Super-edge-connected and Optimally
Super-edge-connected Bi-Cayley graphs

Fengxia Liu and Jixiang Meng*
College of Mathematics and Systems Science,
Xinjiang University, Urumgi, Xinjiang 830046, P.R.China
Email:xjulfx@163.com

Abstract

Let G be a finite group, S(possibly, contains the identity element)
be a subset of G. The Bi-Cayley graph BC(G, S) is a bipartite graph
with vertex set G x {0,1} and edge set {{(g,0),(g95,1)}, g€ G, s €
S}. A graph X is said to be super-edge-connected if every minimum
edge cut of X is a set of edges incident with some vertex. The
restricted edge connectivity A'(X) of X is the minimum number of
edges whose removal disconnects X into nontrivial components. A k-
regular graph X is said to be optimally super-edge-connected if X is
super-edge-connected and its restricted edge connectivity attains the
maximum 2k—2. In this paper, we show that all connected Bi-Cayley
graphs, except even cycles, are optimally super-edge-connected.

Keywords: Super-edge-connected; Optimally super-edge-connected;
Bi-Cayley graphs; Vertex-transitive; Orbit

1 Introduction

Fault-tolerance is one of the main factors which should be taken into
account in the design of an interconnection network. Indeed, it is gener-
ally expected that the system be able to work even if several of its links
fail. Thus, it is often required that the graph associated to the intercon-
nection network be sufficiently connected. In most cases, a good design
requires that the graph has maximum connectivity. Observe that the max-
imum edge connectivity of k-regular graphs is k, and that if X satisfies
A(X) =k, then every set of edges incident with some vertex is a minimum
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edge cut. It is natural to introduce the following definition (see [3]).

Definition 1.1. A k-regular graph X is said to be super-edge-connected
(or simply super-}) if every minimum edge cut is the set of edges incident
with some vertex.

As a natural generalization of classical connectivity, Harary [9] proposed
the concept of conditional edge connectivity of graphs. Let P be a graph
property. The P-edge connectivity A(X, P) of X is the minimum number
of edges whose removal disconnects X into components with property P.
In particular, Esfahanian and Hakimi [6] considered a special kind of con-
ditional edge connectivity which we call restricted edge connectivity.

Definition 1.2. Let X = (V, E) be a connected graph. A set C of edges of
X is called a restricted edge cut if C is an edge cut and every component of
X\C has at least two vertices. The minimum cardinality of all restricted
edge cuts, denoted by X (X), is called the restricted edge connectivity.

Proposition 1.3.[6] Let X = (V, E) be a connected graph with at least four
vertices and it is not a Star graph K, ,,. Then X has restricted edge cuts
and so X' (X) is well defined. Furthermore, A(X) < M(X) < &(X), where
€(X) = min{d(z) + d(y) - 2:e=zy € E}.

Clearly, a graph X is super-) if and only if X' (X) > MX). £ X = (V, E)
is a k-regular connected graph with at least four vertices, then X has re-
stricted edge cuts and A(X) < M(X) <2k -2.

Definition 1.4. Let X be a k-regular connected graph with at least four
vertices. Then X is said to be optimally super-edge-connected (or simply
optimally super-)) if X is super-A and X'(X) = 2k — 2.

Definition 1.5. A bipartite graph X = (A, B) is called semiregular if the
. vertices in the same partition class have the same degree.

A graph X is said to be vertez-transitive if for every two vertices u
and v of X, there is an automorphism of X that maps u to v. Let z €
V(X), we call the set {z9 : g € Aut(X)} an orbit of Aut(X). Clearly, the
automorphism group Aut(X) acts transitively on each orbit of Aut(X). A
graph X is vertex-transitive if and only if Aut(X) has a unique orbit.

Let G be a finite group and S be a subset of G\{1} with § = S~1.
The Cayley graph C(G,S) is the graph with vertex set G and edge set
{gh:g~'h € S}. Xu [14] proposed the definition of Bi-Cayley graphs. Let
G be a finite group, S(possibly, contains the identity element) be a subset
of G. The Bi-Cayley graph BC(G,S) is a bipartite graph with vertex
set G x {0,1} and edge set {{(g,0),(gs,1)}, g € G, s € S}. Obviously,
the graph BC(G, S) is |S|-regular. In this paper, we always assume that



|S| = k.
For any element a in G, the left multiplication

ls: (g,%) = (ag,i), g€G, i=0,1,

is clearly an automorphism of BC(G, S). All these left mutiplications con-
stitute a group Lg which acts transitively on G x {0} and G x {1} re-
spectively. Thus, if Aut[BC(G,S)] has a unique orbit, then BC(G,S) is
a vertex-transitive graph, and if BC(G, S) is not vertex-transitive, then
Aut[BC(G, S)] has exact two orbits.

Tindell [13] characterized super-A transitive graphs and Cayley graphs.
Meng [12] characterized optimally super-) transitive graphs and Cayley
graphs. Here, we prove that all connected Bi-Cayley graphs, except even
cycles, are optimally super-A.

For details on connectivity of bipartite graphs and digraphs, see [1,2,8]
for references. For connectivity of transitive graphs, see [11-13] for refer-
ences.

2 Super-) Bi-Cayley graphs

In this section, we study super-) Bi-Cayley graphs.

Recall that Aut[BC(G,S)] has at most two orbits. If Aut{BC(G,S))
has a unique orbit, then BC(G, S) is a vertex-transitive graph. Tindell [13]
characterized super-) transitive graphs. In fact, he proved:

Theorem 2.1. Let X be a k-regular-connected vertez-transitive graph which
is neither a complete graph nor a cycle. Then X is not super-A if and only
if it contains k-cliques.

For vertex-transitive Bi-Cayley graph, we have the following result.

Corollary 2.2. Let X = BC(G,S) be a connected vertez-transitive Bi-
Cayley graph which is not a cycle. Then X is super-\.

Proof. If X is a complete graph, then X & K,. Thus X is super-A. If
X is not a complete graph which is not super-), then by Theorem 2.1,
it contains k-cliques. Since X is not a cycle, we have k¥ > 3. Thus X
contains triangles, contradicting that BC(G, S) is a bipartite graph. The
result follows. O

Corollary 2.2 assures that vertex-transitive Bi-Cayley graphs which are
not cycles are super-A. However, not all Bi-Cayley graphs are vertex-
transitive. Lu [10] constructed several infinite families of Bi-Cayley graphs
which are edge-transitive but not vertex-transitive (such graphs are called



semisymmetric graphs). In the following, we show that non vertex-transitive
Bi-Cayley graphs are also super-A. We first introduce some notation.

Let X = (V, E) be a connected graph and F' C V be a non-empty set.
We use w(F) to denote the set of edges with exactly one end vertex in F.
The vertex set F is called an edge fragment if |w(F)| = A(X). It is easy to
see that F is an edge fragment if and only if V — F is an edge fragment.
An edge fragment F is called a strict edge fragment if w(F) is a restricted
edge cut. A strict edge fragment of X with minimum cardinality is called
a super edge atom of X. Clearly, the cardinality of a super edge atom of
X is at least 2. Moreover, X has a super edge atom if and only if X is not
super-A.

Let X = BC(G, S) be a connected Bi-Cayley graph which is not vertex-
transitive, and A be a super edge atom of X. Then the intersection of A
and each partition class of X is nonempty. Otherwise, if A is contained
in only one partition class, then |w(A4)| = k|A] = A < § = k, which gives
|A] < 1, contradicting that A is a super edge atom. So, in this paper,
we use A = Ap U A; to denote the super edge atom of a connected Bi-
Cayley graph which is not vertex-transitive, and we always assume that
Ag=AN|[G x {0}], A1 = AN[G x {1}], |Ao| 2 1 and |A4,]| > 1. Tindell
[13] proved the following proposition.

Proposition 2.3. If X = (V, E) is a connected graph which is not a cycle,
is not super-\ and has 6(X) > 2, then distinct super edge atoms of X are
disjoint.

If X is a connected graph which is not super-A, then clearly any auto-
morphic image of a super edge atom of X is again a super edge atom of X.
Thus, if X is a connected Bi-Cayley graph which is not vertex-transitive,
the vertex set A is a super edge atom of X, and ¢ is an automorphism of
X, then ¢(A) is a super edge atom, and by Proposition 2.3 we have either
d(A)=Aord(A)NA=0.

For i = 0,1, we define the operation of G x {i} as follows.

(91,9) - (92,3) = (91 - 92,%) 91,02 € G, i=0,1.
Then G x {i} is a group isomorphic to G.

Proposition 2.4. Let X = BC(G,S) be a connected Bi-Cayley graph
which is not vertez-transitive. Let A = AgU A; be a super edge atom of X
and Y = X[A]. Then

(i) The automorphism group Aut(Y) acts transitively on both Ag and A,;.
(i) If X is edge-transitive, then A is an independent subset of X .

(iii) If A; contains the identity of G x {i}, then A; is a subgroup of G x {i},
fori=0,1.



Proof. (i) Given (u,0), (v,0) € Ay, there is an automorphism ¢ of X with
¢((u,0)) = (v,0), and so (v,0) € p(A)NA # 0. Since p(A) is a super edge
atom, by Proposition 2.3 we have ¢(4) = A. The automorphism ¢ of X
induces an automorphism |y of X[A4] =Y satisfying ¢|y ((,0)) = (v,0).
Thus Aut(Y') acts transitively on Ao. Similarly, the automorphism group
Aut(Y) acts transitively on A;.

(ii) Suppose there is an edge e = xy with 2,y € A. Since X is edge-
transitive, there must be an automorphism ¢ of X such that ¢(e) € wx (A)
because of Proposition 2.3. But then we have ¢(z) or ¢(y) belongs to
w(A)N A # 0; and p(z) or ¢(y) belongs to w(A) N (V(X)\A) # 0, which is
a contradiction since (A) is a super edge atom.

(iii) If Ao contains the identity (1,0) of G x {0}, since for any (g,0) € Ay,
lg-1 € Aut(X), we have (1,0) = 1,-1((g,0)) € l;-1(Ag) C ;-1 (A) =g'A
and (1,0) € Ap C A,s0g7ANA # @. Since g"A is also a super edge atom
of X, we have g'lA A. It follows that g~ Ay = Ao. Thus (g,0), (h,0) €
Ay implies that (g71,0)-(h,0) = (¢72h,0) = g~1(h,0) € g~ Ay = Ay, that
is (g71,0) - (h,0) € Ag. Thus A is a subgroup of G x {0}. O

Proposition 2.5. If X = BC(G,S) s a k-regular connected Bi-Cayley

graph which is neither vertez-transitive nor super-), then

(i) A(X) =1|5| =

(#)The vertez set A = AgU A, is a super edge atom of X if and only if
= X[A] & Ky, (k-1)-

Proof. Suppose A = Ag U 4, is a super edge atom of X, then |4p| >
1,]A1| > 1. Since Aut(X[A]) acts transitively on A;, the vertices in A;
have the same degree, say k; (i = 0,1), in X[A]. Clearly, k > ki, |4o| >
k1,|A1] 2 ko, and ko|Ag| = k1|A;|. Without loss of generality, assume that
ko > k;. Then

[Aol(k — ko) + [A1|(k — k1) = |w(A)| = M(X) < k =k — ko + ko,
this gives
(I40] = 1)(k — ko) + |A1|(k — k1) < ko < |44,

that is
(lAo| = 1)(k — ko) + |As|(k - k1 — 1) < 0.

If k = ky, then ko = ky = k because k > ko > ki. Since X is connected,
X = X[A], contradicting that A is a super edge atom. So k — k; — 1 > 0.
We thus have

(140l = 1)(k ~ ko) + |Aa|(k — k1 — 1) =

Case 1: |Ag| -1 =0and k—k —1 =0, that is |do| = 1,k = k; + 1.
Since k; < |Ao|, we have k < 2. f k = 1, then X = K,. If k = 2, then



X is a cycle. Both K> and cycle are vertex-transitive, contradicting our
assumption.

Case 2: k—ky=0and k—k; —1=0,thatisk=kpand k) = k- 1.
Then

k 2 X(X) = |Aol(k — ko) + |Ar|(k — k1) = [As].

Since |A1| > ko = k, we have |A;| = k, and so A(X) = k. Therefore (i) is
established. To prove the necessity of (ii) notice that |Ag| = k£ — 1 because
ko|Ao| = k1]|Ai1|. Conversely, as X is not super-A, we have k > 2, this gives
|A] = k+k-1=2k-1> 3. By item (i) we know |w(4)| = k. If X —w(A4)
has isolated vertices, then X K} , which is vertex-transitive. Thus w(A)
is a strict edge fragment. By the necessity of (ii) we see that the super edge
atom of X has cardinality 2k — 1, thus A is a super edge atom. 0

Clearly, if X = BC(G,S) is super-), then A(X) = k. Since the edge
connectivity of a connected vertex-transitive graph attains its regular de-
gree, we have

Corollary 2.8. If X = BC(G,S) is a connected Bi-Cayley graph, then
A(X) =15
Corollary 2.7. Let X = BC(G,S) be a connected Bi-Cayley graph which

is neither vertez-transitive nor a complete bipartite graph and k = |S|.
Then X is not super-) if and only if X contains K; (k1) as a subgraph.

Proposition 2.8. Let X = BC(G,S) be a connected Bi-Cayley graph
which is not vertez-transitive. Then X is super-A.

Proof. Suppose that X is not super-A, then X has a super edge atom.
Without loss of generality, suppose A = AgU A, is a super edge atom of X
* such that Ag contains the identity (1,0) of G x {0}, where Ap = AN[G x{0}]
and 4; = AN[G x {1}). By Proposition 2.5, Y = X[A] = K (x_1),
and by Proposition 2.4, we know that Ag is a subgroup of G x {0}. Let
S={s1, 8.

Case 1: |Ag| = k-1, |A;| = k. Since Ap contains the identity (1,0) of
G x {0}, we have A, = S x {1}. Further, since Y is a complete bipartite
graph, for any s; € S, we have Agps; C A;, and thus

[Aps1 U Agsa U---UAgsi| = |A1] = k.

Clearly |Aos;i| = |Ao] = k — 1. Thus, for any s;,8; € S, Aosi N Aos; # 0,
and so Ags; = Ags;. This gives

|Aosy U Agsa U+ -+ U Agsi| = |Aosi| = |4o| =k - 1,

a contradiction.
Case 2: |Ao| = k, |A1]| = k — 1. Clearly, the neighbor set N(4o) of Ao is



contained in w(A) U A;. Thus
|A081 U Agsa U--- UAoskI é 2k —1.

Since [Aos;| = |Ao| = k, for any s;,3; € S, we have Ags; N Ags; # @, and
80 Ag8; = Aps;. This gives

|A081 UAgsa U--- UA08k| = iAOSiI = IAO' =k,

which implies that X contains K ; as a subgraph. Since X is connected,
we have X = K. ;. But then X is vertex transitive, a contradiction. O

Now, combining Corollary 2.2 and Proposition 2.8, we have the following

Theorem 2.9. Except cycles, all connected Bi-Cayley graphs are super-\.

3 Optimally super-A Bi-Cayley graphs

In this section, we study optimally super-A Bi-Cayley graphs, ‘and we
always assume that |V/(X)| > 4. Meng [12] characterized optimally super-\
transitive graphs. In fact, he proved:

Theorem 3.1. Let X be a k-regular-connected vertez-transitive graph which
is neither a complete graph nor a cycle. Then X is not optimally super-\
if and only if it contains a (k — 1)-regular subgraph Y satisfying

kE<|V(Y) <2k-3.
For vertex-transitive Bi-Cayley graphs, we have the following result.

Corollary 3.2. Let X = BC(G,S) be a connected vertez-transitive Bi-
Cayley graph which is not a cycle. Then X is optimally super-).

Proof. If X is a complete graph, then X = K, and so [V(X)| = 2,
contradicting our assumption that |V (X)| > 4. In the following we assume
that X is not a complete graph. Suppose that X is not optimally super-),
then by Theorem 3.1, it contains a (k — 1)-regular subgraph Y satisfying
k < |V(Y)| < 2k-3. Since X is a Bi-Cayley graph, the graph X is bipartite
and so each (k — 1)-regular subgraph Y of X satisfies [V(Y)| > 2k -2, a
contradiction. Thus X is optimally super-). O

Corollary 3.2 assures that vertex-transitive Bi-Cayley graphs are op-
timally super-A. In the following we show that non vertex-transitive Bi-
Cayley graphs are optimally super-) as well.

Let X = (V, E) be a connected graph, and F C V be a non-empty set.
The vertex set F is called a X'-fragment, if w(F) is a restricted edge cut



and |w(F)|] = X(X). It is easy to see that F' is a X'-fragment if and only
if V. — F is a M-fragment. A N-fragment of X with minimum cardinality
is called X'-atom of X. The cardinality of a A'-atom of X is denoted by
w'(X). Clearly, w'(X) > 2. By the definition of optimally super-A and
Proposition 2.8, it is easy to see that if X = BC(G,S) is a k-regular
connected Bi-Cayley graph which is neither vertex-transitive nor optimally
super-), then k < M'(X) < 2k—3. Let A be a X'-atom of a Bi-cayley graph
X. Then, as in the last section, we may write A = Ag U A4;, and we always
assume that Ap = AN[G x {0}], A1 = AN[G x {1}], |4o| > 1 and |4;| > 1.
In [12] the following result on \’-atoms was proved.

Proposition 3.3. Let X = (V, E) be a k-regular k-edge-connected graph
with w'(X) > 3. Then any two distinct X'-atoms of X are disjoint.

By Corollary 2.6, if X is a connected Bi-Cayley graph, then A(X) = k.
Next, we have the following proposition which is similar to Proposition
24.

Proposition 3.4. Let X = BC(G,S) be a connected Bi-Cayley graph
which is not vertez-transitive and w'(X) > 3. Let A = AgU A, be a X-
atom of X and Y = X[A]. Then

(i) The automorphism group Aut(Y') acts transitively on both Ag and A;.
(i) If X is edge-transitive, then A is an independent subset of X.

(i4i) If A; contains the identity of G x {i}, then A; is a subgroup of G x {1},
fori=0,1.

Before proceeding, we first establish a lemma.

Lemma 3.5. Let X = BC(G, S) be a connected Bi-Cayley graph which is
not vertez-transitive. If X is not optimally super-A, then the subgraph Y
induced by a \'-atom is semiregular bipartite graph with degree k, k—1 and

%< |V(Y)| <4k-T.

Proof. Let A = Ao U A; be a MN-atom of X, |Ag| > 1, |A1| > 1. Since
Aut(X[A]) acts transitively on both Ao and A;, the vertices of A; have
the same degree, say k; (0 < i < 1), in X[A]. Clearly, k > k;, |Ao| >
k1, |A1] 2 ko and ko|Ao| = k1]Ai1|. Since X is not optimally super-A, we
have k < X' (X) < 2k - 3. Clearly

N(X) = |w(A)| = |Aol(k — ko) + |Ar|(k — Fy).
If |Ao| = | A1, since ko|Ao| = k1|A;1|, we have ko = k; and so X'(X) is even.

This gives
N(X) = 2|Ao|(k — ko) < 2k — 4,

10



IAoI(k—ko)Sk—2=k—ko+ko—2,
(lAo] = 1)(k — ko) < ko —2 < |A1| =2=|Ap| =2 =|Ag| -1 -1,
(JAo) = 1)(k = ko — 1) < —1.

Since |4g| > 1, we derive that k — kg — 1 < —1. Then ko > k and so
ko = k1 = k. Since X is connected, X = X[A], contradicting that 4 is a
A'-atom. So, |Ao| # |A1|. Without loss of generality, we may assume that
|Ao] > [Ai]. Since ko|Ao| = k1]|A1], we have ky < k;.

X(X) = |Ao|(k—ko) +]A1|(k—k1) < 2k—3 = (k—ko)+(k—k1)+ko+k1 -3,

(140l = 1)(k — ko) + (|A1| = 1)(k — k1) < ko + k1 — 3 < [Ao| + |41] - 3
= (4o - 1) + (|41 - 1) - 1,
(l4ol = 1)(k — ko — 1) + (|A1| = )(k — k1 — 1) < -1.

Since IAoI > |A1| >1and k > k; > ko, we have |A0|—1>0, |A1|—1 >0,
k—ko—1>0and k—kj—1> ~1. Fk—ky—1> —1, then k—k; —1 > 0,
and so

(I4o] = 1)(k — ko = 1) + (|A1| = 1)(k — k1 — 1) > 0,

a contradiction. So, k — k; — 1 = -1, that is k = k;. This gives
N(X) = |Aol(k — ko) + | A1|(k = k1) = | Ao|(k — ko).

I k—ko > 2, since |Ag| > k1 = k, we have N (X) = |Ao|(k — ko) > 2k,
contradicting A'(X) < 2k — 3. So, k — ko < 1. Since k = k; > ko, we have
ko=k—-1landsok < XN(X)=]|40| <2k-3,k+1<|Ap| <2k -3. Thus
k—1=k <|A1] <|4o] £2k-3,k—1<|A;| < 2k — 4. It follows that
2k < |V(Y)| = |Ao| + JA1| < 4k — 7. The result follows. O

Proposition 3.8. Let X = BC(G,S) be a connected Bi-Cayley graph
which is not vertex-transitive. Then X is not optimally super-A if and only
if X contains a semiregular bipartite subgraph Y with degree k and k — 1
satisfying

2k<|VY)| <4k-T.

Proof. The necessity follows directly from Lemma 3.5. Now we prove the
sufficiency. Let A = V(Y), and the sets Ag and A; be the intersection of
A and the two partition classes of X. Then A = 4y U A;. Without loss
of generality, we assume that the degree of vertices of 4g in Y is k — 1
and the degree of vertices of 4; in Y is k. Then |w(A4)| = |A4o|. Since
(k — 1)|Ao| = k|A;1] and |Ao| + |41| = |V(Y)| > 2k, we have |Ao| > k.
We claim that k < |4o| < 2k — 3. Otherwise, |Ag] > 2k — 2. Then
klA1| = (k — 1)]Ao| > 2k? — 4k + 2 and so |4;] > 2k — 4. It follows

11



that |[V(Y)| = |Ao| + |A1] > 2k -~ 2 + 2k — 4 = 4k — 6, contradicting
the assumption of the proposition. Thus, k < |[w(4)| < 2k — 3. Since Y is
semiregular bipartite subgraph with degree k£ and k— 1, every component of
Y has at least 2k — 1 vertices. Thus, if Y has at least two components, then
Y has at least 4k — 2 vertices, contradicting |V(Y)| < 4k — 7. It follows
that Y is connected. We claim that there exists at least one non-trivial
component in X\w(A) other than Y. Otherwise, all components other than
Y in X\w(A) are trivial. If there is only one isolated vertex in X\w(A),
then |w(A)| = k. If there are at least two isolated vertices in X \w(A), then
lw(A)| > 2k. Both contradicts the inequality k < |w(A)| < 2k — 3. Let
Z be a non-trivial component in X\w(A) other than Y and B = V(2),
then w(B) C w(A), and w(B) is a restricted edge cut. It follows that
N(X) € |w(B)| £ |w(4)| £ 2k — 3. The result follows. 0

Corollary 3.7. Let X = BC(G, S) be a connected Bi-Cayley graph which
is not vertez-transitive. Then X is optimally super-A.

Proof. By contradiction. If X is not optimally super-A, by Lemma 3.5,
it contains a semiregular bipartite subgraph Y with degree k and k — 1
which is induced by a M-atom A = Ap U A4y, and (k — 1)|A4o| = k|A1].
Clearly, |Ao| = ka and |A;| = (k — 1)a for some positive integer a. These
are impossible since k + 1< |4p| <2k -3and k-1< |4|<2k-4. O

Combining Corollary 3.2 and Corollary 3.7, we have the following result.

Theorem 3.8. Except cycles, all connected Bi-Cayley graphs are optimally
super-A.
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