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Abstract

We study two-path convexity in bipartite tournaments. For a
bipartite tournament, we obtain both a necessary condition and a
sufficient condition on the adjacency matrix for its rank to be two.
We then investigate 4-cycles in bipartite tournaments of small rank.
We show that every vertex in a bipartite tournament of rank two lies
on a four cycle, and bipartite tournaments with & maximum number
of 4-cycles do not necessarily have minimum rank.

1 Introduction

Convexity has been studied in many contexts. For graphs and digraphs, the
convex subsets of the vertex set are usually defined using some set of paths
within the graph. More precisely, if T' = (V, E) is a (directed) graph and
P a set of (directed) paths in T, a subset A C V' is P-convez if, whenever
v,w € A, any (directed) path in P that originates at v and ends at w only
involves vertices in A. Given a subset S C V, the convez hull of S, denoted
C(S), is defined to be the smallest convex subset containing S.

Several types of convexity have been studied in the literature. If P is the
set of geodesics in T', the resulting convex sets are said to be geodesically
conver. Geodesic convexity was introduced by F. Harary and J. Nieminen
in [HN81] and also studied in [CFZ02] and [CCZ01]. When P is the set of all
chordless paths, we have induced path convezity (see [Duc88]). Other types
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of convexity include path convezity (see [Pfa71] and [Nie81]) and triangle
path convezity (see [CM99)).

The most frequently studied parameters in convexity theory are the
_ Helly number, the Radon number, and the Caratheodory number, which
are based on notions of independence (see [vdV93]). These are all bounded
above by the rank, which is defined as follows. A set is FF C V convezly
independent set if x ¢ C(F — {z}) for all £ € F. The rank d(T) is the
maximum size of a convexly independent set. Rank is also a measure of
how computationally difficult it is to construct the convex subsets of a given
convexity space. Specifically, it is an upper bound on the number of vertices
required to generate a convex subset.

Convexity in tournaments is studied in [Var76], [EFHM72], [EHM72],
and [Moo72]). Research in this area has focused on two-path convezity,
where P is the set of all directed 2-paths. Other types of convexity lead
to less interesting convex structures in most tournaments. For example, if
all directed paths of length three or less are allowed, then the only convex
subsets of a strong tournament are @ and the entire vertex set.

‘Recall that T' is a multipartite tournament if one can partition V' into
n partite sets Py, Pa,..., P, n > 2 such that for all ¢ # j there is pre-
cisely one arc between each vertex in P; and each vertex in P; and no
arcs between vertices in the same partite set. When n = 2, T is a bipar-
tite tournament. As with tournaments, the study of two-path convexity
in multipartite tournaments leads to rich convex structures, see [PWWb),
[PWWec], and [PWWa). Since the results in this paper deal with two-path
convexity in bipartite tournaments all references to convexity will mean
two-path convexity.

The work in this paper is motivated by earlier work of Varlet in [Var76]
where it is shown that all tournaments with at least two vertices have rank
2. Since numerous interesting results have been proven about cycles in
tournaments (e.g., [GM72]), we consider whether those results are related
to the fact that tournaments have rank 2 by studying bipartite tournaments
with small rank. We first look at bipartite tournaments T of rank 2. The-
orem 2.6 gives us a necessary and sufficient condition for T to have rank 2
and Theorem 2.8 gives a condition on the columns of the adjacency matrix
that is sufficient for T to have rank 2. This result provides a mechanism to
generate several examples of bipartite tournaments of rank 2.

We then investigate the connection between small rank and the number
of 4-cycles present in T'. In Theorem 3.4, we prove that if a bipartite tourna-
ment has rank 2, then every vertex of T lies on a 4-cycle. We then consider
bipartite tournaments where one partite set has two vertices. Given partite
sets with two and n vertices, we classify all bipartite tournaments of mini-
mum rank (Theorem 3.6). We also show that if such bipartite tournaments
have a maximum number of 4-cycles, then they do not have minimum rank
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unless n < 4 (Corollary 3.7).

Let T = (V, E) be a digraph with vertex set V and arc set E. We denote
an arc (v,w) € E by v — w and say that v dominates w. If U, W C V, then
we write U — W to indicate that every vertex in U dominates every vertex
in W. Two vertices are clones if they have identical insets and outsets,
and T is clone-free if it has no clones. If u,v,w € V with u —» v = w, -
we say that v distinguishes the vertices © and w. Note that in a clone-free
multipartite tournament, for every pair of vertices u,w in the same partite
set there is at least one vertex (not in that partite set) that distinguishes
v and w. If A and B are convex, we denote the convex hull of AU B by
AV B. Ifv,w € V, we drop the set notation and write {v} vV {w} as vV w.

To facilitate our study of bipartite tournaments, it will be helpful to
study their adjacency matrices. In the case of a bipartite tournament,
however, the adjacency matrix can be represented more compactly. Let
{v1,- ,ux} and {wy,- - ,we} be the partite sets of a bipartite tournament
T. Foreachiand jwith1<i<kand1<j<U{let m;=1if v; > w;
and let m; ; = 0 otherwise. We will call M = (m; ;) the matriz of T, and
we say that T is the bipartite tournament induced by M. Notice that v;
distinguishes w; and wy if and only if m; ; # m; x and w; distinguishes v;
and vy if and only if m;; # my ;. In addition, identical rows or columns of
the matrix of T correspond to clones.

2 Bipartite Tournaments of Rank 2

In this section we consider bipartite tournaments of rank 2 and give neces-
sary and sufficient conditions under which a bipartite tournament has rank
2. Throughout this section, T = (V, E) is a bipartite tournament with
partite sets P, = {z1, -+ ,zm} and P = {y1,--* ,¥n}

Lemma 2.1. Suppose T is a bipartite tournament of rank 2.

1. If |P2| £ 2, then each pair of vertices in P; is distinguished by each
vertex in P;.

2. If |Py| > 3, then each pair of vertices in P, is distinguished by at least
two vertices in P;.

3. If |P;| > 2, then there is no vertex v € P, with either v — P or
Py — .

Proof. Let v,w € P;. If v and w are clones, then it is clear that v, w, and
any vertex in P, form a convexly independent set. Now suppose that v and
w are distinguished by a unique vertex z € P,. For (1) and (2), it suffices to
show that |P| = 1. If | P| > 2, then there is some y € P, — {z}. We claim
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that {v,w,y} is convexly independent. Clearly, v ¢ wVy = {w,y} and
wé¢ vVy = {v,y}. Also, vVw = {v,w,z}, since v and w are distinguished
only by . Thus, y ¢ vV w, and so {v,w,y} is convexly independent, a
contradiction.

For (3), if such a v existed, then v and any two vertices in P, form a
convexly independent set, so the result follows. [}

Since every pair of vertices in the same partite set must be distinguished
by at least one vertex, we have the following.

Corollary 2.2. Every bipartite tournament of rank 2 is clone-free.

It is not generally true that multipartite tournaments of rank 2 are
clone-free. For instance, consider the tripartite tournament whose vertex
set V consists of partite sets Py, P>, and P3 having two vertices each, with
arcs given by P, — P, — P; — P,. Any set of three vertices must then
contain two vertices  and y in different partite sets. But thenzvVy =V,
which contains the third vertex. Thus, d(T') = 2. But each vertex is a clone
of the other vertex in its partite set, so T is not clone-free.

If we write Lemma 2.1 and Corollary 2.2 in terms of the matrix of T,
we obtain the following.

Corollary 2.3. Suppose T is a bipartite tournament with rank 2 and
matrix M, and assume that each partite set of T has at least two vertices.
Then

1. The rows of M are distinct and the columns of M are distinct.

2. Each pair of rows of M differ in at least two positions. That is, for
each 1 < i # § < m, there exists k and [/, 1 € k,! < n such that
m;k # mjx and my # My

3. Each pair of columns of M differ in at least two positions. That is,
for each 1 < k # | < n, there exists ¢ and 7, 1 < 4,7 < m such that
mi . # miy and myk # mj.

4. No row or column of M consists entirely of 0s or 1s.

Now we are able to characterize bipartite tournaments of rank 2 with
small partite sets.

Corollary 2.4. If T is a bipartite tournament of rank 2 such that one of

its partite sets has at most two vertices, then T can be represented by one

of the following matrices: [1], [I 0], or [é (1) .

184



Proof. If one of the partite sets has at least three vertices, then it is im-
possible for each of these vertices to be distinguished by a single vertex in
the partite set with at most two vertices. This violates Lemma 2.1(1), and
so each partite set can have at most two vertices. The result follows easily
from this. ]

To determine which bipartite tournaments have rank 2, we can ask
which binary matrices represent bipartite tournaments of rank 2. In the
case of | P;| or | P;| = 3, there are no such matrices. However, there are such
matrices satisfying Corollary 2.3 (and thus Lemma 2.1). This indicates that
Corollary 2.3, while being necessary for rank 2, is not sufficient.

Theorem 2.5. There are no bipartite tournaments of rank 2 with three
vertices in one partite set. Up to isomorphism there is a unique bipar-
tite tournament with three vertices in each partite set that satisfies the
conclusions of Corollary 2.3.

Proof. Suppose that |Pz| = 3 and let M be the matrix of T. By Corol-
lary 2.4, |P;| > 3. By Corollary 2.3(4), the only possible columns for M
are 100, 010, 001, 110, 101 and 011. It is then easy to check that the
only matrices that satisfy the remaining conditions of Corollary 2.3 up to
reordering of rows and columns are

1 00 011
01 0f{and |1 O 1 ].

0 01 110
In each case, {z,, 2,23} is convexly independent, so d(T') = 3. Note that
these bipartite tournaments are isomorphic. O

The following theorem gives necessary and sufficient conditions on T to
guarantee rank 2.

Theorem 2.6. Let T' = (V, E) be a bipartite tournament. Then d(T") = 2
if and only if for all vertices z and y in the same partite set, we have
zvy=V.

Proof.. In view of Corollary 2.4, we may assume each partite set of T has at
least three vertices. Assume d(T') =2 and z and y are in the same partite
set of T. Without loss of generality we may assume that z and y are in
partite set P;. If z € P, — (zVy) then {z,y, 2} is convexly independent and
d(T) > 3. Thus P, C zVy. If 2 € P, then by Lemma 2.1(3), there exist
vertices u,v € P, with u — z — v. Since P, C z Vy, we have u,v €z V y,
and so z € z V y. The converse is clear. O
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Given a bipartite tournament 7', the columns of the matrix of T form
a subset of Z7*. Theorem 2.6 gives a method for finding vector subsets of
Z7 that represent bipartite tournaments of rank 2. Let us introduce some
notation. Given a vector v = vyvg -+ v, € ZJ*, we define the complement
vector v, = vjvh -V}, € ZJ to be the vector with v; = v; + 1 for all 3.
With the notation introduced earlier, if y; and y; are in partite set P, of
a bipartite tournament T and the corresponding columns c; and ¢; in the
matrix of T are complementary then P, C y; V y; as each vertex in P,
distinguishes y; and y;. This observation motivates the following.

Definition 2.7. A subset S C Z is called rank 2 complementary (RTC)
when the following hold.

l.veS=v.€5S.
2. For each 1 £ ¢ # j < m, there exists v € § with v; # v;.
3. Each pair of vectors in S differs in at least two components.

4. 00---0,11---1 ¢ S.

Except for (1), these conditions appear almost identical to those in
Corollary 2.3. In fact, (3) and (4) are identical to Corollary 2.3(3) and (4).
In addition, while (2) looks like a slightly weaker condition than Corol-
lary 2.3(2), it is not. If v satisfies (2) in the definition, so does v, so there
are at least two vectors with v; # v;. We have the following.

Theorem 2.8. Let T be a bipartite tournament and let § C ZZ* be the
set of columns of the matrix of T. If S is RT'C, then d(T) = 2.

Proof. If z;,z; € P, then by Definition 2.7(2) there is a yx € P, such that
a; k # ajk- Then yx € z; Vz;. By Definition 2.7(1), there is a y, € P; such
that cx and c; are complements. Then a;; # a;; and y¢ € z; V ;. Since
¢, and ¢; are complements, P, C yx Vy¢ C z; V z;. It then follows from
Definition 2.7(4) that z; Vz; = V.

Let yi,y¢ € P». By Definition 2.7(2), yx V ye¢ contains at least two
vertices z;,z; € P1. By the above argument, V C z; Vz; C yx V ye s0
yi Vye = V. Thus d(T) = 2 by Theorem 2.6. O

Example 2.9. This gives us a way to produce several examples of rank
2 bipartite tournaments. For instance, when m = 4, we can have S =
{1000, 0111,0100,1011, 0010, 1101, 0001,1110}, which gives us a bipartite
tournament of rank 2 with partite sets of order 4 and 8.

We can get some examples with partite sets of odd cardinality as well. In
the case m = 5, we can use S = {11000,00111, 01100, 16011, 00010, 11101}
to get a bipartite tournament with partite sets of order 5 and 6.
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Example 2.10. For some infinite classes of examples, let m be even, and
let S be the set of all vectors with equal numbers of 0’s and 1’s. Since the
degrees are balanced, S satisfies Definition 2.7(1). The other conditions

follow similarly.

A set of examples of this is the following. Let T be the tournament
with partite sets P, = {z1,-+ ,Z2r}, P2 = {y1,** ,y2r}. For i < j, welet
Toi-1 — Yoj-1 — Tai — Yoj — Toi—1. For i > j, we let Y2j-1 = T2i-1 —
Y2j — T2i — Yo;j—1. Since the (2j — 1)st and (27)th columns of the matrix
of T are complements it is not difficult to verify that the set of columns of
the matrix of T is RT'C and thus d(T") = 2. Note that T is also regular.

3 Four-cycles and Small Rank

The examples of bipartite tournaments of rank 2 given in the previous
section all contain relatively large numbers of 4-cycles. The reason is related
to Definition 2.7(1). If v is a vector with v; =0, and v; = 1, then v/ = v,
has entries v; = 1 and v} = 0. The vertices represented by v, v/, and the
ith and jth rows of the vectors then form a 4-cycle.

In this section, we show that every vertex of a bipartite tournament of
rank 2 with at least four vertices is a part of a 4-cycle. Thus all rank 2
bipartite tournaments have relatively large numbers of 4-cycles. We also
carefully examine bipartite tournaments with two vertices in one partite
set and a maximum number of 4-cycles.

Let » and v be vertices in the same partite set of 7. We define

0 ={z€V:iu—z—v}

T'={zeV:v—oz—u}
q ={zeV:u—zv-1)}
Ty’ ={z€V:z—uz—v}

The connection with 4-cycles is given by the following.

Lemma 3.1. Two vertices u and v in a bipartite tournament 7T lie on a
common 4-cycle if and only if T73", Tgy" # . In fact, the number of 4-cycles
containing » and v is [T7g"| - |To:" |-

The role of Tog" and T3;" is important in the proof of the main result.

Lemma 3.2. Let T be a bipartite tournament of rank 2 with at least 4
vertices and let u,v € V be in the same partite set. If » and v are not part
of the same 4-cycle then 73", Tog” # 0.
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Proof. Let P; be the partite set containing v and v and let P, be the other
partite set. Assume T7;" = @. Since u and v are not in a common 4-
cycle, then, without loss of generality, we may assume Tgy;” = @. Thus,
P, = Tjg" UTgs" so P — v. By Corollary 2.4, each partite set of T' must
have at least three vertices, contradicting Lemma 2.1(3). The proof for
oo is similar.

For the proof of our next theorem, we require the following notation

from [HW96).

Definition 3.3. Let U C V, and define Ci(U) inductively by

Co(U)=U, Ci(U)=Cr(U)W{weV:iz—ow—y
for some z,y € Cr—1 (U)},k 2 1
Note that Coo(U) is the convex hull of U.

We can now prove the following.

Theorem 3.4. If T is a bipartite tournament with at least four vertices
and d(T') = 2, then every vertex of T is part of a 4-cycle.

Proof. Since |V| > 4, Corollary 2.4 implies that each partite set of T has
at least two vertices. Let u € V and assume u is not part of a 4-cycle. Let
P be the partite set containing v and let v € P — {u}. By Lemma 3.2,

Y, Tog® # 0. Without loss of generality, we may assume To" = 0.
Let U = {u,v}. By Theorem 2.6, u Vv = V. Let k be minimal so that
b € Ci(U) for some b € Tgg". Then there exist z,y € PNCk_1(U) such that
z — b — y. Note that = # u,v. Thus, there exist z,w € Cx_2(U) such that
z — £ — w. By the minimality of k, we cannot have z,w € Tgg", which
forces z,w € T};"UT};", and sou — 2. Wethenhaveu — 2z =z — b — 4,
and so u is part of a 4-cycle. a

Theorem 3.4 suggests that there may be a correlation between the num-
ber of 4-cycles and the rank of a bipartite tournament. Consequently, it
makes sense to ask if maximizing the number of 4-cycles minimizes the
rank. With this in mind, let T be a bipartite tournament with partite sets
of order 2 and n. We have partite sets P, = {1, z2} and P, with disjoint
subsets To'™2, Tia"™, Tgg'™*, and Tj;'*. To simplify notation we write
T;; instead of T?"”’ a.nd set t;j = |T,,| for 4,5 € {0,1}. If T has a maxi-
mum number of 4-cycles, then Tgo = T1; = @ and Ty9 and Tp; are as close
to the same order as possible. Then the union of the larger of Tp; and
Tio and either {z;} or {z2} is a maximum convexly independent set in V.
Regardless of whether n is even or odd, we get the following.

Theorem 3.5. Let T be a bipartite tournament with a maximum number
of 4-cycles. Then d(T) = || + 1.
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To minimize d(T"), we must consider each possible convexly independent
set. They are precisely the nonempty subsets of 139 U T}y, T10 U Too, To1 U
Th1, To1 U Too, To1 U {z1}, To1 U {22}, Tio U {z1}, Tho U {22}, Too U Tha,
Too U {z1,22}, Tna U {z1, 22}, Too U {z1,¥}, Too U {x2, 2}, Ti1 U {z2,3},
iU {:cl,z}, Too U {, z} and T) U {y,z} where y € Tp; and z € The. )

Note that since |P2l = n, it follows that one of T39 U T}, and Tp; U Tgo
must have at least % vertices. Thus, d(T') > max(2, [2f!]). Assumen >3
and let 7 = [2]. In order to be of minimum rank, we must have one
of t10 + tgo and tgy + ¢11 equal to 7 (otherwise, one or the other is larger
than 7). If necessary, we can reverse the arcs of T (which does not change
the convex subsets of T'), so we can assume 19 + tgg = r, which means
tog+tin=n-—r.

By similar reasoning, one of t1g + ¢1; and £o; + tgo must be r. We take
each of these cases in turn. If {19 + £1; = r, then we subtract t;0 + 9o =1
from this to get 17 = foo = 5. Wethenget tjp=r—sandtpy=n—-r—s.
Since Too U T, is a convexly independent set, then tgo +1t1; <rso2s<r
and s < . Since Tyo U {z1,y} is a convexly independent set for y € To;
then s < r — 2. Finally, 19U {z,} is a convexly independent set, so s > 1.
Putting all of this together we have that 1 < s < min(,r — 2). This also
implies that r > 3, so n 2> 5.

A similar argument in the case to; + tgo = 7 yields tgo = s, t1; =
n—2r+s,tg =ti0=r—s,and 1 < s < min(§,r — 2) when n is even and
1 < s < min(%},r — 2) when n is odd. Again, » > 3, so n > 5. Putting
this together and taking into account bipartite tournaments obtained by
reversing all arcs, we obtain the following,.

Theorem 3.6. Let T be a bipartite tournament with partite sets P, =
{21, xz} and P = Tp; U Ty U Tgo U To;, with |P2| > 5. Then d(T) > I_—:LJ
and if d(T') = | 2], then

1. if n is even, then T is isomorphic to the bipartite tournament with
too = t11 = s and to; = tyo = § — 3, where 1 < s < min(g, 25%).

2. if n is odd, then T is isomorphic to one of the following bipartite
tournaments:
min(l‘l:l(%()}t):tn =s,tio="F -5, tn =23 —~sand 1< s <
min(ﬁz'—"(gigo=tu =stn="F -5 to="231 —sand1<s<
min(l;,(:iét()m =3s,t11 =8—1, 810 =tp; = 32"—1-—3 and 1 <s <
nﬁn(&;’(i);t)u =sto=s-ltw=tn="-sandl<s<
4 2
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When n = 1 or n = 2 there are bipartite tournaments 7" with rank 2.
They arexy vz — zoandz) 2o 20—y — 1. Whenn=3orn=4
there are no bipartite tournaments T with rank 2, but there are a number
of tournaments with rank 3. These are precisely the bipartite tournaments
T with tg9 < 1, t11 < 1, to1 < 2 and ¢3¢ < 2. This and Theorem 3.5 give us
the following.

Corollary 3.7. Let T be a bipartite tournament having partite sets with
two and n vertices, n > 1. Then T can have a maximum number of 4-cycles
and minimum rank subject to having partite sets with two and n vertices,
respectively, if and only if n < 4.

Thus, while having a large number of 4-cycles does guarantee small
rank, it does not correspond to minimum rank.
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