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Abstract. Katerinis established the following result in [1]. Let G be a simple
graph with §(G) > I.MZEHJ + k, where k is a non-negative integer. Let
f : V(G) » Z* be a function having the following properties:
(1) 3(de(v) = (k+1)) < f(v) £ &(dc(v) + (k+1)) for every v € V(G),
(2 Zuev«;) f(v) = |E(G)|.

Then G has an orientation D such that df(v) = f(v), for every v € V(G).
In this paper, we focus on the sharpness of the above two inequalities.

1 Introduction

Let G be a simple graph. For v € V(G), Ng(v) is the set of
neighbours of v in G and dg(v), the degree of v in G, is the cardinality
of Ng(v). For a graph G, 4(G) is the minimum degree of G. For
v € V(G) and S C V(G), dgisu(v)j(v) is the degree of v in G[SU{v}],
the subgraph induced by SU{v} in G. If § and T are disjoint sets of
vertices of G, we write eg(S,T') for the number of edges of G having one
end in S and the other end in T. For § C V(G), eg(S,S) denotes the
number of edges of G having both ends in S, i.e., the number of edges of
the induced subgraph G[S].

The out-degree of a vertex v in a digraph D is denoted by d},(v). An
orientation of a graph G is a digraph obtained from G by assigning to
each edge in G a direction. We use Z* for the set of positive integers.
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The following theorem was proved in [1].
Theorem 1.1. (Katerinis [1]). Let G be a simple graph with 6(G) >
Jl’izﬁll +k, where k is a non-negative integer. Let f : V(G) — Z* be
a function having the following properties:
(1) }(de(v)—(k+1)) < f(v) < 3(dc(v) +(k+1)) for every v € V(G),
(2) Yvevic) f(v) = |E(G)].

Then G has an orientation D such that di(v) = f(v), for every
v e V(G). |

The condition §(G) > l]l’.(z_c"_llJ + k of Theorem 1.1 is best possible as
it was shown in [1], since there exist a graph G; and a function f; with

§(Gy) = [M%llj —1+k,

3de,(v) = (k+1)) < fi(v) < 3(dg, (v) + (k+1)),

Zvev(a,) hv) = |E(G1)|
and there is no orientation D; of G; such that dB; (v) = fi(v), for every
v € V(G;). Similarly, the condition .

3(de() = (k+1)) < f(v) < 2(da(v) + (k+1))
of Theorem 1.1 is also best possible as it was shown in [1], since there exist
a graph G and a function f with

5G) 2 |G | 4k,

[3(de,(v) = (k +1))] < fo(v) < [§(de,(v) + (k+1))],

Eve V(Ga) f2(v) = |E(Gy)]
and there is no orientation Dy of G2 such that de(v) = fa(v), for every
v € V(G2). In this paper, we consider these two extremal cases with the
following additional condition:

ec(W,V(G)-W) 2 | M| (k+1), i€ {12},
for every W C V(G) with |W| = l_mz—cﬂj

2 Orientations of graphs with preassigned
out-degrees

We first state the results.

Theorem 2.1. Let G be a simple graph such that
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(i) 6(G) = I_J‘—/-(z—c)-l_l — 1+ k, where k is a non-negative integer,

(i) ec(W,V(G) = W) > [L‘igﬁllj (k+1), for every W C V(G)
with W] = |2 |
further, there ezists a function f : V(G) — Z%* with the following
properties:
(1) Hde(v)—(k+1)) < f(v) < 3(da(v)+(k+1)) for every v € V(G),
(2) Yveve fv) = |E(G)|.
Then G has an orientation D such that df(v) = f(v), for every
v € V(G). [~

Theorem 2.2. Let G be a simple graph such that
() 6(G) 2 I_M'zﬂlj + k, where k is a non-negative integer,

(ii) ec(W,V(G) - W) > [L"Jgﬂ J (k+2), for every W C V(G)
with W] = | 3|

Jurther, there ezists a function f : V(G) — Z% with the following
properties:

(1) 3(dc(v)—(k+2)) < f(v) < §(da(v)+(k+2)) for every v € V(G),
(2) ZueV(G) f(v) = |E(G)|.

Then G has an orientation D such that dh(v) = f(v), for every
v € V(G). |

The arguments in the proofs of Theorems 2.1 and 2.2 are similar to those
used for the proof of Theorem 1.1. For the proofs of Theorems 2.1 and 2.2
we use the following Lemma, which can be found in [1].

Lemma 2.1. Let G be a graph and let function f : V(G) — Z%t.
Then G has an orientation D such that di(v) = f(v) for every
v € V(G) if and only if ZvEV(G) f(v) = |E(G)| end T, cx f(v) <
ec(X, X) + ec(X,V(G) — X) for every X C V(G). |

Proof of Theorem 2.1. Suppose that G does not have an orientaion D

as stated in the theorem. Then from Lemma 2.1, there existsa T C V(G)
such that
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Yver f(@) > ec(T,T) + eg(T,S), (1)
. where § = V(G) -T.
Claim 1. (k+1)|T] > EuerG[SU{v}] (v).

By condition (1) of the hypothesis of the theorem,

ZoeTf(”) < EueT%(dG(”)+(k+1))~ (2)
But

dEveT 3de() + (k+1)) = ¥, erde(v) + 3(k+1)IT| 3)
an

ec(T,T) + ec(T,8) = 3 ¥, erdom(v) + Ly e doisuiwn(v)
= 3 Tuerdcv) + 3 Xverdosupn(®). (4

Combining equations (3), (2), (1) and (4) in order, we get

3k+)IT] > 3T, erdasuwy(®)-
Claim 2. (k+1)|S| > Zue T da[su{,,}] (v).

By condition (1) of the theorem,

Yoes3(da(v) = (k+1)) < 3, ¢ 5 f(v).
This implies, 3 ¥, ¢ sda(v) — Fe+1)1S| £ X, cs f0).
Thus, § ,c5d6(v) = X,esf(v) < 3(k+1)]S]. ()
By condition (2) of the hypothesis of the theorem,
Yveve) fv) = |E(G)].
As S and T is a partition of V(G),
szTf(v) + zve S f(‘U) = % ZvEV(G) dG(’U).
This implies,
ZueTf('v) + Eues fv) = % EuerG(v) + % ZuesdG('U)-
Thus, Y, er f(¥) = $ Tyerde(®) = § X, esd6(v) — Xyes f(v). (6)
Hence, by (5) and (6),

Toerf(®) = 1 X,erdc(v) < 3(k+1)18]. )
But, by (1) and (4),

ZueTf(v) >eq(T,\T) + ec(T, S)
= 3T, erde(®) + 3 Xy e doisuiuy (v)-

This implies that
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Zv eT f(v) - % Zv €T dc('v) > '21' Ev €T dG[SU{"}](U)' (8)
Hence, by (7) and (8),
§k+1IS| > 3T, crdosuy®)-

To complete the proof we consider the following four cases, and in each
case we get a contradiction, thereby establishing the result.

Case 1. IT| < |M42] -1,

By hypothesis 6(G) = |M@lf — 1+ k and hence dgisuquyj(v) >
3 [Su{v}]

k+1 for every v € T. Therefore Y, ¢ rdgisugwy(v) = (k+1)|T}, a
contradiction to Claim 1.

Case 2. [T| > [M@] 41,

Suppose that |T'| = WG| 4 ¢, where ¢ is a positive integer. This
p)

implies that |S| = I.M,‘,EMJ —4£. So eg(v,T) > k+¢ forevery v € S

because §(G) = l_mz—cllj—1+k. This implies that eq(S,T) > (k+¢)|S].

Hence (k+1)|S| £ (k+9)|S| £ ec(S5,T) = ZveT dG[sU{v}](v), a
contradiction to Claim 2.

Case 3. |T| = |42,

By condition (if) of the hypothesis of the theorem, eg(T,S) >
| 2| (k+1). Hence 5=, e dapsuqun(®) = e(T,5) 2 | 2| (k+1)
= |T| (k+ 1), again a contradiction to Claim 1.

Case 4. |V(G)| is odd and |T| = [QU*L,

2
ea($,7) 2 || (k+1). Hence T, crdoisupn(®) = ec(S,T) >
[Jl(gll J (k+1) = |S] (k+1), again a contradiction to Claim 2. m

In this case, |S] = le By condition (i) of the theorem,

Proof of Theorem 2.2. Suppose that G does not have such an
orientation D as stated in the theorem. Then from Lemma 2.1, there
exists T € V(G) such that

Yoer f(¥) > (T, T) + ec(T,S), (9)
where S = V(G) - T.
Claim 1. (k+2)|T| > ¥, crdeisuwy(v).
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7 Lverde(v) + 3 Lyer deisun(v)
= eg(T,T) + ec(T,S) by using (4)
< Y ,er f(v) by using (9)
= 3 erde(v) + 3(k+2)|T].
Hence
3k+2)ITI > 33, crdaisuen(®):
Claim 2. (k+2)|S| > Zv eT dc;[su{,,}] (v).
By condition (1) of the hypothesis of the theorem,
Toes 3(de(®) = (k+2)) < ¥, 5 f(0).
This implies, § 3, esdo(v) — 3(k+2)|S| £ T, e 5 f(v).
Thus, $ 3, csdc(v) = T, esf(v) < §(k+2)|S].
By condition (2) of the hypothesis of the theorem,
Yvevic) f(v) = |E(G)|.
This implies as in (6),

Yver fv) - %ZuerG(v) = %Euesdc(”) - Yvesfv)

Hence, by (11) and (10),
Toerf0) = § X, erde(v) < 3(k+2)|5].
But by using (9) and (4),

Yoer f(¥) > ec(T,T) + ec(T, S)
=3Y erde(v) + 53 Xy e deisugyy (v)

implies that

ZvET f(’l)) - % uETdG(v) > % zverG[SU{v}]('U)-
Hence, by (12) and (13),

3k+2)18] > ¥, erdoisun(®)-

< Y, er 3(de(v) + (k+2)) by condition (1) of the theorem

(10)

(11)

(12)

(13)

To complete the proof we consider the following four cases, and in each

case we get a contradiction, thereby establishing the result.
Case 1. [T| < [lﬂ,_,ﬂlj ~1
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By hypothesis 6(G) > |4C) | +k and hence dgisyiuy(v) > k+2 for
2 {su{v}l

every v € T. Therefore ), c 1 dgisu(v}(v) = (k+2)|T|, a contradiction
to Claim 1.

Case 2. [T] > [M@] 41,

Suppose that |T| = []1(291] + 142, where ¢ is a non-negative integer.
This implies that |S| = I_lﬂzgnj —1-4 So eg(v,T) > k+2+¢
for every v € S because 6(G) 2> [Jﬂzﬂlj + k. This implies that

ec(S,T) 2 (k+2+4£)|S|. Hence (k+2)|S| < (k+2+¢)|S| < ec(S,T) =
Y veT de[suiv})(v), a contradiction to Claim 2.

Case 3. |T| = |43 |.

By condition (i7) of the hypothesis of the theorem, eg(T,S) >
| 2| (k+2). Hence 3=, 7 detsueon(v) = ec(T, ) 2 |2 (k+2)
= |T| (k+2), a contradiction to Claim 1.

Case 4. |V(G)| is odd and |T) = K(QU*L

In this case, |S| = I_quu_, . By condition (i) of the theorem,
ec(S,T) 2 lngn J (k+2). Hence 3, rdgisuwy(v) = ec(S5,T) >
[L‘ig‘:"llj (k+2) = |S| (k+2), a contradiction to Claim 2. m

Remark 2.1 The condition ec(W,V(G) — W) > [111291 J (k+i), i€
{1,2}, for every W C V(G) with |W| = I_lﬂzﬂlj is true for several
families of graphs, including those G which contains a complete tripartite
graph K, ., as a spanning subgraph. It can be verified easily. ]
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