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ABSTRACT. A set S of vertices in a graph G is a clique dominating
set of G if S contains at least one vertex of every clique C of
G. The clique domination number 7,(G) and the upper clique
domination number I'y(G) are, respectively, the minimum and
maximum cardinalities of a minimal clique dominating set of G.
In this paper, we prove that the problem of computing v,(G) is
NP-complete even for split graphs and the problem of computing
[4(G) is NP-complete even for chordal graphs. In addition, for a
block graph BG we show that the clique domination number is
bounded above by the vertex independence number (v4(BG) <
Bo(BG)) and give a linear algorithm for computing ~,(BG).
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1 Introduction

All graphs considered here are simple, i.e., finite, undirected, and loop-
less. For standard graph theory terminology not given here we refer to
[2]. Let G = (V,E) be a graph with vertex set V and edge set E, the
open neighborhood N(v) of the vertex v consists of vertices adjacent to v,
ie, N(v) = {u € V| (u,v) € E}, and the closed neighborhood of v is
N{v] = {v} U N(v). For a subset § C V, we define N[S] = U,csN|[z]. The
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subgraph induced by S is denoted by G[S]. The distance dg(u,v) of two
vertices u and v is the minimum length of a path between u and v. The
degree of a vertex v of G is denoted by dg(v) = |Ng(v)|, and a vertex with
degree one is called a leaf The minimum and maximum degrees of ver-
tices of G are denoted by §(G) and A(G), respectively. For any connected
graph G, a vertex v € V(G) is called a cut-vertez of G if G — v is no longer
connected. A maximal connected induced subgraph without a cut-vertex
is called a block of G. A graph G is a block graph if every block in G is
complete.

A set S is a dominating set if every vertex of V — S has at least one
neighbor in S. The domination number v(G) is defined to be the mini-
mum cardinality of a dominating set S in G, and the upper domination
number I'(G) be the maximum cardinality of & minimal dominating set S
in G. We call a minimal dominating set of G with minimum cardinality
a v-set, and we will use similar notation for other parameters. A set S is
independent if no two vertices in S are adjacent. A dominating set S of
G is a total/connected/independent dominating set of G if G[S] has no iso-
lated vertices, G[S] is connected and S is an independent set, respectively.
The minimum cardinality of a total/connected/independent dominating set
is denoted by 1:(G), 7.(G) and i(G), respectively. The independence num-
ber Bo(G) is the maximum cardinality of an independent set of vertices of
G. The matching number is the maximum cardinality among the indepen-
dent sets of edges of G and is denoted by ¢;(G). In recent years, many
domination-related parameters have been defined (see [4, 6, 7]), for a com-
prehensive review on this subject we refer to [8, 9].

This paper introduces a new invariant of the domination concept. A
clique in a graph is a subgraph of G which is complete and is not a proper
subgraph of another complete subgraph of G. A set S C V in G is called
a cliqgue dominating set if for every clique C of G, SNV(C) # 0. The
cligue domination number v4(G) is defined to be the minimum cardinality
of a clique dominating set S in G, while the upper cligue domination num-
ber T'4(G) is defined to be the maximum cardinality of a minimal clique
dominating set S in G. The applications for this parameter may be seen
as follows. Consider a communication network in which a clique is usually
represents a cluster of sites which has best possible ability for rapid informa-
tion exchanging among the members of the cluster. The clique domination
claims not only dominating the network but also including at least one core
role for every cluster, therefore it is convenient to control all clusters as well
as keep the ability of dominating the whole network. Another application
may be seen in social networks theory. Kelleher and Cozzens [10] have
studied the application of dominating sets in social networks, where a ver-

170



tex represents an actor and an edge represents a relationship between two
actors. Note that a clique in a social networks can be viewed as a maximal
group of members which have the same property. Suppose a dominating
set is some kind of organization in the social networks, then the clique
dominating sets claim each clique in the social networks owns at least one
position in this organization.

It should be noted that another clique-related invariant of dominating
set, namely, dominating clique, have been previously defined and studied
[5], which requires that a dominating set induces a complete subgraph and
thus is different from the clique dominating set introduced in current paper.

2 Clique domination number

2.1 Properties of clique domination

The existence of clique dominating sets is easy to see, since V itself is such
a set for every graph G = (V| E). So we have the following observation.

Observation 1 The cliqgue dominating set is well-defined for each graph
G.

In the following we consider only connected graphs. The number of
cliques in a graph G is denoted by ny(G). Clearly every clique dominating
set is a dominating set and a subset comprising exactly one vertex of each
clique is a clique dominating set. So we have

Observation 2 7(G) < 1(G) < n4(G) and v4(G) = 1 if and only if
(G) =1

Next we give some exact values of clique domination number in specific
classes of graphs, the proofs are straightforward and are omitted. Here K,
is a complete graph, Cy,, P, and W, are the cycle, path and wheel on n
vertices respectively.

Observation 3

(1) 'Yq(Kn) = 7(Wn) =1,
(2) 14(Cn) = [§], where n >4,
(3) 1q(Pn) = [252], where n > 2.
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Next we show some relationships between clique domination number and
other domination-related parameters. We can see that i(G), %:(G), 71(G),
a1(G), Bo(G), T'(G) are incomparable with v,(G) (Here we denoted by
{i(G), 1(G); 7%(G), e1(G), Bo(G), T(G)} © %4(G) ). For example, it is not
difficult to show that the Petersen graph PG has i(PG) = 3 < 6 = 7,(PG),
while a double star G, obtained from adding an edge between two central
vertices of T} and T3, where T} 2 Tp = K p, p 2> 2, has i(G) > 2 = 7,(G).
Also, 7:(G), 7c(G), T'(G) are incomparable with 7,(G). For example, the
Petersen Graph PG has 7,(PG) = 7.(PG) = I'(PG) = 5 < 6 = v,(PG);
while a path Ps has 7.(Ps) = 7:(Ps) = ['(Ps) = 3 > 2 = 7,(Ps). Both
a1(G) and Bo(G) are incomparable with 7,(G) may be seen as follows.
For a 5-cycle Cs, we have a;1(Cs) = fo(Cs) = 2 < 3 = 74(Cs); while the
complete graph Ko, with n > 2 has a)(K2n) =n 2 2 > 1 = 7,(K2s) and
the path P41 with n > 1 has Bo(Pan+1) =n+1 > n = 74(Pant1). Thus,

Observation 4 For any graph, {i(G), 1(G), 7(G), a1(G), Bo(G), I'(G)}
° 14(G).

A set U C V is called a vertex cover of G if every edge of G is incident
with a vertex in U. The minimum cardinality of a vertex cover is denoted
by ao(G). The maximum number of vertices of a clique in G is denoted by
w(G). Then we have the following observation immediately,

Observation 5 For any graph, we have 74(G) < ao(G); and if w(G) <2
then any vertez cover is precisely a cliqgue dominating set of G, i.e., op(G) =

'Yq(G)-

Proof. For any graph G, since every vertex cover is also a clique dominating
set of G, we have 74(G) < ao(G); On the other hand, if G is a graph with
w(G) < 2, i.e., each clique in G is a K>, then every clique dominating set
is a vertex cover, it follows that ap(G) < 74(G), so ag(G) = 74(G). [ ]

Many domination-related parameters remain NP-complete when restricted
to bipartite graphs, while for clique domination problem things are dif-
ferent. From the above observation, for any bipartite graph G we have
00(G) = 74(G) = aa (G).

2.2 Complexity results

In this subsection we will show that the clique dominating set problem is
NP-complete when restricted to split graphs (a subclass of chordal graphs).
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Consider the following decision problem
CLIQUE DOMINATING SET (CDS)
INSTANCE: A graph G = (V, E) and a positive integer k < |V|.

QUESTION: Does G have a clique dominating set of cardinality at
most k?

To establish the NP-completeness of the above clique dominating set
problem, we describe a polynomial transformation from the following well-
known NP-complete problem

EXACT COVER BY 3-SETS (X3C)

INSTANCE: A finite set X with |X| = 3q and a collection C of 3-
element subsets of X. Each element z € X appears in at least two subsets.

QUESTION: Does C contain an exact cover (a subcollection ¢’ C C
such that every element of X occurs in exactly one member of C’) for X?
(Note that if C’ exists, then its cardinality is precisely g.)

Theorem 6 CDS is NP-complete, even for split graphs.

Proof. It is clearly that CDS is in NP, since we can verify that a 'yes’ in-
stance is a clique dominating set of cardinality at most k in polynomial time.
Next we show that the clique dominating set problem is NP-complete. Let
X = {z1,22,...,23} and C= {C1,C2,...,Cy} be an arbitrary instance
of X3C, we will construct a split graph G such that this instance of X3C
will have an exact three cover if and only if G has a clique dominating
set of cardinality at most k. The split graph G is constructed as follows.
Corresponding to each subset C; and variable z; are vertices ¢; and v;, now
adding an edge between c; and c; for any two distinct ¢ # j; then joining
c; and v; if and only if the variable z; € C;. Set k =gq.

Let C = UR, {a}, V = U, {v}, then the resulting graph is G =
(CUV, EyUE) where E; = {(ci,¢;) | ¢i,¢j € C,i # j} and B = {(v;,¢;5) |
x; € Cj}.

It is easy to see that G is a split graph and the constructing of G is
completed in polynomial time. Suppose C’ C C is an exact 3-cover for X =
{z1,22,...,734}, then it is not difficult to verify that § = {¢; | C; € C'} isa
clique dominating set of cardinality k. Conversely, assume S is a minimum
clique dominating set of cardinality at most k¥ and for which [SN V] is
minimized. Then we must have SNV = §, for otherwise we can replace
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each vertex v; € SNV by its one neighbor in C. Let C'= {C; | ¢; € S}.
Since S is a clique dominating set of G, every vertex v; € V must be
dominated by some vertex c; € S and thus C’ is a cover for X. Since C’ is a
cover of X such that [C'| =|S| < k, it follows immediately that C;NC; =0
for distinct C; and C; in C'. So C' is an exact 3-cover for X. [ ]

UPPER CLIQUE DOMINATING SET (UCDS)
INSTANCE: A graph G = (V, E) and a positive integer k < [V|.

QUESTION: Does G have a minimal clique dominating set of cardi-
nality at least k7

Theorem 7 UCDS is NP-complete, even for chordal graphs.

Proof. We use the similar notation as in the proof for Theorem 6. Let
G' be the graph constructed in the proof for Theorem 6. Let G be the
graph constructed from G’ as follows. For eachi € {1,2,...,3q}, let u; and
w; be two new vertices and join each of them to the vertex v;. For each
j €{1,2,...,m}, let a; and b; be two new vertices and join each of them
to the vertex c;. Set k = 2m + 5q. Clearly G is a chordal graph of order
3m + 9q.

Lot 4= ULifa}, B = Ui {b}, C = ULy{a}, U = U {w}, V =
t"'l {v‘}7 W U1=1 {w’}

Now we show that the above instance of X3C contains an exact three
cover if and only if G has an upper clique dominating set of cardinality at
least k. Suppose C' C C is an exact 3-cover for X = {z1,Z2,...,Z34}, then
S=UUWU{c | C; €C'}U{a; | C; ¢C’'}U {b; | C; ¢C’} is a minimal
clique dominating set of cardinality at least k. Conversely, assume S is a
minimal clique dominating set of cardinality at least & and for which |SNV/|
is minimized. We claim that SNV = §. Otherwise suppose there exists a
vertex v; € SNV, then by the minimality of S we have that u;, w; ¢ S. If
N@)NS #0, then S’ = (S\{vi})U{ui, w;} is a minimal clique dominating
set with |S’NV| < |SNV|, which is a contradiction. Hence assume N(v;)N
C = 0, and let c; be any vertex of N(v;)NC. Since S is a clique dominating
set, we must have that a;,b; € S, then S’ = (S\{vi,a;,b;}) U {c;j, ui, wi} is
also a minimal clique dominating set with [S'NV| < |SNV|. Both cases
lead to contradictions, therefore SNV = @. Consequently, we must have
UuW C Sand |[SN(AUBUQC)| 2 k- |UUW| = 2m — q. Since each
vertex v; € V corresponds exactly to one clique in the subgraph G[C U V]
and SNV =@, it follows that |[SNC| > g. We now claim that |SNC| = g.
Otherwise assume |SNC| > g+1, then by the minimality of S, we have that
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|SN(AUB)| = |{aj,b; | ¢; ¢ S} =2(m—|SNC]|) < 2(m—g—1), then |S| = .
2(m—|SNC))+|SNC|+|SN(UUW)| = 2m+6g—|SNC| < 2m+59—1 < k,
which is a contradiction. Thus, [SNC| =g, and C'= {C; | ¢; € S} is an
exact 3-cover of cardinality ¢ for X. |

3 Clique domination in block graphs

In this section, we investigate clique domination in block graphs, which is
a superclass of trees. It is easy to observe that for a tree, v4(T') = co(T') =
a1(T), while for block graphs things are different, because block graphs
usually contain large cliques.

In what follows, we always use a tree-like decomposition structure,
named refined cut-tree, of a block graph. Let G be a block graph with
h blocks BKj,...,.BK;, and p cut-vertices v;,...,up. The cut-tree of G, de-
noted by TB(VB,EB), is defined as VB = {BK,,...,BKp,v1,...,vp} and
EB = {(BK;,vj) | v; € BK;,1 < i < h1 < j < p}. It is shown
in (1] that the cut-tree of a block graphs can be constructed in linear
time by the depth-first-search method. For any block BK; of G, define
B; = {v € BK; | v is not a cut-vertex}, where 1 < i < h. We de-
fine the refined cut-tree TB(VB,EP) as VB = {By,..., By, v1,...,v,} and
EB = {(Bi,v;) | v € BK;,1 <4 < h,1 < j < p}, and each B; is called
a block-vertez. It should be noted that a block-vertex in the refined cut-
tree of a block graph may be empty. A block graph G with five blocks,
BK, = G[{a,b,d}], BK; = G[{c,e}], BK3 = G|{d, e}], BKs = G[{d, g,h}]
and BKs = G[{e, f,%,7}] is shown in Fig. 1, the corresponding cut-tree
and refined cut-tree of G are shown in Fig. 2, where By = {a,b}, B2 = {c},
B3 = m: B4 = {g)h} and Bs = {faivj}'

a b ¢
e
i d
g A i

Fig. 1. A block graph G with five blocks.
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BKj3 Bs
BK, BK, B By
e €
BK,; BKs B, Bs
(a) (b)

'Fig. 2. (a) The cut-tree of G in Fig. 1  (b) The refined cut-tree of G in Fig. 1.

Let TB(VE, EB) be the refined cut-tree of a block graph G. We just
treat TB(VB, EB) as an ordinary tree regardless of the fact that every
block-vertex is actually subset of vertices of the original block graph. For
clarity, we denote a block vertex B; by v? in TB(V B, EB), here the super-
script B of vP indicates that this vertex is a block vertex. Furthermore,
B is corresponding to B; one by one. Since we will view TB(V5, EB) as
an ordinary tree, we need some other concepts with tree.

Let T be a tree rooted at 7 and v is a vertex of T, the level number of v,
denoted by I(v), is the length of the unique r-v path in T. If a vertex v of
T is adjacent to u and [(u) > I(v), then u is called a child of v and v is the
parent of u. A vertex w is a descendant of v (and v is an ancestor of w) if the
level numbers of the vertices on the v-w path are monotonically increasing.
Let D(v) denote the set of descendants of v, and define D{v] = D(v) U {v}.
The mazimal subtree of T rooted at v is the subtree of T induced by Dfv]
and is denoted by T,,.

3.1 7,(BG) < B(BG)

For general graphs, the clique domination number ~4(G) is incomparable
with the vertex independence number 8o(G) (see Observation 4). However,
the following result shows that for block graph BG, v,(BG) is bounded
above by Go(BG).

. Theorem 8 For any block graph BG, ~,(BG) < Bo(BG), and this bound
is sharp.
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Proof. We proceed by induction on the number of cliques n, of BG.
Clearly the result holds for n, = 1,2 establishing the base case. Now
let ng > 3, and assume that v,(BG’) < Bo(BG’) holds for every block
graph BG’ with nj < n,. Let BG be a block graph with n, cliques,
and TB(VB EP) be the refined cut-tree of BG. If TF is a star, then
Y¢(BG) =1 < ny = fo(BG) and hence the result is valid. So assume that
TE is not a star. Root T2 at any cut-vertex r and let v2 be any endvertex
of T8 for which drs(vB,r) is a maximum. Clearly dgs(v3,r) > 3. Let
u be the parent of v® and w? be the parent of u. If u has some other
children, say v£,..., v2, i > 1, which are different from vB. Let T' =
TB\{vB,v£,...,vP} and BG’ be the corresponding block graph of 7", then
1¢(BG') < Bo(BG') and we have 74(BG) < 7(BG') + 1 < Bo(BG') +i <
Bo(BG). Next assume v? is the only child of u. Let uy,...,u; be some other
children of w®different from u, where i > 0. Without loss of generality,
assume each u; has exactly one child. Let T/ = T®\D[w?] and BG’ be
the corresponding block graph of T/, then 74(BG’) < Bo(BG') and we have
Y4(BG) € 7(BG") +i+1 < Bo(BG') + i+ 1 < Bo(BG). This bound is
sharp, since v4(Py) = Bo(Ps). n

There exists an infinite class of block graphs in which the differences
Bo — 74 can be made arbitrary large. For example, let G be any block
graph of order n, then attach k > 2 pendent vertices to each vertex v of G,
denote the resulting graph by G, clearly we have Gy(G’) —7,(G’) = n(k—1).

3.2 A simple linear algorithm for ~,(BG)

In this subsection we present a linear algorithm for solving the clique dom-
ination problem on block graphs. Some other papers gave efficient algo-
rithms for solving domination-related problems on block graphs (3, 11].
For block graphs, we first show the following lemma.

Lemma 9 Let G be a block graph, then there ezists a v4(G)-set in which
every vertex is a cut-vertez of G.

Proof. Let G be a block graph, S a 74(G)-set. Suppose there exists some
vertex v € S such that v is not a cut-vertex of G. If every cut-vertex that is
adjacent to v is contained in S, then S\ {v} is a smaller clique dominating
set than S, which is a contradiction. If there exists a cut-vertex u such that
u is adjacent to v and u ¢ S, then (S\ {v}) U {u} is a v,(G)-set of G, so
the result follows. [ |
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In the following, we give a linear algorithm for finding a minimum clique
dominating set in a block graph, our algorithm accept the refined cut-tree
TB(VE, EB) of the original block graph G as the input of our problem and
is presented as a color-marking process. We first give a brief overview on
this algorithm. Let G be a connected block graph, and TB(VB EB) the
. refined cut-tree of G. Suppose TB(V B, EB) is a rooted tree with vertices
V1y...,Un such that I(v;) < I(v;) for ¢ > j, and the root is a cut-vertex v,
(in G). Let H; be the set of all vertices with level number i, and Hy be
the set of all vertices with largest level number k. By the definition of
TB(VE, EB), it is clear that Hy = {v,} and H; contains only cut-vertices
of G for even i and block-vertices for odd i. Moreover, k is an odd number.
By Lemma 9, there exists a +,(G)-set contains only cut-vertices for a block
graph G. Our algorithm consider directly the cut-vertices in the rooted
tree TB(V B, EB). It starts from the largest even level of T3(V2, EP) and
works upward to the root of the tree. Initially, all vertices of T2 are marked
with white (which means all needed to be dominated), and eventually, every
white vertex will be marked with black or gray. In the end of the algorithm,
all black cut-vertices form a minimum clique dominating set of G.

Algorithm CDS-BG. Find a minimum CDS of a connected block graph
G.

Input: A block graph G of order n > 3.
Output: A minimum CDS of G.

Construct a refined cut-tree T8(V B, EB) with vertices v;,...,un of G so that
l(v;) < l(v;) for ¢ > j, and the root is a cut-vertex v, (in G). For every
vertex v; lies in the odd levels H,,H3,...,Hy, relabel v; as v_,'-B (the superscript
B of v® indicates that it is a block-vertex and »? is in correspondence with
B; one by one).

Initialization: Mark all vertices of V2 with white, S := 0.
for i:=k—1 down to O by step-length 2 do
for every v; € H; do
if N(v;) N Hiy1 contains at least one white vertex then
{mark v; with black;
S := 85U {v;};
mark the parent of v; with gray;
mark all white vertices in N(v;) N H;;, with gray. }
else mark v; with gray
end for
end for
output S.
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Theorem 10 Algorithm CDS-BG computes in linear time a minimum CDS
of a given connected block graph G.

Proof. Let G be a connected block graph, and T2(V 2, EB) be the refined
cut-tree of G. And TB(VB, EB) is a rooted tree with vertices v,,...,un such
that I(v;) < I(v;) for i > j, and the root is a cut-vertex v, (in G). Let S be
the set computed by Algorithm CDS-BG. From the Algorithm, S is a CDS
of G. We now show that 7,(G) = |S|. Let § = {w;,,vs,,...,%;,, }, where
i1 < i3 < +++ < i;». Suppose that 7,(G) < |S|. Among all 74(G)-sets, let S*
be chosen so that the first integer j (1 < j < m) with v;, ¢ S* is as large
as possible. Let T,fj be the subtree induced by D[vi,] where v;, is the root,

and Gf‘j be the corresponding sub-block graph of T,fj JIf (T,fj NS*)\S # 0,
then replaced any vertex of (T,f‘j N5*)\ § by vy, to form a new ~4(G)-set

which contains all vertices in {v;,,vi,, ..., }, which contradicts our choice
of S*. Thus, we have (T,fj NS*)\ S = 0. Furthermore, let w{ be the father
of vy; in TB(VE, EB), then S* contains no vertex of B 7. Otherwise, we can
also get a new 74(G)-set by replacing that vertex with v;;, which contains
all vertices in {v;,,%;,,...,v;}. By the algorithm, v;; was added into S
because N(v;;) N Hi;) contains at least one white vertex (a clique which
is not dominated). Since (T,fj NS*)\ S =0 and S* contains no vertex of

By, it is clear that such cliques in Gg:j cannot be observed by S*, which
contradicts the assumption that S* is a v¢(G)-set.

The running time of algorithm CDS-BG can be estimated as follows.
The running time is linear to the size of refined cut-tree of G, while the
time for constructing a refined cut-tree of G is linear [1). Therefore, it

follows that the total time needed to perform algorithm CDS-BG is linear.
|
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