order p+1, then we say that the clique number w(D) is less or equal p. If
D is an oriented graph with clique number w(D) < p, then the well-known
Theorem of Turén [18] leads to the fundamental upper bound

IE(D)| < ’%W(Dn? (1)

A p-partite tournament is an orientation of a complete p-partite graph. For
other graph theory terminology we follow Bondy and Murty {4] or Char-
trand and Lesniak [6].

Sufficient conditions for digraphs to be maximally edge-connected or
super-\A were given by several authors, for example by Balbuena and Car-
mona [2], Balbuena, Carmona, Fabrega and Fiol (3], Carmona and Fabrega
(5], Dankelmann and Volkmann (7}, Fabrega and Fiol [8], Fiol [9, 10], Geller
and Harary [11], Hellwig and Volkmann [12, 13, 14], Imase, Soneoka and
Okada (15), Jolivet [16], Soneoka [17], Volkmann [19] and Xu [20]. How-
ever, closely related conditions for maximally edge-connected and super-
edge-connected oriented graphs have received little attention until recently.
In this paper we will present some new sufficient conditions for oriented
graphs to be maximally edge-connected and super-), respectively.
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2. Maximally edge-connected oriented graphs

We start with a simple observation, which play an important role in our
investigations.

Lemma 2.1 Let D be an oriented graph of edge-connectivity A, §t =
0t(D), 8~ =6(D) and § = 6(D) > 1. If A < §, then there exist two
disjoint sets X,Y C V(D) with XUY = V(D) and |(X,Y)| = A such that
|X|>26*+1and |Y]|> 26~ +1.

Proof. Let X, Y C V(D) be two disjoint sets with XUY = V(D) such that
|(X,Y)| = A. By reason of symmetry we only prove |X| > 26% + 1. If we
suppose to the contrary that | X| < 26+, then we arrive at the contradiction

| XI(X]—1
2

IX16t < Y d¥ (@) < ) A<HH (X - 1)+ 6% —1. O

z€X

Corollary 2.2 Let D be an oriented graph of order n, A = A\(D), §+ =
0*(D),6- =6~ (D)and§ = (D) > 1. If 6t +6~ > [(n—1)/2], then A = 4.

Corollary 2.3 (Ayoub, Frisch [1] 1970) If D is an oriented graph with
minimum degree §(D) > [(n(G) — 1)/4], then A(D) = §(D).

Using Turdn’s inequality (1), we will present some analogue results for
oriented graphs D with clique number w(D) < p.

Theorem 2.4 Let p > 2 be an integer, and let D be an oriented graph
with clique number w(D) < p, A = A(D), 6+ = §+(D), §~ = 6~(D) and
6 =6(D) 2 1. If A < 4, then there exist two disjoint sets X,Y C V(D)
with X UY = V(D) and |[(X,Y)| = A such that

pdt pé
> i > .
|X|_2L’_1J and |Y| 2[1) IJ

Proof. Let X,Y C V(D) be two disjoint sets with X UY = V(D) such
that [(X,Y)| = A. By reason of symmetry we only prove the desired bound
for the set X. If 6+ = k(p — 1) + r with integers & > 0 and r such that
0<r<p-2,then

+ — 1§+ + 5+
[pé le(p 1)0* 44 J=6++k.
p—1 p—1

This shows that our statement is equivalent to | X| > 26+ + 2k. In view of
Lemma. 2.1, the desired bound is valid for £ = 0. Thus we only consider
the case that £ > 1 in the following.
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First assume that |X| < 26% + 2k — 2. This assumption and Turén’s
inequality (1) imply

IX|6* < > d*= y< P |X|2+,\
z€X
< |X|’i:—1(25++2k-2)+5+-

|X| Pt ph—1y 46t -

It follows that
\X|(k(p—1)+r+k—1-p(k—1)) = |X|(6* +k—1-p(k—1)) < p(6* 1),

and this leads to

+ +
x| < POT =D 2@t 1)
p+r—1 p—1
Because of p(6+ — 1)/(p — 1) < 26, we obtain |X| < 26%, a contradiction
to Lemma 2.1. Hence we have shown that | X| > 26% + 2k — 1.
Second we assume that | X| = 26% + 2k — 1. Again (1) yields

X6t < Y dt(= )< P~ ]X|2+A
z€X

< |X| (25++2k—1)+6+—1

It follows that
[X1(26% +2k —1-2kp+p)) < 2p(6% - 1),
and this leads to
2p(6+ - 1)
p+2r— 1°

Since k,8 > 1, we observe that 2p(d* — 1)/(p + 2r — 1) < 26% + 2k — 2,
and thus we arrive at the contradiction 26%+2k—1 = | X| < 26+ +2k-2. O

1X| <

Corollary 2.5 Let p > 2 be an integer and let D be an oriented graph of
order n with clique number w(D) < p, A = A(D), 6t =6*(D), 6~ =6-(D)
and § =6(D) = 1. If

-+ -
a2l
p—1 p—1

then A = 4.
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Corollary 2.6 Let p > 2 be an integer and let D be an oriented graph of
order n with clique number w(D) < p, edge-connectivity A and minimum
degree 6 > 1. If

pé

<4 |21 -
n_4[p_1J 1,

then A =4.

Corollary 2.7 Let D be a bipartite oriented graph of order » with edge-
connectivity A, minimum out-degree 6%, minimum in-degree §~ and mini-
mum degree § > 1. If

§t+467 > [nzl],

then \ = 6.

Let p > 2 be an integer, and let T be a regular p-partite tournament
with the partite sets V1, V3,...,V, such that [Vj| = |Va| =... = |V, | =2r
for an integer > 1. If D consists of two disjoint copies of T', then w(D) < p,
n(D) = 4pr, §(D) = §*(D) = 6~ (D) = r(p—1) and A(D) = 0. This family
of examples show that Theorem 2.4 as well as Corollaries 2.5 - 2.7 are best
possible.

3. Super-edge-connected oriented graphs

Theorem 3.4 in Fiol’s article [9] states that the conditions in Corollary
2.7 is sufficient for a bipartite oriented graph to be super-\. However, the
next example will show that this is not valid in general.

Example 3.1 Let T be the bipartite oriented graph of order 14 with the
partition sets

. A _ Y
X = {111121:”31‘7:4,1:1)-7:27533} and Y = {yl,y27y3,y1:y2ay3)y4}

such that y1 = 21 - yp — 22 = y3 = 23 — Yo — T, y3 — 24 — o,
T — Y3, {.’132,333,184} - Yy — a:,lv y,1 hd "E’l —* yé - 3,2 . yé - "Dg - yé’
T - Yy — 23—y, 2 — {yh, ¥4}, Th — Yl and g -z for 1 < 4,5 < 4.

Now n(T) = 14, 6(T) =8t (T) =6 (T) = 2,4 = 6*(T)+ 6~ (T) =
[(n(T) + 1)/4] and thus X\(T') = §(T) = 2 by Corollary 2.7. However, T is
not super-J, since S = {y;z}, yoz5} is a minimum edge-cut.

Corresponding examples also exist for every 6 = 6~ > 3. In this scc-

tion, we will present (see Corallary 3.9 below) a correct sufficient condition
for bipartite oriented graphs to be super-edge-connected.
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Lemma 3.2 Let D be an oriented graph with A = A(D), 6+ = §+(D),
0~ =6"(D) and § = §(D) = 2. If D is not super-A, then there exist two
disjoint sets X,Y C V(D) with XUY = V(D) and |(X,Y)] = A such that
1X| > 26% and |Y| > 26~

Proof. Since D is not super-), there exist two disjoint sets X,Y C V(D)
with X UY = V(D) and |(X,Y)| = X such that |X|,|Y| > 2. We only
prove the desired bound for the set | X|.
First suppose that | X| < §*. It follows that
+ -
X|6* < 3 at(m) < EIXI=D |y XD g
zeX 2 2

and this implies the contradiction 6%|X| < é*. Hence we have shown that
|X| >6t+1.
Second suppose that [X| < 26+ — 1. This leads to

xjo < 3 () <« KUEIZD |y < pxyer -1 6%,
zeX

and we obtain the contradiction [X| < é+. O.

Corollary 3.3 (Fiol [9] 1992) Let D be an oriented graph of order n, A =
MD), 6+ = 6+(D), 6~ =6~(D) and § = §(D). If 6+ + 6~ > [(n+1)/2],
then D is super-\.

Theorem 3.4 Let p > 2 be an integer, and let D be an oriented graph
with w(D) < p, A = A(D), §t =8+ (D), 6~ =6-(D) and § = 6(D) > 2.
If D is not super-A, then there exist two disjoint sets X,Y < V(D) with
XUY =V(D) and |(X,Y)| = A such that

|X|>2[3”‘S J—2and |Y|>2lp6 J—z.
1 p—1

Proof. Since D is not super-), there exist two disjoint sets X,Y c V(D)
with X UY = V(D) and |(X,Y)] = A such that | X|,|Y| > 2. We only
prove the desired bound for the set X. If 6+ = k(p — 1) + r with integers
k > 0 and r such that 0 < r» < p — 2, then our statement is equivalent to
|X| > 26% + 2k — 2. In view of Lemma 3.2, the bound is valid for k£ < 1.
Thus let & > 2 in the following. Assume that |X| < 26+ + 2k — 3. This
assumption and inequality (1) imply

Xlo* < 3 d¥(s) < B |X|2+A < IX12= 1(26++2k 3) + 5+,
z€X
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It follows that
2pét < 2pst

+2r-3 = 3p-3"
Because of 2pd* /(3p — 3) < 26* — 1, we obtain |X| < 267 — 1, a contra-
diction to Lemma 3.2. O

<
1X| < &

Corollary 3.5 Let p > 2 be an integer, and let D be an oriented graph
with w(D) < p, A = A(D), 6t =6H(D), 6~ =6~ (D) and § = 6(D) > 2.
Then D is super-A when

+ —
nSQ[iJ+2[ﬂ5—J _s5.
p—1 p—1

The next example will show that Theorem 3.4 and Corollary 3.5 are
best possible for the case that 6* =6~ =d=p—1.

Example 3.6 Let p > 3 be an integer, and let D} be a (p — 1)-regular
p-partite tournament with the partite sets {uy,v1}, {ug,va},..., {up, vp}
such that {us,us,...,up} — u;. In addition, let D} be a (p — 1)-regular
p-partite tournament with the partite sets {z1,y1}, {22,92},...,{2p, ¥p}
such that z, — {z3,23,...,2,}. If D; = D| —u; and Dy = D} — z1, then
let D be the p-partite tournament consisting of the disjoint union of Dy
and Dj such that {vi,y1} and {u;,vs,2i,9:} for 2 < i < p are the partite
sets of D together with edge set

S = {uoxs, usxyq,. .., Up_1Tp, UpZa}

and all further possible edges from D> to D,. The resulting p-partite tour-
nament D is of order n(D) = 4p — 2 such that §*(D) = 6~ (D) = §(D) =
P — 1. According to Corollary 2.6, we deduce that A(D) = §(D) = p — 1.
However, since S is a minimum edge-cut, D is not super-A.

In the cases that § # p— 1 or § # t(p — 1) for any integer ¢ > 1, we are
able to present better bounds.

Theorem 3.7 Let p > 2 be an integer, and let D be an oriented graph
with w(D) < p, A = A(D), 6+ = §+(D), 6~ =6~ (D) and § = §(D) > 2.
If D is not super-A and 6+ # p~1 or 6~ # p — 1, then there exist two
disjoint sets X,Y C V(D) with XUY = V(D) and |[(X,Y)| = A such that

.*. -
X122 | 2| Cror vy sz | 2| -t
p—1 p—1

Proof. Since D is not super-A, there cxist two disjoint sets X,Y C V(D)
with X UY = V(D) and |(X,Y)| = A such that |X|,|Y| > 2. We only
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prove the desired bound for the set X. If 6* = k(p — 1) + r with integers
k > 0 and 7 such that 0 < r < p — 2, then our statement is equivalent to
|X| > 26% + 2k — 1, where 7 > 1 when k = 1. In view of Lemma 3.2, the
bound is valid for k = 0. Thus let in the following £ > 1 and r > 1 when
k = 1. Because of Theorem 3.4, we know that |X| > 2§+ + 2k — 2. Assume
that | X| = 26% + 2k — 2. This assumption and inequa.lity (1) imply

X6t < ) dt (@) < <2 |X|2 +A< |X| (25+ 2k —2) + 6%,
xeX

It follows that 5+
P @)
p+r—1

If K = 1, then r > 1 and (2) leads to the |X| < 6%, a contradiction to
Lemma 3.2. If k > 2, then (2) yields

|X] <

+ +
i< P < P st yok-3,
p+r—1"p-1

a contradiction to our assumption.

Corollary 3.8 Let p > 2 be an integer, and let D be an oriented graph
with w(D) < p, A= A(D), 6t =6*(D), 6~ =" (D)and § =4(D) > 2. If
§t#p—-1,0"#p-1and

pé* pJ
<

Corollary 3.9 Let D be an oriented graph of clique number 2, order n,
A= XD), st =6+(D), s~ =6-(D) and § = §(D) > 2. Then D is super-A

when
T +46 > [n+3] .
- 4

For the case that p > 3 and 6+ # t(p — 1) and 6~ # t(p — 1) for any
integer ¢t > 1, we can improve Theorem 2.4 as well as Corollary 2.5.

then D is super-A.

Theorem 3.10 Let p > 3 be an integer, and let D be an oriented graph
with w(D) < p, A= X(D), 6t =6+*(D), 6~ =6-(D)and § =6(D) > 2. If
D is not super-A and 8% # ¢(p — 1) or 6~ # t(p — 1) for an integer ¢ > 1,
then there exist two disjoint sets X,Y C V(D) with X UY = V(D) and
[(X,Y)] = A such that

pét p6‘
> > .
|X|_2[p_1 or Y] 22|
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Proof. Since D is not super-), there exist two disjoint sets X,Y ¢ V(D)
with XUY = V(D) and |(X,Y)| = A such that | X|,|Y| > 2. We only prove
the bound for the set X. If 6% = k(p—1)+r with integers & > 0 and r such
that 1 < 7 < p — 2, then our statement is equivalent to |X| > 26+ + 2k.
In view of Lemma 3.2, the bound is valid for k = 0. Thuslet £k > 1 in
the following. Because of Theorem 3.7, we know that [X| > 26+ + 2k — 1.
Assume that | X| = 26% + 2k — 1. This assumption and inequality (1) imply

26t _ 2pst
p+2r—1"p+1

Because of k > 1, we obtain 2pd*/(p+ 1) < 26% + 2k — 2, and thus we
arrive at the contradiction |X| < 26+ + 2k - 2. O.

|X] <

Corollary 3.11 Let p > 3 be an integer, and let D be an oriented graph
with w(D) < p, A= A(D), 6t =6*(D), " =6"(D)and § =§(D) > 2. If
ot #£t(p—1),8" #t(p~1) for an integer ¢ > 1 and

+ -
n<o| P | o 2|y
p—1 p—1
then D is super-A.
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