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ABSTRACT

The eccentricity e(v) of a vertex v in a connected graph G is the distance
between v and a vertex furthest from v. The center C(G) is the subgraph induced
by those vertices whose eccentricity is the radius of G, denoted radG, and the
periphery P(G) is the subgraph induced by those vertices with eccentricity equal
to the diameter of G, denoted diamG. The annulus 4nn(G) is the subgraph
induced by those vertices with eccentricities strictly between the radius and
diameter of G. In a graph G where radG < diamG, the interior of G is the
subgraph In#(G) induced by the vertices v with e(v) < diamG. Otherwise, ifradG
= diamG, then In#(G) = G. Another subgraph for a connected graph G with radG
< diamG, called the exterior of G, is defined as the subgraph Ex#(G) induced by
the vertices v with radG < e(v). As with the interior, if radG = diamG, then
Ext{(G) = G. In this paper, the annulus, interior, and exterior subgraphs in trees
are characterized. .
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1. Introduction

In a connected graph G, the distance from a vertex v to a vertex u is
commonly denoted as d(v, u). For each vertex v of G, the eccentricity e(v) =
max{d(v, u) | u € V(G)}. The radius is defined as radG = min{e(v) | v € V(G)},
and the diameter is diamG = max{e(v) | v € V(G)}. Ifa graph is disconnected, the
eccentricities are defined to be «; however, each connected subgraph is called a
component, and by restricting the focus to a single component, the eccentricities,
radius and diameter can be defined for that component,

From these two extreme eccentricity values, two subgraphs were created:
the center C(G) is the subgraph of G induced by the vertices v with e(v) =radG
and the periphery P(G) is the subgraph induced by the vertices v with e(v) =
diamG. These subgraphs have been studied extensively (see [1], [4], and [6]). In
particular, Hedetniemi (see [4]) proved that every graph is the center of some
connected graph; while Jordan [10] proved that the center of a tree is either X, or
K,. If the center is K, then the tree is called a central tree; otherwise the tree is
called bicentral. Bielak and Syslo [1] proved that a graph G is the periphery of
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some connected graph if and only if no vertex of G has eccentricity 1 or G is
complete, and that the periphery of a tree consists only of end-vertices. IfradG =
diamG, then G is called self-centered.

More recently, subgraphs of connected graphs G induced by vertices with
intermediate eccentricity values were investigated. For instance, in [7] the interior
and annulus for a graph were introduced and characterized, and in [8] and [9], the
annulus was studied further. In a graph G where radG < diamG, the interior of
G is the subgraph In#(G) induced by the vertices v with e(v) < diamG. Otherwise,
if radG = diamG, then Int(G) = G. (In [5] the interior of a graph was defined
differently, and in general, the two definitions do not describe the same subgraph.)
Second, in a graph G with radG < diam@G - 1, the annulus of G is the subgraph
Ann(G) induced by the vertices v with radG < e(v) < diamG. IfradG > diamG -
1, then G is said to have no annulus.

A third intermediate distance-dependent subgraph for a connected graph
G with radG < diamG, called the exterior of G, can be defined as the subgraph
Ext(G) induced by the vertices v with radG < e(v). As with the interior, if radG
= diamG, then Ext{(G) = G.

In many of the characterizations, the graph constructed to include the
given graph as the desired subgraph has many additional edges and thus, a small
diameter. Since trees have fewer edges and larger diameters than other graphs
with the same vertex set, a natural question arises: Which graphs can be the
interior, annulus, or exterior of a tree?

2. The Interior of a Tree

In [7], it was shown that every graph G is the interior of some connected
graph not isomorphic to G. In addition, since it is sometimes desirable to
distinguish the interior of a graph from the center, the following result was proved
for connected graphs.

Theorem A: Let G be a connected graph. Then there exists a connected graph
such that Int(H) = G and C(H) # G if and only if G is not complete.

It is not known whether a similar result is true if G is disconnected;
however, the following construction from [7] shows that every disconnected graph
G is the interior of some connected graph H with G = Int(H) = C(H) (see Figure
1). Let G=F,u F,where F, is one component of G. Join a new vertex u to every
vertex of G, join two more vertices v, and w, to every vertex in F}, and join two
new vertices v, and w; to every vertex of F,. In addition, join a sixth vertex w; to
w; and wy, and finally, add the two edges v,v, and wyw,to complete the graph H.
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Thus, each vertex of F, u F, has eccentricity 2 while the added vertices have
eccentricities 3. Also, the classic construction by Hedetniemi [see 4] showing that
every graph G (and in particular, each disconnected graph) is the center of some
connected graph H (by adding four new vertices u,, u,, v,, v, so that fori =1, 2,
every vertex of G is joined to v, and u; is joined to v, (see Figure 2)) is an example
of a connected graph H such that C(H) = G and Int(H) + G. The question
remains: :

Open Question: For which disconnected graphs G (if any) does there exist a
connected graph H such that Int(H) = G and C(H) = G?

A complete characterization for the interiors of trees can be proved:

u
1 V) V. U,
H: O 2

Figure 2

Theorem 1: A graph G is the interior of infinitely many trees if and only if G is
a tree.
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Proof: Let G be a tree and let u and v be peripheral vertices such that d(u, v) =
diamG. (Note that ¥ = v if G = K|). For some integer n 2 1, form tree H by
adding vertices w,, w, . . ., w,, and x so that each w, is adjacent only to » and x is
adjacent only to v. Now, d(w,, x) = diamH = diamG + 2, and eg(y) < e,(y) <eqx(y)
+ 1 < diamG + 1 for every vertex y of G. Thus, V(P(H)) = {x, w;, wy, . . ., w,} and
Iny(H) = G for infinitely many trees.

To prove the converse, suppose that a graph G is the interior of some tree
H. First, since the interior is a subgraph of the tree, G must be acyclic. Second,
since peripheral vertices of a tree are end-vertices, they are not cut-vertices, and
their removal leaves a connected subgraph. Thus, the interior must be connected
and Gmustbeatree. O

Theorem 2: Let T be a tree. Then there exist infinitely many trees H such that
In(H) = T and C(H) # T if and only if T is not complete (i.e. K| or K3).

Proof: First, let T be a tree other than K, and K,. By Theorem 1, T is the interior
for infinitely many trees; however, since the center of a tree is either K or K, it
follows that C(H) # T.

For the converse, suppose that T is either K| or K, and that there is a tree
H with Int(H) = T. It is enough to show that C(H) = T. If T = K, = {w} is the
interior of tree A, then {w} must be the center since V(C(H)) < V(Int(H)). On the
other hand, if T= K, = {u, v} is the interior of tree H, then every peripheral vertex
of H is an end-vertex adjacent to either u or v. Thus, diamH =3 and e;(u) = e;(v)
= radH = 2, again forcing T to be the center of H. DO

2. The Exterior of a Tree

Similar to the interior of a graph G, the exterior Ext(G) is defined as the
subgraph induced by the vertices # with e(x) > radG if G is not self-centered;
while Ext(G) = G if G is self-centered. Note that the vertices in the center and the
exterior partition the vertex set of G when G is not self-centered.

Recall that a graph G is the periphery of some connected graph if and
only if G is complete or no vertex of G has eccentricity 1. A construction from the
proof can be extended to the exterior as well: If no vertex of G has eccentricity 1,
then G is the periphery (and exterior) for the graph A=K, + G. The graph X, can
be replaced with a copy of K, for n > 1, providing an infinite family of graphs /
that have G as the periphery (and exterior). This is not true if G is complete, as
the next lemma shows.

Lemma 1: If G is complete and G = P(H) for a connected graph H, then H=G.
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Proof: Let G be complete and let A be a connected graph such that G = P(H). If
v is a vertex in ¥(G), then v is a peripheral vertex of H and e,(v) = d(v, w) for
some vertex win P(H) = G. Thus, diamG = ey(v) = 1, since G is complete. Since
H is connected, 0 < radH < 1, and every vertex of H has eccentricity 1. Thus, #
=PH)=G. 0O

Thus, a characterization for those graphs that are the exterior for some
graph is the following.

Theorem 3: A graph G is the exterior of some graph if G is complete, and G is the
exterior of infinitely many connected graphs if no vertex of G has eccentricity 1.

The next two lemmas will be used to prove the more interesting
characterization for those graphs that are the exterior of a connected graph when
the exterior and periphery are not equal.

Lemma 2: If a disconnected graph G with isolated vertices is the exterior of a
connected graph A with an annulus, then none of the isolated vertices of G are
peripheral vertices of H.

Proof: Let G be a disconnected graph with isolated vertices that is the exterior for
a connected graph H with an annulus. Suppose that  is an isolated vertex of G
that is also a peripheral vertex of H. If v is a vertex of H adjacent to u, then v €
C(H) and v ¢ {G). Since ey(v) = radH, it follows that e,(u) = diamH = radH +
1. However, this means that A has no annulus — a contradiction. O

Lemma 3: In a graph (or a component of a disconnected graph) of diameter 4,
every vertex with eccentricity 2 is adjacent to some vertex of eccentricity 3.
Proof: Let G be a graph of diameter 4 with u being a peripheral vertex and v being
a vertex of eccentricity 2. Suppose that v is only adjacent to other vertices of
eccentricity 2. Then a shortest v-u path passes through a second vertex of
eccentricity 2, at least one vertex of eccentricity 3, and finally, vertex w.
Therefore, d(v, u) 23, but this is impossible since e(v) = 2. Thus, v must be
adjacent to some vertex of eccentricity 3. O

Theorem 4: A graph G is the exterior, but not the periphery, of an infinite family
of connected graphs H if and only if

) G is connected with radG 23 and diamG 24, or :
2) G is disconnected with exactly one component C with diamC 24 and all
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other components isolated vertices, or
3 G is disconnected with at least two components that are not isolated
vertices.

Proof: We begin by showing that a graph G satisfying one of (1) - (3) is the
exterior, but not the periphery of an infinite family of connected graphs H. First,
for case (1), suppose that G is a connected graph with radG >3 and diamG 24, and
let # and v be peripheral vertices of G such that d(u, v) = diamG. Also, let S be the
(possibly empty) set of vertices w such that d(u, w) =d(v, w) = 2. For some integer
n 21, join every vertex in a copy of the graph X, to every vertex of G- (Su {u, v})
and call this graph H. Note that each vertex w in § is adjacent to a vertex x on a
shortest w-v path such that dg(x, u) > 3. Thus, x is adjacent to the new vertices in
K, and each of the vertices in K, has an eccentricity of 2 in /. In addition, the
vertices u and v have an eccentricity of 4 in H, and the remaining vertices of G
have eccentricity 3 in H. This last statement follows from the fact that if y is a
vertex of G - (S u {u, v}), then either dy(u, y) = 3 or diy(v, ) =3; and if y € §,
then, since radG > 3, there exists a vertex z € ¥{(G) such that dg(y, z) = 3. Since
the same shortest y-z path remains in H, the eccentricity e,(y) = 3. Thus, G is the
exterior of H and not the periphery.

For case (2), let G be a disconnected graph whose components are
isolated vertices except for one component C where diam C 2 4. IfradC 23, then
the construction for H from case (1) can be used. If, however, the radius is 2, then
H is constructed as above, except that the vertices of K, are not joined to the
vertices of eccentricity 2. It is easy to see that since u and v are adjacent to vertices
of eccentricity at least 3, and since every vertex of eccentricity 2 is adjacent to
some vertex of eccentricity 3 (by Lemma 3), they are distance 2 from the added
vertices of H. Thus, each of the new vertices in K, has an eccentricity of 2 in H,
the vertices 4 and v have an eccentricity of 4, and the remaining vertices of G have
eccentricity 3; and again, G is the exterior of H and not the periphery. For case
(3), suppose that G is disconnected with at least two components C,and C, that are
not isolated vertices. To construct an infinite family of graphs that have G as their
exteriors, let u be a vertex of C, and let v be a vertex of C,. As before, join every
vertex in a copy of the graph K, for any n 21, to every vertex of G - {u, v} and
call this graph H. Note that each of the new vertices in X, has an eccentricity of
2 in H, the vertices v and v have an eccentricity of 4, and the remaining vertices
of G have eccentricity 3. Thus, G is the exterior of H and not the periphery.

To prove the converse, let G be a graph that does not satisfy conditions
(1) - (3) and suppose that G is the exterior of some connected graph H with Ext(H)
# P(H). The graph G must fall into one of the following categories:

(a) If G is connected, then radG <2 or diamG <3 [i.e. either, for some vertex
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w, the eccentricity e(w) <2, or for every vertex, the eccentricity is at most

3], or ’ '
) If G is disconnected, then G consists only of isolated vertices, or G has

exactly one component C that is not an isolated vertex with diamC <3.
It remains to show that no graph can satisfy these conditions and be the exterior
of a graph whose exterior and periphery are not equal.

For category (a), suppose first that G is connected with some vertex w
having eg(w) 2. If e,{w) <2 also, then any central vertex x must have a smaller
eccentricity. This means that e (x) = 1, the vertex x is adjacent to every other
vertex of H, the diameter of H is 2, and G is the periphery of H - a contradiction.
On the other hand, if e,{w) = n 23, then all vertices y in H such that d(w, y) =n
are not in ¥(G) and must be central vertices. This forces ex(w) < ex(y) = radH,
which contradicts the fact that w is in the exterior and not in the center of H.
Second, suppose that e;(v) = 3 for every vertex in G. Then diamG = 3, and one
of the following three situations must occur. Ife,(v) <2 for every vertex in G, then
the central vertices in A must have eccentricity 1 and G= P(H) — a contradiction.
If diamH = 3, then the central vertices must have eccentricity 2, and, again, G =
P(H). Finally, if some vertex v of G has e;{(v) = n > 3, then there is a vertex u
such that d(u, v) = n; however, since di{(v, w) <3 for all win G, the vertex u is a
central vertex and e (v) <ey(¥) = radH — a contradiction. Thus, no graph that is
the exterior and not the periphery of a connected graph satisfies the conditions in
category (a).

Now consider category (b). If G is disconnected and has only isolated
vertices for its components, then since (G) = V(P(H)), some isolated vertex of G
will be a peripheral vertex of H, which contradicts Lemma 2. On the other hand,
consider G with exactly one component C that is not an isolated vertex such that
diamC <3. Ifu and v are peripheral vertices of A such that d(u, v) = diamH, then
« and v must both be in component C by Lemma 2. This forces diamH < diamC
< 3; however, then diamH - 1 < radH <diamH, and G = P(H) - a contradiction.
Thus, no graph that is the exterior and not the periphery of a connected graph
satisfies the conditions in category (b). Therefore, if a graph is the exterior of a
connected graph and not its periphery, it must satisfy one of the conditions (1) -
(3). 0O

In Theorem 3, the graphs A had small diameters because many vertices
were joined to the added central vertices, creating many cycles. This same
construction method will not work with trees; however, there is a characterization
for those graphs which are the exterior of a tree whose exterior is different from
its periphery.

Recall that for a tree, the center is either one vertex (central tree) or two
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adjacent vertices (bicentral tree) and each central vertex is a cut-vertex if the tree
is non-trivial. Clearly, the exterior of a non-trivial tree is a subgraph of the tree,
so it must be a forest. With the aid of a lemma, the next theorem characterizes
those graphs that are exteriors of non-trivial trees.

Lemma 4: In a tree with diameter d and vertices # and v such that d(u, v) = d, if
w is a vertex on the u-v path with d(u, w) 2 d/2, then e(w) < d(u, w).

Proof: Let T be a tree with diameter 4 and vertices « and v such that d(u, v) =d.
Also, let wbe a vertex on the u-v path P with d(u, w) > d/2. Consider a vertex z.
Then w is on a u-z path P, or wis on a v-z path P,, or possibly both. (The vertex
wmust be on at least one of the two paths P, or P,; otherwise, P u P, u P, would
contain a cycle -- a contradiction.) Suppose that wis on a ¥-z path. Then, d(x, z)
= d(u, w) + d(w, 2). Since d(u, z) < d and d(u, w) 2d/2, the distance d(w, z) < d/2
s d(u, w). On the other hand, suppose that w is on a v-z path. Then, d 2 d(v, z),
which can be written as d(u, w) + d(w, v) 2 d(v, w) + d(w, z). Therefore, d(u, w)
2 d(w, z), and the result follows. O

Theorem 5: A graph F is the exterior of a non-trivial tree if and only if Fis a
forest that has at least two non-trivial components with diameters d, and d, such
that d, is the largest diameter among all of the components and such that d,/2 <
d,. Furthermore, the diameter d of a central tree can be any even integer such that
2([dy/2] + 1) s d < 2(d, + 1) and the diameter f of a bicentral tree can be any odd
integer such that 2[d\/2] +3 < f< 2d, +3.

Proof: Let F be a forest with k >2 components C,, C,, . . ., C; ordered so that their
diameters, denoted by d,, ds, . . ., d,, satisfy the condition thatd, > d, > .. .2 d}.
Consider the two cases of a central or bicentral tree with exterior F.

Case 1: For the central case, let d be an even integer such that 2([d/2] + 1) < d
< 2(d, + 1) and let u, and v, be vertices in C, such that d(u,, v;) = min{(d/2 -1, d;}
for 1 s i < k(with u;= v,if C, is an isolated vertex). Let w be the vertex on the u,-
v, path that satisfies d(w, u;) = d/2 - 1. A central tree T with diameter 4 and
exterior F is formed by joining one new vertex x to w and to each of the vertices
vy, V3, . . ., V. To see this, note that e(x) = d(x, ;) = d/2. For every vertex of F
not in C,, its distance to u, is at least d/2 + 1, and for every vertex in C,, its
distance to u, is at least d/2 + 1. Thus, F is the exterior of the central tree T with
diameter d where 2([d,/2] + 1) < d < 2(d, + 1).

Case 2: For the bicentral case, let f'be an odd integer such that 2[d,/2] +3 < f<
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2d, + 3 and let »; and v, be vertices in C; such that d(u,, v,) = min{(f - 3)/2, d;} for
1 < i < k(with &, = v, if C, is an isolated vertex). Let w be the vertex on the u;-v,
path that satisfies d(w, )} = (f- 3)/2. A bicentral tree T with diameter f and
exterior F is constructed by joining a new vertex x to w and new vertex y to each
of the vertices x, vy, vs, . . ., v;. From the construction, the diameter is d(u,, u,) =
[, as well as ed(x) = d(x, u,) = (f+ 1)/2 and efy) = d(x, u,) = (f+ 1)/2. In addition,
d(v, uy) > (f+ 1)/2 for v € V(C)) and d(v, u;) > (f+ 1)/2 for v e V(F - C)). Thus,
F is the exterior of the bicentral tree T with diameter f where 2[d,/2] +3 < f'< 2d,
+3.

To prove the converse, suppose that F is the exterior of some tree T. If
T is either K| or K,, then F=T. If V(T) = 3, it must be shown that F is not
connected and that d, > d,/2. First, since the central vertices of a non-trivial tree
are all cut-vertices and not end-vertices, their removal forces F = Ex{(T) = T -
W(C(T)) to be disconnected. Therefore, the forest F has at least two components
C,, Gy, .. ., Cyordered so that their diameters, denoted by d,, d,, . . ., d;, satisfy the
condition thatd, > d, > .. .2 d,. Letu, and v, be vertices in C, such that d(u,, v,
=d, for 1 < i < k(with 4, = v, if C, is an isolated vertex). Finally, suppose that d,
< d,/2. Since T has no cycles, only one vertex w of C, is adjacent to a central
vertex. Without loss of generality, assume that d(u,, w) 2 d(v,, w). By Lemma 4,
it is easy to see that n = d(u,, w) = ec,(w) and that d, < d,/2 < n. Thus, the integer
d,+ 1 < n. To reach a contradiction, consider the following cases based on the
two possibilities for the center of T.

Case 1: Suppose that C(T) = {y}. Since d(w, x) <n for any vertex x in C, by
Lemma 4, and since d(w, x) <d, + 2 for any vertex x of T - C, (if y is adjacent to
a peripheral vertex of C,, for instance), then e{w) < max{n, d, + 2}. Ife)(w) < n,
then e(y) < ex(w) < n; however, e(y) 2 d(y, u;) = n + 1, a contradiction. If e{(w)
> n, then ef(w) < d, +2. Sinced, <n <d,+ 2, the integer n = d, + 1. However,
this forces e(y) = d(y, u)) =n+ 1 =4d, + 2 > e{w), causing a contradiction.
Therefore, C(T) cannot be a single vertex.

Case 2: Suppose that C(7) is the subgraph induced by two adjacent vertices y and
z. Exactly one of y and z is adjacent to w. Let it be y. Then, e(z) 2d(z, u;) =n +
2. Also, d(y, x) < d(y, ;) =n + 1 for all vertices x in C,, by Lemma 4, and d(y, x)
< d, + 2 for all vertices x in T- C, (if z is adjacent to a peripheral vertex of C,, for
instance, and y is not). Thus, e(y) s max{n+ 1, d, + 2}. However, sinced,+ 1
< n, it follows that 4, + 2 < n + 1, and e(y) < n+ 1. Thus, e(y) < e(z), which
contradicts the fact that both are central vertices of 7, and C(7) * K.
Therefore, d\/2 < d, and this completes the proof. O
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It is important to note that in Theorem 4, an infinite family of graphs was
found for each exterior graph since the center could contain many vertices .
However, for trees, an infinite family cannot be found for each graph because the
center is isomorphic to only X, or X,. It is worth mentioning though, that in the
statement of Theorem 5, even though the values for d are only even and the values
for f are only odd, the constructions in the proof of Theorem 5 give all possible
values for the diameters 4 or f between the stated bounds. This follows from a
result in [2] which states that if a tree T has just one central vertex, then diam7T =
2radT ( and is even), and if the tree T is bicentral, then diam7T = 2radT -1 (and is
odd).

Since the periphery of a tree T is the entire tree if T is K| or K, or a set
of isolated vertices otherwise, the following characterization of graphs that are the
exterior and not the periphery of a tree is an immediate corollary to Theorem 5.

Corollary 1: A graph is the exterior of a tree, and not the periphery, if and only
if the graph is a forest that has at least two non-trivial components with diameters
d, and d, such that d, is the largest diameter among all of the components and
such that d,/2 < d,.

3. The Annulus of a Tree

When radG < diamG - 1, the annulus, Ann(G), of a connected graph G
is defined as the subgraph induced by those vertices v with radG < e(v) < diamG.
If radG = diamG - 1, then the graph has no annulus. Those graphs that are the
annulus of a connected graph were characterized in [7]:

Theorem C: For every nontrivial graph G, there exists a connected graph H such
that Ann(H) = G if and only if G has no vertices of eccentricity 1.

The question still remains: Which graphs G can be the annulus of a tree?
Of course, the graph G must be disconnected, since central vertices of trees are
cut-vertices and G must be a forest, since it is a subgraph of an acyclic graph. In
order to complete the characterization for the annulus of a tree, two ideas must be
introduced. First, vertex v is an eccentric vertex of a graph if there is some vertex
u of the graph such that d(u, v) = e(x). Second, in a tree, the subgraph induced by
the set of eccentric vertices is the periphery for the tree (see [3]).

Theorem 6: A graph is the annulus of a tree if and only if it is the exterior of a
non-self-centered tree.
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Proof: Let G be the annulus of a tree 7. This forces T to be non-self-centered.
Remove the end-vertices that are peripheral vertices for T to form T”. Since the
peripheral vertices are the eccentric vertices for 7, then e;{(u)=e{«) - 1 for every
vertex u in T". Therefore, C(T) = C(T"), the graph G is the exterior of 7’, and
since T is not self-centered, neither is 7.

For the converse, let G be the exterior of a non-self-centered tree 7. Form
T’ by doing the following: for each peripheral vertex u of T, add a new vertex v(u)
and then join u to v(4). These new vertices will have an eccentricity equal to
diam7’ = diamT + 2, For vertex u in 7, the eccentricity e;(¥) = e() + 1 < diamT
+ 1. Thus, C(7) = C(T") and G is the annulus of 7°. O

Note that the added vertices in the construction for the second portion of
the proof can be replaced by n copies of X, for n > 1 to form an infinite family of
trees having G as the annulus.

Corollary 2: A graph is the annulus of an infinite family of trees if and only if
the graph is a forest that has at least two components with diameters 4, and d,
such that d, is the largest diameter among all of the components and such that d,
2 d, /2.
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