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Abstract
The centro-polyhedral group (1 ,m, n) ,for ,m,ne€Z, is defined by the
presentation
<x,y,z:x' =y" =z" =xyz>.
In this paper, we obtain the periods of k-nacci sequences in centro-
polyhedral groups and related groups.
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1. Introduction
The Fibonacci sequences and related higher-order (tribonacci, k-nacci)
sequences are generally viewed as sequences of integers. In [6] the
Fibonacci length of a 2-generator group is defined, thus extending the idea
of forming a sequence of group elements based on a Fibonacci-like
recurrence relation first introduce by Wall in [17], where he considered the

Fibonacci length of the cyclic group C, . Lit and Wang contributed to the

study of the Wall number for the k-step Fibonacci sequence [15]. The
concept of Fibonacci length for more than two generators has also been
considered, see for example [3]. Also, the theory has been expanded to
nilpotent groups, see for example [1,2,10]. Knox proved that the period of
k-nacci (k-step Fibonacci) sequences in dihedral groups is equal to 24+2
[14]. In [4] the Fibonacci lengths of certain centro-polyhedral groups are
calculated. Other works on Fibonacci length are discussed in, for example,
[5,9,11,12,13].
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This paper discusses the periods of k-nacci sequences in centro-polyhedral
groups and related groups.
Definition 1.1: A k-nacci sequence in a finite group is a sequence of group

elements X;,X,,X,,*+,X,,>*+ for which, given an initial (seed) set

Xys Xy X350 05X, each element is defined by

X,

n

. _{xlxz---x,,_, forj<n<k
=
kXnkar Xy TOrn>k

We also require that the initial elements of the sequence, X,,X,,X;,*+,X;,
generate the group, thus forcing the k-nacci sequence to reflect the structure
of the group. The k-nacci sequence of a group generated by
X)s Xy, X35°+*, X; is denoted by F.(G;x),X,,°++,X;) and its period is

denoted by F,(G; x;,x,,++,%;).
For more information see [14].
A 2-step Fibonacci sequence in the integers modulo 72 can be written as

F,(Z,,;0,1). A 2-step Fibonacci sequence of group elements is called a

Fibonacci sequence of a finite group. A finite group G is k-nacci
sequenceable if there exists a k-nacci sequence of G such that every
element of the group appears in the sequence [14]. A sequence of group
elements is periodic if, after a certain point, it consists only of repetitions of
* a fixed subsequence. The number of elements in the repeating subsequence
is called the period of the sequence. For example, the sequence
a,b,c,d,e,b,c,d,e,b,c,d,e, -+ is periodic after the initial element @ and
has pericd 4. A sequence of group elements is simply periodic with period k
if the first & elements in the sequence form a repeating subsequence. For
example’ the sequence a,b,c,d,e,f,a,b,c,d,e,f,a,b,c,d,e,f,--o is simply
periodic with period 6. It is important to note that the period of a k-nacci
sequence depends on the chosen generating n- tuple for a group.

Definition 1.2: For a finitely generated group G =(A) where

A= {a,,az,...,a,,} the sequence X, =4, X

n-1 = an-l 4

n
Xipn = Hx,-,, j-1» 120, is called the Fibonacci orbit of G with respect
J=1

to the generating set A, denoted F, (G).
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Definition 1.3: If F, (G) is periodic then the length of the period of the
sequence is called the Fibonacci length of G with respect to the generating

set A, written LEN (G)
Notice that the orbit of a k-generated group is a k-nacci sequence. The
orbits of certain centro-polyhedral groups, for any n>2, have been
studied in [4].
Definition 1.4: Let £,*) denote the 7 th member of the & -step Fibonacci
sequence defined as

f® = Z ,,(f} forn>k )

j=l

with boundary conditions f; ®) =0 for 1<i<k and A ® =1,

Reducing this sequence by a modulus m , we can get a repeating sequence,
which we denote by

f(k,m) = (fl(km), fz((k,'")’ e, f;,(k"") )’
where £+ = f.(") (modm). We then have that
( j;(k'm) , f;(k""), N A ") ) (0,0,---0,1) and it has the same
recurrence relation as in (1) [15].
Theorem 1.1: f (k,m) isa periodic sequence [15].
Let h,(m) denote the smallest period of f {k,m), called the period of

f(,m) or the Wall number of the k -step Fibonacci sequence modulo
m . For more information see [15].
Definition 1.5: Let A, . )(m) denote the smallest period of the

(a3,
integer-valued  recurrence  relation u, =u, ,+u, ,+---+u,,,
u =ay,u, =a,, -, U, =a, when each entry is reduced modulo m .

For example we choose #, =2, u, =3 to calculate hz(2 3) (m) , that is we

choose the boundary conditions f, @m) = 3 A 2m) =3 or we choose
=0,u, =0,u;=0,u, =2,u; =3 to calculate Ay, (m), that
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is we choose the boundary conditions _/;(s'"') =0, fz(s'"') =0,
f3(5Jn) =0, f4(5"") =2, fs(S.'") =3.
Lemma 1.1: For  @,,8,,**,8,,X,%,,"*, X, €Z with m>0,

a,, a,,**+a, not all congruent to zero modulo m and Xx,x,,***,X, not
all congruent to zero modulo m,

hlc(a,,a2 ray) (m) = hk(x,,x,,---.x,) (m) :
Proof: The following is due to Lii and Wang, see [15]. Let
Un = [un s Upyps™** un+k-l] and

o100 -0
001 - 0
0 00 -1
111 -1

L Jkxk

Then it follows that U, =U, (GT )n where "T" denotes the transpose of
a matrix. Since the integers modulo m form a finite set of equivalence

.. T\
classes, there exist integers # and r such that (G ) is congruent,
. 7Y . T . .
elementwise, to (G ) modulo m . Since det (G )=1 is a unit modulo

m, (GT)n is the kxk identity matrix. So U, =U, mod m, in the

natural way.
Corollary 1.1: Let @,,8,,*,@,,X,%, ", %, &, f€Z  with

a,f>0, a,,a,,-a, not all congruent to zero modulo & and

X,,X,,***,X, notall congruent to zero modulo & . Then we have

hk(a,,a, oray) (a) hk(x, RS Y] (aﬂ) .
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Proof: By Lemma 1.1 we have that hk(apaz.-"a;)(a) =hk(x,.x,.--~.x.)(a)

!
and from the fact that if m = l_[ P (¢ 21) where the p,’s are distinct

i=1
primes and the e,’s are positive integers, then A, (m) equals the least

common multiple of the &, (p," )’s, see [15], we find that

Pyar, 0y ) () Py igsvein) (aB).
Definition 1.6: The polyhedral group (l ,m, n), for I,m,n>1, is defined
by the presentation
(x,y,z:x' =y"=2" =xyz=l>.
The polyhedral group (l, m, n) is finite if, and only if, the number

H= Imn(% + 1 + 1 l) =mn+nl +Im—1Imn is positive. Its order

m n
is 2Imn/p.
For more information on these groups see [7] and [8, pp.67-68].

2. Main Results and Proofs
Definition 2.1: The centro-polyhedral group (l ,m, n) ,for lm,nelZ,is
defined by the presentation
(x,y,z:x’ =y"=2" =xyz>.

For more information on these groups see [4,7].
Theorem 2.1: The periods of the k-nacci sequences in the groups

(-2,1,2),(2,n,-2),(n,~2,2) and (n,2,-2), for n > 2, are
h(4(n-1)).

Proof: These groups have orders 4n(n—l). Let us consider the group
given by the presentation (- 2, n,2). We first note in the group defined
this presentation both x2 and z* are central, le =|z| = 4(n—l) ,

|¥|=2n(n-1) and x> = yz.
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If k = 2, consider the recurrence relations defined by the following:
U, =U, ,+u, , uy=0,u=3;

m=-1°
V, =V, +V,,, =1L, =0.
Then a routine induction shows that the number of x™'’s and z’sin mth
entry of the k-nacci sequence is given by %,, and v,, respectively.
Here the start of the 2-nacci sequence is
X =X, Xy =Y, Xy =2, X, = yI=X", X =x "o,
xg=x"x"zx x, =xx712
For m>5 we can see that the 2-nacci sequence will separate into some
natural layers and each layer will be of the form

( x_(.,_-|) 2 , m=1mod 6,
oy gt m=2mod 6,

e zg, m=3mod 6,

X =1 Dy , m=4mod 6,
x ) gt et m=5mod 6,

L P , m=0mod6.

Now the proof is finished when we note that the 2-nacci sequence will
repeat when X, .3 =2 and X, ., = x7, where h, represents the period
of the 2-nacci sequence. Since the 2-nacci sequence can be said to form
layers lenth six then the period is 6.4, (/l € N) that is
P+3=3mod6 ad P+4=4mod6. Where we denote

P, ((—2, n, 2>;x, ¥, z) by P . Examining this statement in more detail

gives
- -1
Xp,3 =X 220,

Xpes = x et v
Using P+3=3mod6é6 ad P+4=4mod6 we obtain

Upy =ty =0,v,,=v,=Lu,  =u,=3 and v,,,=v,=0. In the

case the first of the above equalities gives

p+é4
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Xp,y =X 7P =z,
The second equality gives
Xpoqg =X 2" = x7
The smallest non-trivial integer satisfying the above conditions occurs when
the period is %, (4(n-1)).
If k=3, see [4] for a proof . If kK >4, consider the recurrence relations

defined by the following:
U, =U, ; + um-(k-l) + um-(k—Z) +eeet Up s

u3=0’u4=0,'."uk+] =0’uk+2=3;
Vi = Vnok F Vpfet) F Vo) ¥ Vs

m
—1v = —92 ... — k=2 - 2 k2
Vv =Lv,=2,v,=2%,9,,=2"",v,,, =242+ - +27° .

Then a routine induction shows that the number of Xx™'’s and z’s in m th
entry of the &-nacci sequence is given by #,, and v, respectively.

Here the start of the x-nacci sequence is
zk-i
X=X, X =Y, X =2,X, =20, X, =77, X, =z,

ot 2 -1 (2+2"+ +2"z) -1 (21+2’+ +2H)
Y =2 X, =X X »Xpyy =X

-1 (2’+2‘+ +2") 12 (z‘+z’+...+2'=*l)

R
Xppg =X X7 2X =x""z T

For m>k+3 we can see that the k-nacci sequence will separate into
some natural layers and each layer will be of the form
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f x'("n'l)x'lz"n’ ms= 1 mod 2k +2,
g 1 g v , m=2mod 2k +2,
x~4n zz"--" m=3mod 2k +2,
x"‘nz"-’ m= 4 mod 2k + 2;
x"‘-zvn s ms 5 mod 2k + 2,
x g% m=kmod 2k +2,
x-u,zv.’ m=k+1mod 2k+2,
X =1 ~{un-1),-1_v,
x'("-'l)n'lz"-'l , ms k +3 mod 2k +2,
x'("-'z)x'ln'lz"'_l . ms= k + 4 mod Zk + 2,
X"z, m=k+5mod 2k+2,
x“‘.zv-’ mEk+6m0d 2k+2,
Xz, m=2k+1mod 2k +2,
Lx"“.zv-’ mEomOd 2k+2.
Now the proof is finished when we note that the k-nacci sequence will
repeat when
k-3 2k-2
and

_ .2 _ .2 — 2 -
X3 T2 Xp4q =2 5 Xp 45 =2 2 U Xp k=2 s Xk =2

3 (2422442t . .
Xpske2 =% 32( ) where 7, represents the period of the k-nacci

sequence. Examining this statement in more detail gives
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— y=UPs3 pryVPayl
Xpyy =X 022"

= vy Urst 5 VPrs
Xpg =X 77277,

— 3" UP+s VPes
xP+s =X z ’

. .
b b ]

= y " UPek Pk
Xpog =% 77277,

= v dPstil HVPrkst
Xpigst =% z7,

NG CTIPLs | T SR
xP+k+2 =X X Z7,

where we denote P,‘«-Z, n,2);x, y,Z) by P. Using Lemma 1.1 the
above equalities give

xP+3 = x""P-o-J ZVP+3 =2z,
Xp,q =X Pz =22,
Xp,s = X Upss g¥Pus = 22’ ,

5 o
— v UPsk VP = 2+
xh,‘ =X zZ =2 N

-2
“Upetnt gVPon = 52
2

xI’+Ic+l =X
= Yy UPse2 VPl — 3,2

Xpopeg =X THIZP =x72%,

The smallest non-trivial integer satisfying the above conditions occurs when

the period is 7, (4(n - l)) .

The proofs for the groups (2,n,—2),(n,—2,2) and (n,2,-2) are

similar and are omitted.
Theorem 2.2: The periods of the k-nacci sequences in the groups

<2,-2, n) and (— 2,2, n) , for n> 2, are as follows:
i. If k = 2, the periods are &, (4(n-1)) .

ii. If k > 3, the periods are the smallest non-trivial integers such that

4n| B, ((2,-2,m)3 %, 3,2), by (4(n=1))| B ((2.-2.7)3%,3,2).
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Proof: These groups have orders 4n (n—l). Let us consider the group

given by the presentation (2,—2, n) . We first note in the group defined by
this presentation
x| =4(rn-1)=|, |z| =2n(n-1), z= YOy x=yz and  we
can deduce the following:

z=y'x, =y mz=y 2’ =y y e’ =

=y =y *x=(y? )2x =z""x

i. The proof is similar the proof of Theorem 2.1 and is omitted.

ii. If £ =3, see [4] for a proof. If k¥ 2 4, consider the recurrence relations
defined by the following:

u, =u, ,+ um—(k-l) + u’"'(k‘z) Fe s
Uy =luy =00, =0,4,,=0;
Vi =Vpi t vm-(k-l) + v’""(k'z) Foety

m=1>

w=ly=2,v =24y, =2, = (2420 44257 )4

Then a routine induction suffices to show that the number of x’s and 2 ’s
in m th entry of the k-nacci sequence is given by ,, and v, respectively.
Here the start of the k-nacci sequence is

xR ==Lt =xxext e =x x, =2,

(202’4---02"“)»] (2’*2’%--#2'") (2’02‘4«42‘)
=x zxx s Xy = XZXX ,

-"hz » X3 =

423 g2t
Xpos =’“2-’“(2 e ),

For m>k+3 we can see that the k-nacci sequence will separate into
some natural layers and each layer will be of the form
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[ (-2} P A e m=1mod 2k +2,
20 et m=2mod 2k +2,
ORI , m=3mod 2k+2,

Lalm=2hn jm-)2 v m=4 mod 2k +2,
Zm SN2 s}z v m=5mod 2k +2,
Flmlm8)/2}n ()2, v, , m=k mod 2k +2,
z(“--("-("*‘))/z)" Zme)z v, , m=k+1mod 2k+2,
Gl O O A e m=k+2 mod 2k +2,
20 et m=k+3 mod 2k +2,
O m=k+4 mod 2k +2,
Lllmbesfaeze (m{rss))fas2, a2 m=k+5 mod 2k +2,
N T D 7T
Lrimretlfasths (b2 o2 ok 41 mod 2k +2,
Sl Gidlferde(mpdfar2 vz ok 1 mod 2k +2.

Letting P=F, ((2,-2,n);x,y,z) we have:
Xp,3 = Zleran . v ,
Xpoy = z(“” u(P+4-4)f2)n Z(P +4-4)/2 X' ,

= z("Pd ~(P+5-5 )/ 2)" Z(P +5_5)/ 2 xVPd R

xl’+s

5 '

Xpop = PRI (Pek-R2 o

Xpops = plipmaPeksi- st (Prbsi k)2 v
Xpupay = z(up‘ﬂ;-(muz-(k+2))/2)uxz(p+k+z—(k+z))/zx,P -l
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So we need A, (|x|)|P that is A, (4(n—l))IP, where A, (m) is the k-

step Wall number of the positive integer m . Using Lemma 1.1 and
Corollary 1.1 the above equalities give

Xps =2V’ = 2,
= (0P (P2, 2 (Br2)1-n)y 2

X4 x'=2z
Xp,s = z("—("’/i’))'l z(")/2x4,
:, :’
Xp,p = z(°—(f’/2))" z(P)/2x2"’ ,
0~(P t-2
Xpopu = LA (P2 2
242244242 - 2442872
T L o L LN e L
So  we  will  also  need 2n|P/2 if
. _ 2 _ 21 _ 2&-3 _ zk-l d
Xpag =X 5 Xpys =X 5 5 Xppy TX 5 Xpp =X an
2423 4128241
b4 = x( A . So all we need is P to be the smallest number
P+k+2
satisfying

4n| P,

h (4(n-1))|P.
The proof for the group (—2, 2, n) is similar and is omitted.
Theorem 2.3: The periods of the k-nacci sequences in the groups
<— n,2,2> and <2, -n, 2) ,forn>2, are 2k +2.
Proof: These groups have orders 4. Let us consider the group given by
the presentation (— n,2,2) . We first note that in the group defined by this

presentation 2>  is  central and I yI =4, |z| =4  and
|x|=2n thenx™" =x".

If k = 2, we have the sequence
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X, =X, Xy =Y, X, =2, X, = Y2, Xg = ZVZ, Xg = YZZYZ =
=2 yyz=2"y'z=2,x, =zyz2 = 292" = XYYZ’ =X,

3
x8= Z y:y’x9 =xy=z---
which has period 6.
If k =3, see [4] for a proof. If k 2> 4, the first k elements of the sequence
are
_ _ 2 . _ .4 _ 2
Xy =X, X =YXy T2, X, =2, X =2, X, =20
Thus, using the above information, the sequence reduces to,
X, =X, X =Y, % =2, X%, =20, % =1,,1

where xj=l for S< j <k. Thus,

k - k+l , k+2
X =Hxi=z =l,xm=l_[x,=yz ’xk+3=1—[xi=zy7"
i=1 i=2 i=3
k+3 k+4 3
Xpps = Hx,. =2Z, X5 =Hx, =yzzyz=yyzz =1,
i=4 i=5
It follows that x,, =1 for 5< j <k+1. We also have,
kik+1 3
Xpeke2 = H X, =Yz.zy ZZ—"-'&z:l,
isk+2
kvk+2 ) 5
Xpake3 = H X =2)y2 =xzy_z_=x,
i=k+3
k+k+3 k+k+4
Xirkes = 1_[ Xi SZX =Yy Xprkas = l—[ X =xy=z.
isk+4 ink+5

Since the elements succeeding X,;,3, X3;,45 X3s,5, depend on
x,y and z for their values, the cycle begins again with the 2k + 3™
element; that is, X, =Xy,,3, X5 =X, X3 =X5,5,°*.  Thus,
P, «- n,2,2); X, Y, z) =2k+2.

The proof for the group (2, -n, 2) is similar and is omitted.
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Corollary 2.1: The periods of the k-nacci sequences in the group
(2,2,—n) , for n> 2, are as follows:

i. The periods of the k-nacci sequences in the group (2,2,—n) are 2k +2
with respect to the generating set {z,x, y} . That is
P,((2.2,-n);2,x,y) =2k +2.

ii. The periods of the k-nacci sequences in the group <2,2,—n> with
respect to the generating set {x, Y, z} are as follows:

A ((2, 2,—n);x,y,z) =6.
R S

ii*. Let K 25.

1. If thereisno f € [3, k- 2] such that ¢ is an odd factor of # then,
. n(k+1), n iseven,

B (2.2, -n)%,7,2) = {2n(k+l) n is odd.

2. Let & be the biggest odd factor of 7 in [3, k- 2], then two cases
occur:
i”.1f @.3' €3, k—2]for je N, then

a (n(k +1)), n iseven,
P 2’ 2,- 35X ), =
(2.2-n)ix,5,2) {a(Zn(kH)) n isodd.

ii””, If f3 is the biggest odd number which is in [3, k — 2] and g = @3’
for j € N, then
k+1)), i "
B ((2.2-n);%,9,2) = B(n(k+1)), n 1.? even
ﬂ(2n(k+l)) n is odd.
Proof: We first note that the order of z is 27, the orders of x and y are

4 and the order of the group is 4n.
i. The proof is similar to the proof of the Theorem 2.3 and is omitted.
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ii. i*. If £ =2, we have the sequence
N=XG=pn=nX ==L x=x=yx=y)y =y,
Xg = XY, X3 = JXY5 Xg =x_)zxy=xx_"'xy=y,
Xo = YEYY =YX =12, %9 = YE=X, .
Thus, P, ((2, 2,—n);x,y,z) =6.
Since <2, 2, -n) = (2, 2, n) , the proof follows from the results for
(2,2,n> JIf k=3,see[4] and if k >4, see [9] for a proof.
Corollary 2.2: The periods of the k-nacci sequences in the group
(=2,2,n),(2,-2,n) and (2,2,—n), for n> 2, are as follows:

i. The periods of the #4-nacci sequences in the groups
(-2,2,n),(2,—2,n) and (2,2,—n) are 2k+2 with respect to the

generating set {z, X, y} . Thatis P, (G,,;z, x, y) =2k+2.

ii. The periods of the #4nacci sequences in the groups
(—2, 2, n), (2, —2,n) and (2,2,—n) with respect to the generating set
{x, y,z} are follows:

. B,(G,;x,y,z)=6.
()

2 ) n=0mod4,
i's B, (G,;x,9,z)=1 n(k+1), n=2mod 4,
2n(k+1), otherwise.

.

jii'.Let k= 5.
1. Ifthereisno £ € [3, k- 2] such that £ is a odd factor of 7 then,
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()

2 ) n=0mod4,
P,(G,;x,y,2)=4 n(k+1), n=2mod4,
2n(k+1), otherwise.

\
2.Let @ be the biggest odd factor of 7 in [3, & — 2], then two cases
occur:
i Ifad ¢ [3, k—2] for j € N, then

r (k+1)
alnj—||,
( 2 n=0mod 4,

P.(G,;x,y,2)=1 a(n(k+l)), n=2mod 4,
a(2n(k+l)), otherwise.

\

i, If B is the biggest odd number which is in [3, k- 2] and B = a3’

for j € N, then
5 (£22))
2 n=0mod 4,

P.(G,;x,y,z)=1 ﬂ(n(lc+l)), n=2mod 4,
ﬂ(2n(k+l)), otherwise.

\
Here G, is one of the groups (- 2,2, n), (2,—2, n) and (2,2,—n).
Proof: We first note the order of z is 7, the orders of x and y are 2 in

the group G, and the order of the group G, is 2n.
i. The proof is similar to the proof of Theorem 2.3 and is omitted.
ii. i’. If £ =2, we have the sequence

208



X=X X =Y, X3=2, Xy =)YZ2=X,Xs SZX=YXX =),
xs=xy,x7=m,xs=x&xy=xx_239'=y,
Xg =YX)Y =YX=2Z, X9 S YZ=X, 000

Thus, 7, (G,;%,y,2)=6.

Since G, = (2, 2,n) , the proofs follow from the results for (2, 2, n) JIf

k =3, see [4] and if k =4, see [13] for a proof.
Corollary 2.3: The periods of the k-nacci sequences in the groups

(-2,1,2), (2.-n,2), (2,n,-2), (-n,2,2), (n,-2,2) and (n,2,-2), for
n>2, are P,(G,;x,y,2z)=2k+2. Where G, is one of the groups
(-2,n.2), (2,-n,2), (2,1,-2), (-1,2,2), (n,-2,2) and (n,2,-2).
Proof: Since (-2,n,2)=(2,-n,2)=(2,n,-2)=(2,n,2) and
(—n, 2, 2) = (n, -2, 2) = (n, 2, —2) = (n, 2,2), the proofs follow from
the results for (2,n,2) and (n,2,2). If k=3, see [4] and if k24
and k& =2, see [13] for a proof.
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