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Abstract

This paper investigates the dihedral group as the array stabilizer
of an augmented k-set of mutually orthogonal latin squares. Neces-
sary conditions for the stabilizer to be a dihedral group are estab-
lished. A set of two-variable identities essential for a dihedral group
to be contained in an array stabilizer are determined. Infinite classes
of models that satisfy the identities are constructed.

1 Introduction

A conjugate of a k-set of mutually orthogonal tables is a second k-set of
mutually orthogonal tables constructed from the first k-set through a com-
position mapping. A conjugate k-set may have one or more tables in com-
mon with the original k-set. Of special interest are the mappings associated
with conjugates that are equal to the original k-set. These mappings form
a group, represented as a subgroup of Sk, the group of all permutations
acting on the set {1,...,k}. Following [3], this group of mappings is called
the array stabilizer of the k-set.

Past research has considered conjugates of k-sets of mutually orthogonal
tables and the stabilizer group from both a local and global perspective.
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Although the literature contains several equivalent notations for studying
these ideas, we state below all results in terms of augmented k-sets of
mutually orthogonal latin squares (mols) and array stabilizers.

Questions of interest from a local standpoint (i.e., for a specific k) in-
clude: what subgroups of Sy act as an array stabilizer, for each possible
stabilizer group what identities and restrictions are satisfied by the tables,
and for which n do there exist models of order n with that group as stabi-
lizer. Lindner and Steedly [9] addressed these questions for the conjugates
of a single latin square (i.e., a 3-set). Lindner and others [6, 7, 8] extended
the notion of a conjugate to a 4-set, again addressing the same questions.
Lindner also provided an excellent overview of the 3-set and 4-set cases in
[5]. Francel [4] investigated the 5-set problem.

From a global perspective, the questions of interest are slightly different.
Some collection of groups is examined. Questions of interest include: for
what k can a member of the collection act as an array stabilizer, can the
identities associated with the collection be described, and are there models
for all members of the collection. Evans and Francel [2] examined when the
array stabilizer has the largest order. They showed in this situation that
the collection contains the sharply doubly transitive groups. This condition
limits & to prime power values.

This paper is an analysis from a global perspective, examining the case
where the array stabilizer of a k-set of mutually orthogonal tables is iso-
morphic to the dihedral group, Dy, the subgroup of S;, which are the sym-
metries of a regular k-gon. In Section 2, the background material necessary
to define the problem and establish its solution is presented. In Section
3, we establish when a dihedral group can act as an array stabilizer and
which two-variable identities the original set of tables must satisfy in order
for this to happen. In Section 4, the paper constructs an infinite class of
mutually orthogonal tables whose array stabilizer contains Dy. The paper
concludes with Section 5 where two applications are presented.

2 Algebras, tables and array stabilizers

This section describes the environment needed to define the problem of
interest in this paper and establish its solution. The material presented
in this section is not new. It is found in more detail, including the proofs
of all theorems, in several sources (2, 3, 4]. Proofs for Theorems 2.3 and
2.5 are included here, giving insight into the types of arguments that are
commonly used.

A latin square of order n is an n X n table on n distinct elements such
that every element appears exactly once in each row and column of the
table. The set of table entries is designated by A. Recall that every n x n
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table on NV represents a binary operation over N, and vice versa. This
duality of tables and binary operations allows us to freely use a single
symbol to represent both the table and the corresponding operation. One
way of studying n x n latin squares on N is by viewing them as part of
the collection of all binary operations over A/, This is the approach used in
this paper.

Throughout the paper assume that B is the set of all binary operations
over some specified set A/. A ternary operation on B is now introduced:
for a,b,c € B, define the composition operation [,,] on B as the binary
operation

[a,b,¢] : (z,9) — a(b(z,y), c(z,y)) for all 7,y € N.
Example 2.1 Over N = {0,1,2}, let a,b,c € B, be defined by

0)11]2 0112 0121
a=|1]12(0} b=[2|0|1}and c=|2|1]|0}
2101 112]0 110]2

then the binary operation [a,b, c| is represented by the table:

ololo
[a,b,c) =] 1| 1] 1
2122
Under the composition operation |,,], B is a clone of binary operations

over N [1]. Let py and p, represent the projection maps, p;(z,y) = x and
pa(z,y) =y for all z,y € N.

Lemma 2.2 The clone operation [,,] on B has the following properties:
(1) [la,b,d],d,e] = [a,[b,d,e],[c,d, €],
(2) [G:Pl,le =a, and
(3) [p1,a,b] = a, and [p2,a,b] =b.

Two binary operations a and b in B are said to be orthogonal, a L b, if
the mapping (z,y) — (e(z,y), b(z,y)) for 2,y € N, is a bijection. Orthogo-
nality extends to sets of tables. A k-set of tables, {a,...,ax}, is said to be
mutually orthogonal if every pair of distinct tables in the set is orthogonal.
Figure 1 gives an example of a 3-set of mutually orthogonal tables. Note
all tables in the set are latin squares.

Throughout the paper all tables are of size n x n, and all table entries
are from the same set A/, unless explicitly stated otherwise.
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0j2([4]1¢3 0[3]1]4/(2
411[13}]0]2 3{1[4[2]0
a3=(3[0]2]4]1 ag=|1]4]12})0]3
2/14]11]3][0 4121031
1{3[(0(2]4 2{0]3]1|4
014(3[2}1
2(170(4(3
as=|4[3]2[1]0
110]4)3})2
3({2(1]0]4

Figure 1: Three 5 x 5 orthogonal latin squares on N = {0, 1,2, 3,4}.

Theorem 2.3 If A= {ai,...,ax} is a k-set of mutually orthogonal tables
and u L v, then {[a;,u,v] |i=1,...,k} is a k-set of mutually orthogonal
. tables.

Proof. Let ay,...,ak,u,v € B with A = {a1,...,ax} a k-set of mutually
orthogonal tables and u L v. Let z1,y; € V. Since a; # a; in A are orthog-
onal, there exist z3,y2 € N such that a;(zs,y2) = 71 and a;(z2,¥2) = 1.
Further, since u L v there exists z3,y3 € N such that u(z3,y3) = z2 and
v(z3,y3) = y2. Thus,

d [a'h u, ’U](.'Ba, y3) = ai(u(zﬂa y3)7 ’U((L‘g, y3)) = a‘i(m2) yz) =T
an

laj,u,v)(x3,93) = a;(u(xs,y3),v(z3,¥3)) = a;(z2,%2) =01

which implies {a;,%,v] L [a;,u,v]. =

Definition 2.4 If A= {ai,...,ax} is a k-set of mutually orthogonal tables
andu 1 v, call the k-set {[a1,u,v],..., [ak,u,v]} a conjugate of A, A(u,v).

Finite field constructions can be used to illustrate the concept of the
conjugate of a set of mutually orthogonal tables. The use of finite fields
to construct orthogonal tables is a well-known technique. Define a binary
operation f(z,y) = rz + sy on a finite field F where r and s are elements
of F. Theorem 2.5 given below gives conditions for orthogonality.

Theorem 2.5 Ifry, ro, r3, 74 are elements of some field F, then f(z,y) =
12 + roy and g(z,y) = raz + rgy are orthogonal tables if and only if

T1T4 — T2T3 95 0.

Proof. Let r1, 72, r3, 74 be elements of a field F, and define f(z,y) =
™z + roy and g(z,y) = rez + rqy. If rs, r¢ € F, then f(z,y) = 75
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and g(z,y) = re if and only if z = (r4rs — rorg)/(r174 — rors) and y =
(r17’3 - 1'37‘5)/(1‘17‘4 - ’I‘2’I‘3). ]

In the previous theorem, f(z,y) and g(z,y) belong to the ring of poly-
nomials in = and y over the field F, F|z,y).

Example 2.6 Let ci(z,y) = 2z + ¥, c2(z,y) = z + ¥, c3(z,9) = y,
ca(z,y) = 4z+y, and cs(z, y) = 3z+y belong to Zs[z,y). C = {c1,...,¢c5} is
an orthogonal set of tables. Let u(z,y) = z+4y and v(z,y) = 4z + 2y, then
u L v. Compose ¢, u and v to get, [c1,u, ] (:c, y) = a(u(z,y),v(z,y) =
afz + 4y,4:c + 2y) = 2(z + 4y) + (4= + 2y) = z. Compute [c;, u,v] for
i=2,...,5 similarly; this generates the following conjugate of C,

pl(xa y) = [cla u, ‘U] (=, y) =T
p2(z,y) = [c21u1 v(z,y) =y

A= C(‘U., 'U) = as(z, y) = {03, u, 'U] (-Z',y) =4z + 2y
ag(z,y) = [eq,u, 'U] (z,y) =3z +3y

as(z,y) = [os,u,7](z,y) =2+ 4y
The tables for [c3,u,v)], [ca, u,v] and [cs,u,v] are displayed in Figure 1, as
a3, aq and as, respectively. The binary operations [c1, u,v] and [c2,u,v] are
the projections py and ps.

Next we define an important subclass of orthogonal tables and establish
its relationship to the general class of orthogonal tables.

Lemma 2.7 A table a is a latin square if and only if a is orthogonal to
both py and ps.

Theorem 2.8 If A= {ai,...,ax} i3 a k-set of mutually orthogonal tables
with ay = p; and ay = pa, then {as,...,ax} is a k—2-set of mutually
orthogonal latin squares.

Definition 2.9 A mutually orthogonal k-set that includes p; and ps is
called an augmented set of mutually orthogonal latin squares, or an aug-
mented set of mols.

Theorem 2.10 Every k-set of mutually orthogonal tables is conjugate to
an augmented k-set of mols.

Example 2.6 illustrates Theorem 2.10.

Given a k-set of mutually orthogonal tables we are interested in the
collection of all L v such that 4 = A(u,v). Associated with each such
(u,v) is a permutation ay,, of Sk defined on the indices of the tables in A,
iy, = j if and only if [a;,u,v] = a;. The collection of all such permuta-
tions a,, , is called the array stabilizer of A, ArraySted A.
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Theorem 2.11 Let A = {ay,...,ax} be a k-set of mutually orthogonal
tables, then ArrayStab A is a subgroup of Si whose order divides k(k — 1).

Theorem 2.12 Let A be a k-set of mutually orthogonal latin squares and
a € ArrayStab A, where o is the product of non-trivial disjoint cycles
C1,-..,Cm, then each c; has the same length, and either | ¢; | divides k and
o has no fized points or | ¢; | divides k-1 and o has a single fized point.

Theorem 2.13 If A is a k-set of mutually orthogonal tables and A(u,v)
is a conjugate of A, then ArrayStab A = ArrayStab A(u,v).

Theorems 2.10 and 2.13 together imply that without loss of generality
the investigation of array stabilizers of orthogonal tables can be restricted
to the investigation of array stabilizers of augmented sets of mols. This
simplifies our task, as does the following theorem.

Theorem 2.14 If A = {a;=p1,e2=ps,as,...,ak} i3 an augmented set of
mols, then a € ArrayStab A if and only if aio = [ai, G1a, @24

Example 2.15 Revisiting Ezample 2.6, C is a 5-set of mols with conju-
gate A = C(u,v) = {p1,p2,03,a4,a5}, where a1(z,y) = = = az(y,7),
as(z,y) = 4z + 2y = as(y,2z) and a4(z,y) = 3z + 3y = ay(y,z). Thus
by Theorem 2.14, a = (1 2)(3 5)(4) is an element of ArrayStab A, which
by Theorem 2.18 implies @ € ArrayStab C. Similarly, it can be shown
that A satisfies the identities associated with (12345). Therefore, (12345)
belongs to ArrayStab C and ArrayStadb A.

The order of the array stabilizer of an augmented k-set of mols is re-
stricted by Theorem 2.11. As seen in Theorem 2.11 the largest order of the
array stabilizer of an augmented k-set of mols is k(k-1). Francel and Evans
considered this largest order in [2]. They showed that if the array stabilizer
of an augmented k-set of mols has order k(k—1), then the array stabilizer
is a sharply doubly transitive group and all the tables are idempotent. A
group G is a sharply doubly transitive group of degree k if it is a permu-
tation group on k elements and z # y and z # w implies there exists a
unique permutation « in G with za = z and ya = w. It is well known that
there exists a sharply doubly transitive group of degree k if and only if & is
a prime power [10]. A table a is idempotent if for all z € N, a(z,z) = z.
These results are summarized in the following theorem.

Theorem 2.16 If the array stabilizer of a k-set of augmented mutually
orthogonal tables has order k(k—1), then k is a prime power, the array
stabilizer is a sharply doubly transitive group on {1,...,k}, and each of the
tables is idempotent.
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We are interested in the case when the array stabilizer has order less
than k(k-1). Theorem 2.11 states that the order of the array stabilizer must
divide k(k-1), while Theorem 2.12 restricts the form of the permutations
in the array stabilizer. This still leaves a large number of groups that
potentially act as array stabilizers. For example, every cyclic group of
order k or k-1 is a possible array stabilizer.

3 The dihedral group as an array stabilizer

Consider the situation where a dihedral group is a subgroup of the array
stabilizer. We choose to study the dihedral groups for several reasons.
First, they are an interesting class of groups. Second, they give us a infinite
class of groups rather than a finite class of groups to analyze. Last, each
dihedral group contains subgroups which are possible array stabilizers; for
example, the subgroups of order 2 generated by the reflections, and the
cyclic subgroup generated by a rotation.

The dihedral group Dy is the group of order 2k containing the sym-
metries of the regular polygon with k sides. This group is generated by
two elements, a rotation and a reflection. If k = 2¢, Dy is generated by
the rotation (1 2...k) and the reflection (1 2)(3 k)(4 k-1)...(t+1 t+2).
If k = 2t+1, Dy is generated by the rotation (1 2...k) and the reflection
(12)(3 k)(4 k-1)... (t+1 t13)(t+2).

To begin the study of the dihedral group as an array stabilizer necessary
conditions are established.

Theorem 3.1 Let A = {a1=p;,a2=p2,03,...,ax} be an augmented set of
mols then

(1) ArrayStab A cannot contain Dy_,,

(2) if k is odd, then ArrayStab A can contain Dy, and

(8) if k is even, then ArrayStab A cannot contain Dy.

Proof. (1) Assume D,,; is a subgroup of ArrayStab A, where A is a k-set
of augmented mols. D), as a group of permutations on k1 symbols, leaves
one of the indices 1,..., k fixed, call it m. Consider the reflections in Dy_;.
If k~1 is odd then each reflection fixes one of the indices 1,... 4, ...,k, if
k-1 is even there are reflections that fix two opposite corners in the regular
k—1-gon labelled with 1,...,74,...,k. Both cases admit a permutation in
ArrayStab A that fixes m and at least one more point. This contradicts
Theorem 2.12. (2) Assume k is odd, then D; meets the conditions of
Theorems 2.11 and 2.12. So, it is possible that Dy is an array stabilizer for
some k-set of mols. (3) Assume k is even, then the order of D is 2k. Since
2 does not divide k-1, 2k does not divide k(k-1). This is a contradiction of
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Theorem 2.11 since the order of any subgroup of ArraySteb A must divide
k(k-1). m

For each o € ArrayStab A there exist k identities that the tables of A
satisfy, namely, [a;, @14, G24] (%, ¥) = Gia(z,y) for i = 1,..., k. Conversely,
if an augmented k-set of mols, .4, satisfies the identities [a;, @14, @2:] (Z,y) =
aio(z,y) fori =1,...,k, and & € S, then « is an element of ArrayStaed A.
It is desirable to reduce this set of identities associated with the permuta-
tions of the array stabilizer to a smaller subset of identities from which
all the other identities can be derived. One useful reduction technique is
described in the following lemma.

Lemma 3.2 Let A = {a;=p1,a2=p2,0as,...,a;} be an augmented set of
mols. If A satisfies the identities associated with the permutations o, 8 €
Sk, [ai, G1a,020] = Gia and [ai, a1, 28] = aig for each i, then A satisfies
the identities associated with af, [ai, @148, 208] = Giag for each i.

Proof. Let A = {a1=p1,a2=p2,4as,...,ax} be an augmented set of mols
that satisfy the identities a, 8 € Sj. From the above discussion and Lemma.
22fori=1,...,k
Qia)s = [Bia,@18,028] = [[ai, 81a, a24], 015, a2]
= |ai, 814,018, 02], (824, @18, @28]] = [ai, @148, G243)-
Thus, A satisfies the identities associated with the permutation 8. =

Example 3.3 Continuing with Ezample 2.15, since the identities associ-
ated with the permutations (12345) and (12)(35)(4) are satisfied by the aug-
mented 5-set of mols A = {p1,p2, as(z,y) = 4z + 2y, a4(z,y) = 3z + 3y,
as(z,y) = 2z + 4y}, Lemma 8.2 tells us that ((12345), (12)(35)(4)), the
group generated by the permutations (12345) and (12)(35)(4), is a subgroup
of ArrayStab A.

Using Lemma 3.2, the next theorem isolates a minimal set of identities
which the tables in A must satisfy when Dy, is contained in ArraySteb A.

Theorem 3.4 Let k = 2t+1 and let A = {a1=p1,a2=p2,as,...,ax} be an
augmented set of mols. The tables in A satisfy the identities

(1) 0-.'(33, y) = ak+3—i(y7 23) fOT‘ t=42,...,k,

(2) ae42(z,y) = al+2(ya ),

(8) ai(z,y) = ai—1(y,a3(z,y)) fori=4,...,k, and

(4) = = ar(y,as(z,y)),
if and only if Dy, is contained in ArrayStab A.

Proof. Dy is generated by two permutations: the reflection, (1 2)(3 k)(4 A—
1)...(t+1 t+3)(t+2), and the rotation, (1 2...k). The identities in (1)
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and (2) are those associated with the reflection generator (1 2)(3 k)(4 k-
1)...(t+1 t+3)(t+2). The identities in (3) and (4) are those associated
with the rotation generator, (1 2...k). Lemma 3.2 guarantees that the
identities associated with the other permutations in D are derived from
the identities of (1)-(4). m

4 Mols with dihedral array stabilizers

In the previous section, it was shown that a k-set of mols never contains
Dy in its array stabilizer, and can contain Dy, only if k is odd. In this
section, we construct, for all odd %k, an infinite class of mols such that
each k-set of mols in the class contains Dy, a dihedral group, in its array
stabilizer.

For a subgroup H of Si to be contained in the array stabilizer of a
k-set of mols, it is sufficient to show that the tables of A satisfy all the
identities associated with the permutations of H. However, to verify that
H is precisely the array stabilizer is more complicated. Besides validating
that the tables of A fulfil the identities associated with the permutations
of H, it is also necessary to show that for each possible array stabilizer K
in Si that contains H, there exits a permutation o € K—H such that the
tables of A do not satisfy identically at least one of the identities associated
with o.

To illustrate the difference discussed in the above paragraph and to es-
tablish the existence of both proper containment and equality to the array
stabilizer, the dihedral group Ds = ((12345),(12)(35)(4)) is considered in
conjunction with two different sets of mols in this and the next two para-
graphs. Francel [4] has shown the only possible array stabilizer of Ss that
properly contains Djs is the subgroup ((12345),(1325)(4)). Thus for an
augmented 5-set of mols A that satisfies the identities of Ds examining
the identities associated with o = (1325)(4) determines whether Ds equals
ArrayStab A, or is a proper subgroup of it.

First examine the 5-set A = {p1,p2, as(z,y) = 10z + 3y, a4(z,y) =
8z + 8y, as(z,y) = 3z + 10y}, where each of these polynomials belongs to
Z1[z, v}, the ring of polynomials in variables = and y over the field Z;;. It is
straight forward to show that A is an augmented 5-set of mols and that Dy
is a subgroup of ArrayStab A. For the tables of A to satisfy the identities
of a = (1325)(4) Theorem 2.14 implies that a3o = [a3, @1a, a24], simplified
as az = [a3, a3, as), however [a3, a3, as] (¢, y) = 10(10z+3y) +3(3z+10y) =
10z + 5y # y. Hence, A does not satisfy the identities of «; it follows that
ArrayStab A = Ds.

Next consider the augmented 5-set of mols .4 generated in Example 2.6.
In Example 3.3 the array stabilizer of this set was shown to satisfy the
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identities of Ds. However using the method illustrated in Example 2.6, it
can be shown that A also satisfies the identities associated with (1325)(4).
Thus Djs is a proper subgroup of ArrayStab A = ((12345), (1325)(4)).

Since there is no one set of subgroups that represents all possible ar-
ray stabilizers that contain the dihedral group, the following discussion is
limited to containment.

We are now ready to construct augmented k-sets of mols such that a
dihedral group is contained in each of the corresponding array stabilizers.
Linear functions over finite fields are used to define the latin squares in each
k-set. In Section 4.1, field properties are identified that guarantee that such
a set of mols can be constructed from the field elements. In Section 4.2,
two sequences of irreducible polynomials are derived which lead to fields
with the properties identified in Section 4.1. Finally, the construction of
the desired sets of mols is presented in Section 4.3.

4.1 Identifying sufficient field properties

Theorem 4.1 exhibits field properties that admit linear functions which
generate latin squares with the desired properties, i.e. latin squares that
satisfy the identities of Theorem 3.4. Here and throughout the remainder
of the section assume that k is odd.

Theorem 4.1 Let k = 2¢1. If there exists a finite field F' of characteristic
two (Vz € F,2+z = 0) and order 2" that contains a sequence of elements
sy =1,82,...,8k—1 such that (1) s; is non-zero for 1 < i < k-1, (2) s; =
Si—2 + 828i—1 for 3 < i < k-1, and (8) sy = 8¢41, then A = {a1=p1(z,y)=
z, az=po(z,y)=y, a3(z,y) = 81T + S2y, ..., Gk(T,y) = Sk—2T + Sk_1y} 18
an augmented set of mols of order 2™ such that Dy C ArrayStab A.

The proof of Theorem 4.1 is divided into four pieces, each addressed in
a separate lemma. Lemma 4.2 shows that A—{p1,p2} is a set of mutually
orthogonal latin squares. Each of Lemmas 4.3, 4.4 and 4.5 shows that one
of the identities of Theorem 3.4 is satisfied. For each of the four lemmas
assume k = 2t+1, F' is a finite field of characteristic two having order 2%,
and there exists a sequence of elements s; = 1, s2,..., 8x—1 With properties
(1) s; is non-zero for 1 < ¢ < k-1, (2) s8; = 8j—2 + s28;— for 3 < i < k-1,
and (3) 8t = St41-

Lemma 4.2 {as,...,ax} i3 a set of mols.
Proof. Since, fori =4,...,k,
818i-1+828i—2 = 1(8i-3 + 828i—2) + s28i—2
= 8;-3#0,

it follows from Theorem 2.5 that a3 is orthogonal to a;.
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Assume that {ag,...,am-1}, 4 £ m-1 < k-1, is a set of mols. Consider
am and a;, 4 £ j < m-1.
Sm—28j—1+ Sm-18j—2 = 8m-2(8j-3 +828j-2) + (8m—3 + 828m_2)3j-2
= 8m-28j-3 1 828m—28j-2 +
8m-38j-2 + 828m—-28;5-2
= 8m-28j-3+ 8m-35j_2#0
by the induction assumption and Theorem 2.5. Thus, a,, 1 a;. ®

Lemma 4.3 For 3 <i < k-1, ai1(x,y) = [a;, p2, a3)(z, y).

Proof. By assumption s; = 1 and s; = s;_3 + 828;—; for 3 < ¢ < k-1.
Thus,
[aii D2, 03] ($7 y)

ai(p2(x’y)1 a3($1 y)) = ai(y’ T+ 82y)
= Si—oy + 8i—1(z + 52Y) = 81 + (8i—2 + 528i-1)y
= 12+ sy=ai11(z,y). =

Lemma 4.4 For 3 <1 < tH, at4i(Z,¥) = at44-i(y, Z) .
Proof.

Initially consider when ¢ = 3. Examining the sequence element s;;o
shows

St4+2 = 8¢+ S28t41 = Se41 + 828:
= 841+ 828¢ -+ 828; = 8.
Hence,
at43(z,y) 8141 + Se42Y = $tT + 5¢-1Y

= a+1(%,2) = ar4a-3(y, 7).

Assume for 3 £ ¢ £ m—1 that a;4i(2,y) = atra—i(y,z). As a con-
sequence of this assumption, Siyi—2Z + 8t4i—1Y¥ = St42-i¥ + St43-i2 for
3 £ i £ m—1, which implies 8;4;—2 = 8;43—; and St4i—1 = Styo-i for
3<i<m—lors; = 841-5 for 1 < j<m-2.

Finally, consider when ¢ = m. Examining the sequence element s;;m_;
shows

St4m-1 = St4m-3 + 928t+m—2 = St41—(m-3) + 928t41-(m-2)
= St+4—m T S28t+3-m
= (8t+2-m + 928t43—m) + 828t 43—m = St12-m.
Hence,

a4m(T1Y) = Se4m-2T + St4m-1¥ = St41-(m-2)Z + Sgq1-(m-1)¥

= St42-m¥ + 8t43-mT = Gt44-m (¥, T) ]

Lemma 4.5 [ak,p2,as)(z,y) = z.

Proof. From Lemma 4.4, ax(z,y) = a3(y, z). Thus,

[ak>p2’ a3]($:y) = ak(p2(xs y), a'3(z: y))
az(as(z,y),p2(z,9)) =z + 2y +s2y=z. =
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Proof. (of Theorem 4.1) By Lemma 4.2 it follows that A is an aug-
mented set of mols. By assumption, Property (2) of Theorem 3.4 is true.
Properties (1), (3) and (4) of Theorem 3.4 follow from Lemmas 4.3, 4.4 and
4.5, respectively. Thus, Theorem 3.4 implies that D, is contained in the
array stabilizer of A. =

4.2 Generating an appropriate field

In Theorem 4.1 the values of s3, ..., s; are dependent solely on s;. Finding
a field element so which generates a sequence satisfying the hypothesis of
Theorem 4.1 is the next step in the process of constructing sets of mols
with a dihedral group in their stabilizer. Not all field elements are suitable
choices for s2. In this subsection a field is identified by way of an irreducible
polynomial that leads in Section 4.3 to an appropriate choice for ss.

Two sets of polynomials will be shown to be irreducible, 1p;(z) where
1 # 1mod 3, and 3p;(z) where ¢ = 1mod 3. These irreducible polynomials
over Z will be used to construct fields whose elements will produce linear
equations that define a set of mols with array stabilizer containing a dihedral
group.

The following polynomials g;(z) will play important roles in the defini-
tions of polynomials 1p;(z) and 2p;(z), and later the field elements s;.

Definition 4.6 In Z,[z] define the sequence of polynomials ¢;(z) as fol-
lows: g1(z) = 1, q2(z) = z, and for i > 3 gi(z) = gi—2(z) + zgi-1(z).

The degree of g;(x) is i — 1. The next two lemmas establish the roots
of gi(z) in Z,.

Lemma 4.7 ¢;(0) = 0 if and only if i is even.

Proof. Since g1(0) = 1, ¢2(0) = 0, and ;(0) = ¢;—2(0) +0g;—1 (0) = gi—2(0)
the result follows. ®m

Lemma 4.8 g;(1) =0 ¢f and only if i = Omod 3.

Proof. Since ¢1(1) =1, g2(1) =1, ¢;(1) = gi—2(1) + 1g;—1(1) for ¢ > 3, and
141 =0, the result follows. =

Using the ¢;(z) polynomials, we construct irreducible polynomials in
Theorems 4.12 and 4.14 which lead to fields that satisfy the properties of
Theorem 4.1.

Definition 4.9 For i > 2, define two sequences of polynomials as follows:
19i(2) = gi-1(2) + (1 + 2)i(2), and opi(2) = ¢i(2) + ¢iv1(2).
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The degrees of the polynomials ;p;(z) and 2p;(z) are i.
Lemma 4.10 Fori > 2, 1p:(0) =2 p;(0) = 1.

Proof. Fori 2 2, 1pi(0) = qi_1(0)+(1+0)q,~(0) and zp,'(O) = q,~(0)+q,—+1(0).
Thus the result follows from Lemma 4.7. =

Lemma 4.11 Fori > 2, 1p;(1) =2 pi(1) =1 if and only if i  1mod 3.

Proof. For i > 2, 1p,-(1) = qi_l(l) + (1 + l)q;(l) = q:'-l(l), and 2pi(1) =
gi—1(1) + gi(1), the lemma follows from Lemma 4.8. =

Theorem 4.12 For i > 2, 1p;(z) is irreducible over Zy if and only if
i # 1mod 3.

Proof. Lemmas 4.10 and 4.11 establish this result. =

The next lemma leads to Theorem 4.14 which defines the set of irre-
ducible polynomials 3p;(z) over Z;. In Z;[z], the polynomial z2 + 1 equals
the polynomial (z + 1)2.

Lemma 4.13 If ¢ > 4 and i = 1 mod 3 then z + 1 divides 2p;(x) but
(z + 1)? does not divide op;(z).

Proof. Assume i = 3r + 1 for some r > 1. Lemma 4.8 implies 2p;(1) =
qi(1) + gi4+1(1) =141 =0, hence z + 1 divides op;(z).
Since
2pi(x) 4i(z) + gi+a(z)
3i(z) + (gi-1(z) + zgi(x))
gi(z) + gi-1(z) + z(gi-2(z) + xq;-l(z))
ai(z) + gi-1(z) + zqz-z(z) +2%g;-1(z))
gi(z) + zgi—2(z) + (1 + 2%)gi-1(z)
gi—2(2) + z¢i-1() + zgi-2(z) + (1 + w’)qi_l(x)
1+ l‘ng-z(x) + 2(gi-3(2) + zg;-2(z)) + (1 + 2%)gi—1(2)
(1 +2 )(%—2(1') + ‘h—l(x)) + z(‘lz—fi(x) + q$-2(x))
it follows tha.t 1+ 22 divides op;(z) if and only if (14 z2) divides g;_3(z) +
g;—2(z). Continuing the reduction shows that (1 + z2) divides op;(z) if and
only if 1 +z2 divides g1 () +g2(z) = 1+ 2. Therefore 1+z2 does not divide

2pi(z).

Theorem 4.14 Ifi > 4 and i = 1mod 3 then op;(z) = (z+ 1)3pi(z) where
3pi(z) s an irreducible polynomial over Zs.
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4.3 Constructing the mols

Theorems 4.12 and 4.14 establish for every positive odd integer a set of
irreducible polynomials over Z,. In this subsection, these polynomials will
be used to build augmented sets of mols whose array stabilizer contains a
dihedral group.

The irreducible polynomials of Section 4.2 serve two purposes. They
are used to identify a field in which to build mols, and each polynomial
provides a field identity that is essential to showing that a sequence of field
elements exists satisfying the properties of Theorem 4.1 and hence the iden-
tities of Theorem 3.4. The irreducible polynomials ;p;(z) yield an identity,
namely 841 = St—1 + 828, that is related to the identities associated with
the dihedral group reflection permutation. As a consequence, when using
1Pi(z) to define the field, the elements s; are defined to satisfy the identities
associated with the rotation, then it is proven that they satisfy the associ-
ated reflection identities. On the other hand, the polynomial op;(z) yields
an identity, namely s;41 = s, that is related to the identities associated
with the dihedral group rotation permutation. Using 2p;(z), the elements
s; are defined to satisfy the dihedral group reflection, and then identities
related to the dihedral group rotation are proven.

First consider the case where k=2t+1 and ¢ # 1 mod 3. From Theorem
4.12, 1p:(z) is an irreducible polynomial over Z; with degree ¢t. Let a be
. an element in a splitting field for yp;(x) where a is a root of 1p:(z).

Definition 4.15 Define a sequence of 2t field elements in Zs(a) as follows:
fori=1,...,t, let s; = g;(a), and for j =1,...,¢, let st4; = 8p41-;.

Lemma 4.16 Let k =2t+1 where t #1 mod 3, then the sequence of ele-
ments s = 1,...,8,-1 satisfy:

(1) each s; is non-zero,

(2) si =8i—2+828i—1 for3<i< k-1, and

(3) st41 =34,

Proof. (1) Zy(a) is a vector space over Z; with a basis < 1,a,...,a*"! >.
This implies for 1 < ¢ < t that s; = ¢;(a) is non-zero since each g¢;(z) has
degree ¢ — 1. By the symmetric definition of the s;’s it follows that all the
8;’s are non-zero.

(2) This argument is split into three cases corresponding to the initial,
middle and final s; terms.

Case 1: For 3 < i < t, s; = ¢gi(a), and s2 = g2(e¢) = a. From
Definition 4.6 gi(z) = gi—2(z) + zgi—i(z). This yields s; = g¢i(a) =
gi-2(@) + ogi—1() = si—2 + 828;-1.

Case 2: Assume i = t + 1. Since 1p:(a@) = gt—1(a) + (1 + a)g(e) = 0,
it follows 8;_1 + (1 + s2)s; = 0. Simplifying, we get s;,_; + s2s; = s;. Since
8¢ = 8t41, the result follows.
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Case 3: Fort+2<i<k-1lwritetast+1+jwherel <j<t-1.
Using cases 1 and 2 and Definition 4.15,
8¢ St4+145 = S(t+1)—(1+7) = St—j
85 +0 =8, + (928¢41—j + 928:41—5)
(8t-j + 528¢41-5) + 828415
St2-j + 828t41—j = S(e4+1)—(j-1) T S28(e+1)—j
= St4j-1t 828t+j = Si—2 + 8281
(3) From Definition 4.15, sy4; = 3:. B

Second consider the case where k = 2t + 1 and ¢t = 1mod 3. As estab-
lished in Theorem 4.14, 3p:(x) is an irreducible polynomial over Z; with
degree t — 1. Let 8 be an element in a splitting field for 3p:(x) where 8 is
a root of ap.(z).

Definition 4.17 Define a sequence of 2t field elements in Z2[0)] as follows:
fori=1,...,2t, let s; = g;(B).

Lemma 4.18 Let k = 2t + 1 and t = 1 mod 3, then the sequence of ele-
ments 8y = 1,...,8k_1 of Z2|0)] satisfy the following:

(1) each s; is non-zero,

(2) si=8i_2+828i—1 for3<i< k-1, and

( 3) St41 = 8¢.

Proof. (1) This argument is split into four cases corresponding to the
initial, two middle and final s; terms.

Case 1: Assume 1 < ¢ < t—2. By Theorem 4.14, 3p;(x) is an irreducible
polynomial of degree t — 1. Thus Z»(0) is a vector space over Z; with basis
< 1,B,...,8% 2 >. This implies that for 1 < i < t -2, s; = g;(8) is
non-zero,

Case 2: Assume i =t — 1. If s;—; = 0 then s;_3 + Bs;—2 = g:—3(0) +
Bgi-2(B) = 0, which implies that 3¢~2 can be written as a linear combina-
tion of 1,8,...,8t 3. Hence it must be s;_; # 0.

Case 3: Assume ¢ = t. If s; = 0 then it further follows that ;41 = 0.
Since 8:41 = 8t—1 + 8284, it then follows that s;_; = 0 which contradicts
Case 2.

Case 4: Assume t+1 < ¢ < 2, and write ¢ as t+ 3. It will be established
that s; = s;4; = 8¢4+1—; and then the result follows from the previous cases.

From (2) 8441 = 8: = 8t41-1. Now assume for 1 < j < m — 1 that
St4j = 8¢+1—j. Considering S¢qm:

St4m = Stim-2 T 2St4m—1 = St4(m—2) + 92St4(m-1)
= Si41-(m—2) + 828t+1-(m—-1) = St4+3—m + 528t42-m
= (St41-m + 828t42-m) + 825t42-m = St41-m

(2) This follows directly from Definition 4.17.
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(3) Since S is a root of gp:(z), B is also a root of gp;(z), which gives
q(B) + ge+1(8) = 0. Hence sq1 = g41(8) = :(8) = 5. ®

Lemmas 4.16 and 4.18 immediately yield the main result, Theorem 4.19.

Theorem 4.19 Let k = 2t+1 > 5, then for n > t+1, there exists an
augmented set of mols A of order 2* such that Dy C ArrayStab A.

5 Applications

We conclude the paper with two specific applications of the results discussed
in the previous sections. In the first application, an augmented 7-set of mols
with array stabilizer D7 is constructed using the methods in Section 4.

Example 5.1 Let k = 7, writing k as 2t+1 yields t = 3 # 1 mod 3. Using
Definition 4.6, q1(z) = 1, g2(z) = z and ga(z) = 1 + 2. The polynomial
1p3(z) = g2(z) + (1 + z)qa(z) = 1 + 22 + 23 is irreducible over Z;. Let
a be a root of 1p3(x) over some splitting field. As prescribed in Definition
4.15, define s1,...,86: 81 = 1, 82 = g2(@) = a, s3(@) = gs(a) = 1 + o2,
s4=83=1+0? 85 =8y =a, and 3sg = 8; = 1.

1t follows immediately from the statement of Theorem 4.1 that the set of
polynomials, A ={pl(x’ y) = Z’,pz(.'l:, y) =Y a'3(z)y) =T+ ay, a,4(:1:, y) =
az + (1 + o)y, as(z,y) = (1 + )z + (1 + o?)y,as(z,y) = (1 + )z +
ay,a7(z,y) = ax + y}, is an augmented 7-set of mols of order 8 with Dy
in ArrayStab A.

By Theorem 2.12, the order of the array stabilizer of a 7-set of aug-
mented mols must divide 42. Since D7 has order 14 and is a subgroup of
ArrayStab A, this implies ArrayStab A is either Dy or has order 42. How-
ever, if ArrayStab A has order 42, then Theorem 2.16 implies the mols in
A with this “largest” array stabilizer must be idempotent, i.e. a;(z, ) = z.
Ezamining a3(z,y), one sees that az(z,z) # z. Thus it must be the case
that ArrayStab A = D-.

All of the latin squares constructed in Section 4 had order 2" for some
n € Z*. The final application shows that this is not a necessary condi-
tion for an augmented set of mols to contain a dihedral group in its array
stabilizer.

Example 5.2 Consider the following latin squares defined by polynomials
over Z17, a3(z,y) = ao(y, ) = 16z + Ty, a4(z,y) = as(y, :l:) = 10z + 14y,
as(z,y) = a7(y,z) = 32 + 6y and ag(z,y) = 11z + 11y. Using Theorem
2.5, it is straightforward to show that A = {p1,p2,a3,...,a9} is a 9-set of
augmented mols.
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Considering the permutation o = (123456789), we find
Gia(T,y) = [ais Plas P2e|(Z, Y)

yields:

p2(z,y)

as(z,y)

16y + 7(16z + 7y) = a4(z, y)

10y + 14(16z + y) = as(z,y)

3y +6(16z + 7y) = as(z, y)

11y + 11(16z + Ty) = az(z,y)

6y + 3(16z + 7y) = as(z,y)
[0'81}’2’03](37’?/) 14y + 10(16$ + 7y) = a'9($ y)
[ag,Pz,a.‘S](x y) 7.1/ + 16(16$ + 7y) =p (x, y)

Hence by Theorem 2.14, a € Array.S’tab A. Similarly, consideration of the

permutation 8 = (12)(39)(48)(57)(6) shows that B € ArrayStab A. Thus

Dg C ArrayStadb A.

[Pl » P2, 03](3’ y)
[p27p2, a3]($1 y)
[0'311’2’03](3:’3/)
[04;112,03](17’3/)
[05,1’2, 03]($, y)
[aﬁtm)a:i](zay)
[(17, p2, 03]($, y)

The authors thank the reviewer for constructive suggestions that signif-
icantly improved this paper.
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