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Abstract

A cosimple regular matroid M does not have disjoint circuits if
and only if M € {M(K3,3), M"(K») (n > 3)}. This extends a former
result of Erdés and Pé6sa on graphs without disjoint circuits.
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1 Introduction

We shall assume familiarity with graph theory and matroid theory. For terms
that are not defined in this note, see Bondy and Murty [1] for graphs, and Oxley
[3] or Welsh (6] for matroids. We allow graphs to have multiple edges but we
forbid loops. To be consistent with the matroid terminology, a circuit in a graph
is a nontrivial 2-regular connected subgraph, and a cycle is a disjoint union of
circuits.
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If G is a graph and if V}, V2 are two disjoint vertex subsets of G, then [V1, V3]
denote the set of edges in G with one end in V; and the other end in V5. For a
vertex v € V(G), let

Eg(v) = {e € E(G) : e is incident with v}.

Let M and N denote two matroids. If {e, f} is a circuit of M* and if
M/f = N, then M is a serial extension of N. In this case, we say that f is serial
to e. Note that being serial is an equivalence relation on E(M) for a matroid
M. The corresponding equivalence classes are the serial classes of M. Dually,
two elements e, f are parallel in M if they are serial in M*; being parallel is an
equivalence relation on E(M) and the equivalence classes are the parallel classes
of M. An equivalence class is nontrivial if it has more than one elements.

In 1960, Erdés and Pésa consider the problem of determining all connected
graphs that do not have edge-disjoint circuits. We view the complete graph K3
as a plane graph and let K3 denote the geometric dual of the plane graph K3.

Theorem 1.1 (Erdés and Pdsa [2]) Let G be a graph with §(G) > 3. The
following are equivalent.

(i) G does not have edge-disjoint circuits.

(i) G € {Ka3, K3, Ks}.

Since a graph G does not have disjoint circuits if and only if any subdivision
of G does not have disjoint circuits, the following corollary follows immediately.

Corollary 1.2 (Erdés and Pésa [2]) Let G be a simple graph of order n > 3.
(i) If |[E(G)| 2 n+ 4, then G has 2 edge-disjoint circuits.

(ii) The graph G with |[E(G)| = n + 3 does not have edge-disjoint circuits if and
only if G can be obtained from a subdivision Go of K33 by adding a forest and
ezactly one edge, joining each tree of the forest to Go.

Theorem 1.1 can be viewed as a result on cosimple graphic matroids. Thus
we consider generalizing Theorem 1.1. to matroids. Our main results of this note
are the following.

Theorem 1.3 Let M be a connected cosimple regular matroid. The following are
equivalent.
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(i) M does not have disjoint circuits.
(i) M € {M(Ka3)} U {M*(Kn),n > 3}.

Corollary 1.4 Let M be a regular matroid. Then M has no disjoint circuits if
and only if one of the following holds:

(i) M = Upn,m, for some integer m > 0, or

(i) M is a serial extension of a member in {M(Kaa),Uo1}U{M*(K,),n > 3},
or

(iii) M = My @ M, is the direct sum of two matroids My and My, where My is
a serial estension of a member in {M(K33),Uo,1} U {M*(Ky),n > 3} and where
Mz 2 U m, for some m = |E(M)| — |E(M1)| 2 1.

2 Proof of the Main Result

We follow Seymour {5] to introduce the notion of binary matroid sums. Given
two sets X and Y, the symmetric difference of X and Y, is

XAY = (XUY)-(XNY).

Let M; and M; be two binary matroids where E(M;) and E(M_) may intersect.
Define M;AM; to be the binary matroid on E = E(M;)AE(M2) whose cycles
are the nonempty, minimal subsets of £ of the form X;AX;, where for each
i = 1,2, X; is a disjoint union of circuits of M;. The binary matroid sums are
defined as follows.

(i) If E(M1)NE(Mz) = 0, then M; AM; is the 1-sum of M, and M (also referred
as a direct sum).

(ii) If E(M1) N E(M2) = {eo}, such that, for each i € {1,2}, the element e is
neither a loop nor a coloop of M;, then M1AMz is the 2-sum of M; and M.
(iii) If E(M1) N E(M2) = C, where C is a 3-circuit of both M; and Mz, such
that C includes no cocircuit of either M1 or Mz, and such that for ¢ € {1,2},
|[E(M;)| > 7, then M1 AM, is the 3-sum of My and M.

For k= 1,2, 3, we also use M) @k M: to denote the k-sum of two matroids
M; and M. If each of M; and M is isomorphic to a proper minor of M; @, M,
then we say that M is a proper k-sum of My and M,. For the case k=1, we also
use M; @ M, for M1 @, M; to denote the direct sum of My and M.
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Let A denote the matrix below
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and let Rjo denote the binary matroid M[A].

Seymour’s regular matroid decomposition theorem can be applied to cosim-
ple matroids in the following form.

Theorem 2.1 (Seymour [4]) Let M be a cosimple connected regular matroid.
Then one of the following holds.

(i) M is cosimple and graphic.

(ii) M is cosimple and cographic.

(iii) M is isomorphic to Rjo.

(iv) Fori € {2,3}, M = My @, M2 is the proper 2-sum or 8-sum of two cosimple
regular matroids My and Mz, where both My and Mz are isomorphic to proper
minors of M.

The following lemma is straightforward.
Lemma 2.2 Let G be a graph. If M(G) is cosimple, then §(G) > 3.

Proof: Note that any edge incident with a degree 1 vertex in G must be a loop
of M*(G), and that the edges incident with a degree 2 vertex in G must be in a
parallel class of M*(G). Since M(G) is cosimple, M*(G) does not have loops or
nontrivial parallel classes. Hence we must have §(G) > 3. []

Proof of Theorem 1.3 We first show that Theorem 1.3(i) implies Theorem
1.3(ii), and so we assume the M is a connected cosimple regular matroid with no
disjoint circuits. By Theorem 2.1, one of the conclusions in Theorem 2.1 must
hold.

If M is graphic, then we may assume that for some connected graph G,

M = M(G). By Lemma 2.2, §(G) > 3. Since G has no disjoint circuits, by
Theorem 1.1, G € {K3,3, K3, K1}, and so Theorem 1.3(ii) holds.
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If M is cographic, then we may assume that for some graph G, M = M*(G),
where G is a connected graph with n = r(M) + 1 vertices. Since M is cosimple,
G is a simple graph, and so G is a spanning subgraph of K,,, the complete graph
on n vertices. Let V(G) = {v1,v2, - va}. If G # K,,, then we may assume that
vivz € E(G). In this case, Eg(v1) N Eg(v2) = O, contrary to Theorem 1.3(i).
Therefore, we must have G = K, and so M € {M*(Ky,),n > 3}.

If M is isomorphic to Rjo, then it is well known that Ry¢ is a disjoint union
of a 4-circuit and a 6-circuit, contrary to Theorem 1.3(i). Thus M = Ryq is
impossible.

Now suppose that 2.1(iv) holds. We argue by induction on |E(M)|. Since
any matroid with at most 3 elements must be graphic, we assume that |[E(M)| =
n > 4, and Theorem 1.3(ii) holds for any matroid M satisfying Theorem 1.3(i)
with |E(M)| < n.

Since Theorem 2.1(iv) holds, for some i € {2,3}, M = M, @, M; is the
proper i-sum of two cosimple regular matroids M; and Mz, where both M, and
M, are proper minors of M.

If one of M; or M; has two disjoint circuits, then by the definition of binary
matroid sums, M would also have disjoint circuits, contrary to Theorem 1.3(i).
Therefore, for each i, M; does not have disjoint circuits. Since M; is a proper
minor of M, by induction, M, M2 € {M(K3,3)} U {M*(Kx),n > 3}.

If ¢ = 2, then we may assume that eo € E(Mi1) N E(Ma,). By the definition
of 2-sum and by the fact that M, Mz € {M(Ks3)} U {M*(K.),n > 3},3C, €
C(M) and Cz € C(M3) such that ep & C;. It follows that C; N Cz = @ and so
Theorem 1.3(i) is violated. Thus this is impossible.

Now assume that ¢ = 3, and Z = E(M;) N E(M3) is a 3 element circuit
of both M; and Mz. Recall that My, Mz € {M{Ks3)} U {M*(K.),n > 3}.
By the definition of a 3-sum, for any ¢ € {1,2}, |E(M;)| > 7 and so M; ¢
{M*(K3), M*(K,)}. Since there is no 3-circuits in either M(K3,3) or a M*(Kp,)
with n > 4, it is impossible that both |Z] = 3 and Z € C(M;) N C(Mz). This
contradiction shows that this case is also impossible.

Thus if Theorem 1.3(i) holds, then we must have M € {M(K3,3)}U{M"(K,),n >
3}.

157



Conversely, suppose M € {M(Ka3)} U {M*(Kn),n 2 3}. Since K3 is
a bipartite simple graph, any circuit of K33 has length at least 4. Suppose
that Ks,3 has two disjoint circuits C; and Ca, then since K33 is 3-regular, we
must have V(C1) NV(C2) = @, and so 6 = |V(K3s,3)|] = [V(C1)| + |[V(C2)| 2 8,
a contradiction. Hence M(K3,3) cannot have disjoint circuits. Suppose that
M = M*(K,),n > 3 and write V(K,) = {v1,v2,:-+,vn}. Suppose that C)
and C; are two circuits of M*(K,). Then C) is an edge cut of K, and so
C, = [W4, V2], for some proper vertex subset V; C V(G) and V2 = V(G) — V1.
Similarly, C; = {W1, Wa)}, where § # Wy C V(G) and W2 = V(G) — W1 # 0.
We may assume that v, € Vi NW,. If Van W, # @, say v2 € V2N We, then
nve € C1NCe If onW, = @, then we have W C V4,V2 C W;. Since
0 # [V2, Wa] C [V2, 1] = C) and @ # [V, W2] C (W}, W2] = Ca, then C1NC2 # 0.
This proves that M*(K,) does not have disjoint circuits. [

Proof of Corollary 1.4 It suffices to show, by induction on |E(M)], that if M
has no disjoint circuits, then one of (i), (ii) and (iii) holds. Let M be a regular
matroid that does not have disjoint circuits.

We first assume that M is connected. If M has a loop or a coloop, then
since M is connected, we must have M € {Up,1,U1,1}, and so Corollary 1.4 (i) or
(ii) must hold. Thus we assume that M is loopless and coloopless.

If M is connected and cosimple, then by Theorem 1.3, M is a member of
{M(K3,3)} U {M*(Kn),n > 3} and so Corollary 1.4(ii) holds. Otherwise, M
has nontrivial serial classes. Let {e;,e2} be a pair of serial elements in M.
Since the intersection of any circuit and any cocircuit in a matroid M can-
not have exactly one element, any circuit in M containing e; must also con-
tain ez. This implies that M has no disjoint circuits if and only if M/es hes
no disjoint circuits. By induction, M/e is a serial extension of a member in
{M(Ks33),Uo1} U {M"(Ky,),n = 3}. Since M is a serial extension of M/e;, M
is also a serial extension of a member in {M(K3,3),Us1} U {M*(Kn),n 2 3}.

Now suppose that M is not connected. Then M = Mi P M2 @D - - - P M,
where M, M2, -+, M) are connected components of M. If Vi, M; contains no
circuits, then Corollary 1.4(i) holds. Otherwise, since M has no disjoint circuits,
exactly one connected component, say M;, has at least one circuit. It follows
that M2 @ - - - €@ Mi = Up,» and so Corollary 1.4 (iii) must hold. []
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