Every toroidal graph without 4- and 6-cycles
is acyclically 5-choosable !
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Abstract

A proper vertex coloring of a graph G = (V, E) is acyclic if G
contains no bicolored cycle. A graph G is acyclically L-list colorable
if for a given list assignment L = {L(v) : v € V'}, there exists a proper
acyclic coloring ¢ of G such that ¢(v) € L(v) for all v e V(G). If G
is acyclically L-list colorable for any list assignment with |L(v)| = k
for all v € V, then G is acyclically k-choosable. In this paper it is
proved that every toroidal graph without 4- and 6-cycles is acyclically
5-choosable.
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1 Introduction

All graphs considered in this paper are finite simple toroidal graphs. A
graph G is toroidal (or planar) if G can be drawn on the torus (or on the
plane) so that the edges meet only at the vertices of the graph. A face f
is called a 2-cell if any simple closed curve inside f can be continuously
contracted to a single point. An embedding of G is called a 2-cell embedding
if all the faces are 2-cell. We assume that all graphs under consideration
admit 2-cell embeddings on the torus.

Let G = (V, E, F) denote a toroidal graph, with V, E and F being the
set of vertices, edges and faces of G, respectively. A proper coloring of a
graph G is a mapping ¢ from V(G) to the set of colors {1,2,3,:-- , &} such
that ¢(z) # ¢(y) for every edge zy of G. A proper vertex coloring of a
graph is acyclic if there is no bicolored cycle in G. The acyclic chromatic
number, denoted by x,(G), of a graph G is the smallest integer k such that
G has an acyclic coloring using k colors.

The acyclic colorings of graphs were introduced by Griinbaum in [10]
and studied by Mitchem ([14], Albertson and Berman [1], and Kostochka
[13]. In 1979, Borodin [3] proved Griinbaum’s conjecture that every planar
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graph is acyclically 5-colorable. This result is best possible in the sense
that there exist infinitely many planar graphs G such that x4(G) = 5. In
1973, a 4-regular planar graph which is not acyclically 4-colorable was first
obtained by Griinbaum in [10].

Borodin, Kostochka and Woodall [5] studied the acyclic chromatic num-
ber of planar graphs with a given girth, conditionally improved the upper
bound by showing that if G is a planar graph of girth g then x,(G) < 4 if
g 25, xa(G) < 3if g > 7. We recall that the girth of a graph is the length
of its shortest cycle.

A graph G = (V, E) is L-list colorable if for a given list assignment
L = {L(v) : v € V(G)}, there exists a proper coloring c of G such that
c(v) € L(v) for all v € V. If G is L-list colorable for every list assignment L
with |L(v)| > kfor all v € V, then G is said to be k-choosable. A graph G is
acyclically L-list colorable if for a given list assignment L = {L(v) : v € V'},
there exists a proper acyclic coloring ¢ of G such that ¢(v) € L(v) for all
v € V(G). If G is acyclically L-list colorable for any list assignment with
|L(v)] = k for all v € V, then G is acyclically k-choosable. The acyclic
list chromatic number of G, X% (G), is the smallest integer k such that G is
acyclically k-choosable.

Borodin et al. [4] first investigated the acyclic list coloring of planar
graphs. They showed that every planar graph is acyclically 7-choosable
and put forward the following challenging conjecture:

Conjecture 1 Every planar graph is acyclically 5-choosable.

If Conjecture 1 is true, it would imply both Borodin’s acyclic 5 color
theorem [3] and Thomassen’s list 5 color theorem [19] about planar graphs.

In the course of studying the maximum average degree of graphs, Mon-
tassier, Ochem and Raspaud [17] showed that if G is a planar graph of
girth g then x4(G) < 3if g > 8, x4(G) < 4if g > 6 and x}(G) < 5
if g > 5. Wang and Chen [20] proved that every planar graph without
4-cycles is acyclically 6-choosable. Some sufficient conditions for a pla-
nar graph to be acyclically 4-choosable or 3-choosable were established in
[6, 8, 9, 11, 12, 15, 16]. Montassier, Raspaud and Wang (18] proved that
every planar graph G without 4-cycles and 5-cycles, or without 4-cycles
and 6-cycles is acyclically 5-choosable. Chen and Wang [7] prove that ev-
ery planar graph without 4-cycles and without two 3-cycles at distance less
than 3 is acyclically 5-choosable.

Let G denote the set of toroidal graphs without 4-cycles and 6-cycles.
In this article, we focus on the acyclic choosability of graphs in G. More
precisely, we prove the following result.

Theorem 1 Every toroidael graph without 4- and 6-cycles is acyclically 5-
choosable.
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2 Notation

We use b(f) to denote the boundary walk of a face f and write f =
[vivavs...vp] if vy, vo,vs,. .., v, are the vertices of b(f) in a cyclic order. A
face f is incident with all vertices and edges on b(f). Let dg(z), or simply
d(z), denote the degree of z in G. A vertex (resp. face) of degree k is called
a k-vertezr (resp. k-face). If r < kor 1 < k < r, then a k-vertex (resp.
k-face) is called an r*- or r~-vertez (resp. r*- or r~-face), respectively. A
k-cycle is a cycle with k edges.

For a vertex v € V(G), let n;(v) denote the number of i-vertices adjacent
to v for ¢ > 1, and let m3(v) be the number of 3-faces incident with v. For
a face f € F(G), let n;(f) denote the number of i-vertices incident with f
for i > 2, and let m3(f) be the number of 3-faces adjacent to f.

A 3-face f = [vyvov3] is called an (a1, as,as)-face if the degree of the
vertex v; is a; for ¢ = 1,2,3. A 3-vertex is called light if it is incident with
a 3-face. If a vertex v is adjacent to a 3-vertex u such that the edge uv
is not incident with any 3-face, then we call u a pendent 3-vertex of v. A
pendent light 3-vertex is a light and pendent 3-vertex. If v is a pendent light
3-vertex incident with an (a1, a2, az)-face, then v is called a pendent light
(a1, a2, a3)-vertex. A triangle is synonymous with a 3-cycle.

3 Structural properties

Suppose that H is a counterexample with the smallest number of vertices
to Theorem 1. We first investigate the structural properties of H, and then
use Euler's formula and the discharging technique to derive a contradiction.
The following Lemma 1 holds for H, where the proofs of (C4), (C5.3),
(C6.3), (C7.2) and (C8) were provided in (7] (see Lemmas 2-6 of [7]), and
the proofs of the others can be found in Lemma 1 of [18].

Lemma 1 A minimal counterezample H to Theorem 1 satisfies the follow-
ing.

(C1) H contains no 1-vertices.
(C2) A 2-vertez is not adjacent to a vertez of degree at most 4.
(C3) Let v be a 3-vertez. Then

(C3.1) If v is adjacent to a 3-vertex, then v is not adjacent to other
4~ -vertices;

(C3.2) v is not adjacent to any pendent light 3-vertez.
(C4) Every 4-vertez is adjacent to at most one pendent light 3-vertex and
a pendent light 3-vertez of a 4-vertez must be a pendent light (3,5%,5%)-
vertex.
(C5) Let v be a 5-vertez. Then
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(C5.1) v is adjacent to at most one 2-vertex;

(C5.2) If na(v)=1, then v is not adjacent to any pendent hght 3-
vertez;

(C5.3) If na(v)=1 and v is incident with a 3-face f, then n3(f) =
(C6) Let v be a 6-vertez. Then

(C6.1) v is adjacent to at most four 2-vertices;

(C6.2) If nao(v)=4, then v is not adjacent to any 3-vertez;

(C6.3) If na(v)=4, then v is not incident with any 3-face.
(C7) Let v be a T-vertez. Then

(C7.1) v is adjacent to at most five 2-vertices;

(C7.2) If na(v)=5, then ng(v) = 0 and v is not incident with any
3-face.
(CB8) Let v be an 8-vertez. Then v is adjacent to at most siz 2-vertices.
(C9) There does not ezist a 3-face [zyz] with d(z) < d(y) < d(2) such that
one of the following holds:

(C9.1) d(z)=2;

(C9.2) d(z)=d(y)=3 and d(z) < 5;

(C9.3) d(z)=3 and d(y)=d(z)=4.
(C10) There does not exist a 5-face [vive - - - vs] such that d(vy)=2, d(v2)=5,
and d(v3)=3.

Observation 1 Let H be a graph described above. Then we have:

(O1) H has no 4-faces, no two adjacent 3-faces, and no 3-face adjacent to
5-faces;

(02) mo(f) < | %L };

(03) na(f) < | 251 };

(04) 2na(f) +ns(f) + 1 < d(f) if na(f) 2 1;

(05) ma(f) + 2n2(f) < d(f) = [3ns()];

(08) ma(f) +na(f) < d(f).

Proof. (O1) to (O4) were trivial by Lemma 1 and the properties of H. As
to (O5) and (O6), combining the following two facts with (O2) and (O3)
will get the proof of the two results. Suppose fu, uv and vw are three
consecutive edges on the boundary of a 5*-face f and f,, is a 3-face, then
at most two of ¢, u, v and w are 3-vertices by (C3.1) and (C3.2). Another
fact is that for any 3-vertex v on b(f), at most one of its two incident edges
on b(f) is adjacent to a 3-face by (O1). |

4 Proof of Theorem 1

By contradiction, suppose that G is a minimal counterexample to Theorem
1. That is, G is a non-acyclically 5-choosable foroidal graph with the
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smallest number of vertices. Let L be a list assignment of G with |L(v)| =5
for all v € V(G) such that G is not acyclically L-colorable.

We define a weight function w on V U F by letting w(z) = dg(z) — 4
for each z € V U F. By Euler’s formula for toroidal graphs, we have
Y zevurw(x) = 0. If we obtain a new nonnegative weight w*(z) for all
z € VUF and some positive weight for some x € V U F' by transferring
weights from one element to another, this leads to the following obvious

contradiction,
0= Z w(z) = z w*(z) >0,
zeEVUF zeVUF
that will complete the proof of Theorem 1.
Our transferring rules are as follows:

(R1) Every 5%-vertex v gives § to each adjacent 2-vertex.

(R2) Every 5%-vertex v gives w(”)n: u"’(") to each adjacent 3-vertex.

Let B(v) denote the total weight of a 3-vertex v obtained from its
adjacent 5*-vertices.

(R3) Every 5*-face f gives 1 to each incident 2-vertex.

(R4) Every 5%-face f gives § to each incident 3-vertex.

(R5) Every 7*-face f gives } to each adjacent 3-face.

(R6) Every 3-vertex v donates 8(v)/3 to each of its incident 5-faces.

For an edge e € b(f), we use f. to denote the face adjacent to f by

sharing the common edge e.
During a discharging procedure, let 7(z — y) denote the amount of
weights transferred from x to y. We first obtain the following claim.

Claim 1 Let G be a graph described above. Then the following hold.

(C11) If v is a pendent light 3-vertez, then v is adjacent to at least two
5% -vertices;

(C12) Every 8% -vertez gives at least § to each adjacent 3-vertex;

(C13) Let u be a pendent light 3-vertez of vy, and suppose that N(u) =
{v1,v2,v3}. Then fori € {1,2,3}, 7(v; = u) > % if d(v;) = 5, 7(v; —
u) > & if d(v;) =6, and T(vi & u) > § f d(v;) = 7.

Proof. Let v be a pendent light 3-vertex of u. By (C3.2), we see that
d(u) > 4. If d(u) = 4, then (C11) is true by (C4). If d(u) > 5, (C11) is
also true by (C9.3).
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Since every 5*-vertex transfers charge only to its adjacent 2-veritces or
3-vertices, by d(v) > n2(v) + na(v), we have w(v) — }(n2(v) + na(v)) >

d(v)—4—1d(v) = L1d(v)—4 > 0 while d(v) > 8. Therefore, w(")n— J‘ a(v) > 1 3
while ng(v) > 1, and hence (C12) holds.
Now let us prove (C13). If d(v;) = 5, then na(vy) = 0 by (C5.1) and

(C5.2), s0 7wy — w) = 2)=4nala) > 1 by (R1) end (R2). Fori = 2,3, if
d(v;) = 5, then na(v;) = 0 by (C5.1) and (C5.3), and hence 7(v; — u) > §.

Suppose that d(v;) = 6, i € {1,2,3}. Then, na(v;) < 3 by (C6.2) and

(C6.3). By (R2), it is easy to deduce that 7(v; = u) = w("‘l: v:"("‘) >
2— nz(vs) 1 _ 1

6—-na(vg —— —ngimi—_—?;-'é'
Suppose that d(v;) = 7, i € {1,2,3}. Then we have na(v;) < 4 by

(C7.2). By (R2), similarly, we may derive that 7(v; = u) = "'(”"); v:"("‘) >
3—kna(v) 1 1 __1 I

Tona(ui) " - 4—2nng.5 2-86~ 3
By (C3.2), it is easy to obtain the following claim.

Claim 2 Suppose tu, uv and vw are three consecutive edges on the bound-
ary of a 5F-face f and d(u) = d(v) = 3. Then d(fiu) > 4 and d(fow) = 4.

Now, we proceed to calculate w*(z) for z € V(G) U F(G).

Let v be a k-vertex of G. Then k > 2 by (C1).

If k = 2, then v is incident with two 5*-faces by (C9.1) and (O1).
Moreover, v is adjacent to two 5%-vertices by (C2). By (R1) and (R3), we
derive that w*(v) =2-4+2x 1 +2x 1 =0.

If £ = 3, then w(v) = —1. It is easy to see that m3(v) < 1 by (O1).
Namely, v is incident to at least two 5%-faces. If ma(v) = 1, then v is a
pendent light 3-vertex and there is no 5-face incident to v by (O1). More-
over, by (C11), at least two vertices in N(v) are of degree at least 5. So,
by (C13) and (R4), w*(v) = =1+ 2 x $ + 2 x § = 0. Now suppose that
m3(v) = 0. Then v is incident to three 5*-faces. By (R4), we have that
w*(v) > -1+3xi=0.

If k = 4, it is clear that w*(v) = w(v) = d(v) —
Suppose that k > 5. If ng(v) > 1, then by (R1) and (R2) we obtain

that w*(v) > w(v) — §n2(v) — na(v) X %’@ = 0. In what follows, we
suppose that ng(v) = 0. If k = 5, then v is adjacent to at most one 2-vertex
by(CSl)a,ndthusw‘(v)>1—§—-2- If6<k<7, thenng(v)<lc 2
by (C6.1), (C7.1) and thus w*(v) > k-4 — ina(v) 2 k-4 — 3(k—2) =
1k—3>0.If k> 8, thenw*(v) 2 k - 4—-n2(v)>k 4—lk>0

216



Let f be an h-face of G. The following proof is divided into four cases
according to the value of h.

Case 1. h = 3. Then w(f) = —1. By (O1), f is adjacent to three 7*-faces.
Thus, w*(f) = —1+3 x 1 =0 by (R5).

Suppose that h > 5. We write f = [z122-- - zp)].

Case 2. h = 5. Then w(f) = 1.

By (O1) and (02), we have that m3(f) = 0 and na(f) < 2, respectively.
Note that every 3-vertex incident to f which gets charges from its adjacent
5%-vertices sends charges to its incident 5-faces. If ny(f) = 0, ng(f) < 3
by (03). So by (R4), we have that

w(f) 2 wl(f) ~8x 5 =0. 1)
If na(f) = 2, then na(f) = 0 by (04), and hence by (R3),
w*(f) = w(f) ~ 2% 5 =0. @
Suppose that na(f) = 1. Then n3(f) < 2 by (04). If na(f) < 1, then
() 2u(f)~5-3=5>0. (3)

So, we further suppose that nz(f) = 2.

Without loss of generality, we suppose that d(z;) = 2 and d(z3) =
d(z4) = 3. Let y3 be the neighbor of z3 different from z, and z4, and y,
the neighbor of z,4 different from z3 and zs. (C10) asserts that d(zz) > 6
and d(zs) > 6. If d(z2) > 8, then z; gives at least § to z3 by (C12). If
d(z2) = 7, then z; is adjacent to at most five 2-vertices by (C7) and hence
g gives z3 at least (3 — 3)/2 = 1. Assume that d(z;) = 6. It follows
from (C6 1) a.nd (C6.2) that ng(ze) < 3 and thus z, gives z3 at least
(2 - 8)/8 = L. Moreover, we see that d(ys) > 5 by (C3.1). If d(ys) > 6,
then by a snmlar discussion as above, y3 gives a weight at least ‘1,. to zs. If
d(ys) = 5, then na(y3) < 1 by (C5.1) and y3 gives 3 at least (1—- 3)/4= —
So we always have that B(z3) > & + § = £ by (R1) and (R2). The sa.me
argument works for the vertex z4. Therefore by (R3), (R4) and (R6)

7 1

W(f) = 15 ~2x 3 +8(zs)/3+B(80)/3 2 —g+2x 51— = o5 > 0. (4)

Case 3. h = 7. Then w(f) = 3.
By (02), we have na(f) < 3. If na(f) = 3, then n3(f) = 0 by (04),
m3(f) < 1 by (O5). So by (R3), (R4) and (R5),

w(f)>3-3x+-1-T5o (5)
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If na(f) = 2, then n3(f) < 2 by (04) and mz(f) < 3 by (05). Thus by
(R3), (R4) and (R5), we have
w%nzs—zx%—sx%=§>o. (6)
If na(f) = 1, then na(f) < 4 by (04) and ma(f) < 5 by (05). But it
is easy to observe that ng(f) < 3 by (C3.1). When n3(f) = 3, we have
ma(f) < 3 by (O5) and

. 1 1 1
w(f)23—§—6x§—2>0. )
When n3(f) = 2, we have m3(f) < 4 by (O5) and
) 1 1 1
w(f)23-§—6x§—§>0 (8)
When n3(f) < 1, by (R3), (R4) and (R5), we have
1 1 1
(f)>8—-—6x===>0.
w*(f) >3 3 6x3 2>0 9)
Finally suppose that na(f) = 0. Since n3(f) + ma(f) < 7 by (086), we
have
wwﬁ23-7x%=§>o. (10)

Case 4. h> 8. Then w(f)=h-42>4.
Applying (03) and (O5), we can establish the following estimate:

w*(f) =h~-4-(3ma(f) + gna(f) + 3n2(f))
> h— 4 — [3(h = 2na2(f) = [3na(f)]) + 3n2(F) + §ns(f)]
=h-4- %‘h + '%’M(f) + 'i;'r’jnﬁ(fﬂ - ':1§n3(f) (11)
> h—4—zh+gna(f) — gna(f) 2 h—4 - 3h— gna(f)
> 3h-4-313%) |
> %h -4>0.

Now, we get that w*(z) > 0 for each z € V(G) U F(G). It follows
that 0 = 3 yurw(z) = 2 cvurw*(x) = 0. If there exists an element
z € V(G) U F(G) such that w*(z) > 0, we are done. Otherwise, in the
following, we assume that w*(z)zcv(g)ur(g) = 0-

Claim 8 FEach face in G has degree 3, or 5.
Proof. By the proof for the case h = 7 or 8%, the claim follows.

Claim 4 G contains no 3-face.
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Proof. If G contains a 3-face, by Claim 3 and (O1), G = Cj, a contradic-
tion to (C2).

Claim 5 G contains no 5-face.

Proof. Assume G contains a 5-face, by Claim 3 and Claim 4, the number
of 5-faces in G is at least two, otherwise G = Cj5, which is a contradiction
to (C2). Then by (1), (2) (3) and (4) in the proof of Case 2, for any 5-face
f, we only have the following two possible cases, n2(f) = 0 or na(f) = 2.
We will further show that both these two cases are impossible.

If na(f) = 2, then n3(f) = 0 by (O4) and thus w*(f) = 0 by (2). We
assume that b(f) = [vivovsvqvs] and d(vy) = d(v3) = 2. Then d(v;) > 5
(¢ = 2,4,5) by (C2). Since any 2-vertex is incident with two 5+-faces by
(C9.1), d(fuv,vs) = d(fuavs) = 5 by Claim 3 and Claim 4. However, a 6-cycle
is established, which is a contradiction.

Now suppose nz(f) = 0, then n3(f) < 3 by (04). If nz(f) < 2, then
w*(f) 21— % x 2> 0. Consider the case that n3(f) = 3. By (C3.1),
we may assume that d(v;) = d(v2) = d(v4) = 3. Then d(vs) > 5 and
d(vs) = 5 by (C3.1). In this situation, by (R2), (R4) and (R6), w*(f) =
1- % x 3+ ﬂ;i‘l + -‘6—%—’31 + ﬂ"TQ = Zie{l,u} ﬁ%—’—‘l, note that B(v;) > 0 by
(R2). Moreover, applying the same analysis as used in Case 2 for na(f) = 1
and n3(f) = 2, we can get B(v;) > 0 for ¢ € {1,2,4} and thus we complete
the proof of Theorem 1. [ |
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