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Abstract

We determine the full Sylow p-subgroup of the automorphism
group of transitive k-ary relational structures of order p?, p a prime.
We then find the full automorphism group of transitive ternary re-
lational structures of order p?, for those values of p for which A, is
the only doubly-transitive nonabelian simple group of degree p. Fi-
nally, we determine optimal necessary and sufficient conditions for
two Cayley k-ary relational structures of order p?, k < p, to be iso-
morphic.

1 Introduction

We begin by finding the full Sylow p-subgroup of the automorphism group
of transitive k-ary relational structures of order p? (Corollary 3.4). Using
this result as well as results of the author and D. Witte in (8], we determine
the full automorphism group of transitive ternary relational structures of
order p?, for those values of p for which A, is the only doubly-transitive
nonabelian simple group of degree p (Theorems 3.10 and 3.11). Using
the characterization of the full Sylow p-group of the automorphism groups
of k-ary relational structures, we also give optimal necessary and suffi-
cient conditions for two Cayley k-ary relational structures of order p? to
be isomorphic (Theorems 3.5 and 3.6). While this problem only forms a
part of this paper, the remainder of the introduction will focus on putting
the results on the isomorphism problem into perspective, as quite a bit of
work (references are provided below) has been done on this problem for the
groups under consideration in this paper.
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Modern interest in the isomorphism problem under consideration in
this paper began in 1967 when Addm (1] conjectured that two circulant
graphs of order n are isomorphic if and only if they are isomorphic by a
group automorphism of Z,,. Subsequently, Adém’s original conjecture was
generalized in several directions. First, a circulant graph is just a Cayley
graph of Z,,, so one obvious generalization of Adém’s conjecture is to ask for
which groups G is it true that any two Cayley graphs of G are isomorphic
if and only if they are isomorphic by a group automorphism of G?

Definition 1.1 Let G be a group. If two Cayley graphs of G are isomorphic
if and only if they are isomorphic by a group automorphism of G, we say
that G is a Cl-group with respect to graphs.

Much work on this problem has been done, and the interested reader is
referred to [13] for a recent survey of results on this problem. Another
obvious generalization is to ask the same question about different combina-
torial objects. That is, given a class K of Cayley objects, for which groups
G is it true that if X and X’ are Cayley objects of G in K are X and X'
isomorphic if and only if they are isomorphic by a group automorphism of
G?

Definition 1.2 Let X be an object in some class K of combinatorial ob-
jects. We say that X is a Cayley object of G if V(X) = G and G = {z —
gz : g € G} is a subgroup of Aut(X).

Definition 1.3 Let G be a group and K a class of combinatorial objects.
If two Cayley objects of G in K of G are isomorphic if and only if they are
isomorphic by a group automorphism of G, we say that G is a Cl-group
with respect to K.

Pélfy (16] has shown that a group G is a CI-group with respect to every
class of combinatorial objects if and only if gcd(n, p(n)) = 1 or n = 4 where
¢ is Euler’s phi function. He also showed that if G is not a CI-group with
respect to some class of combinatorial objects, then G is not a CI-group
with respect to 4-ary relational structures. This implies that for “most”
classes K of combinatorial objects, “most” groups G are not Cl-groups
with respect to K. But for those classes K and groups G, we still have the
problem of determining necessary and sufficient conditions for two Cayley
objects of G in K to be isomorphic. This problem is sometimes referred to
as the Cayley isomorphism problem.

Recently, there have been several results published in the literature
along the lines of P4lfy’s theorem mentioned above. Namely, an explicit
list of permutations have been given for a group G, and two Cayley objects
of the group G in some class of combinatorial objects are isomorphic if and
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only if they are isomorphic by some permutation on the given list. This
has been accomplished for G = Z,, {10], Z,2 [11] (another, later proof can
be found in [8]), and Z? [8], where p and g are distinct primes. Results
like these certainly solve the Cayley isomorphism problem for all classes X
of combinatorial objects, but for a specific class of combinatorial object,
it need not be the most efficient condition. For example, the number of
permutations that need to be checked to determine if two Cayley objects of
Z2 given by [8] is at least (p? —1)(p2 —p) + (p—2)(p—1)(p® — 1)(p% ~p), but
Gods11 has shown [9], that Z"’ is a CI-group with respect to graphs, so that
only (p? — p)(p® — 1) permutatlons need to be checked for graphs. Thus,
though the results cited above are powerful, they do not produce a min-
imal list of permutations to be checked to determine isomorphism within
a specific class of combinatorial objects. In this paper, we will determine
such a minimal list for k-ary relational structures of an abelian group of
order p?, p a prime with k < p. We remark that these are natural classes
of combinatorial objects to consider (they include k-uniform hypergraphs,
for example), as a result of Wielandt [18, Theorem 5.12] (this hard to find
reference can be found in it’s entirety in [19]) implies that every transitive
group is the automorphism group of some k-ary relational structure.

2 Preliminaries

For permutation group terminology not given in this paper, see [7]. We
begin with a well-known and useful result by Burnside.

Theorem 2.1 (Burnside, [4]) Let G be a transitive group of prime de-
gree. Then either G is doubly transitive or G contains a normal Sylow

p-subgroup.

As all doubly-transitive groups are known (see [5]), the above result
determines all transitive groups of degree p, p a prime. The author and
Witte (8] have determined all transitive group of degree p?, p a prime, with
some explicit exceptions. In particular, if p is a prime such that A, and
Sp are the only nonsolvable doubly-transitive groups of degree p, then 8]
explicitly constructs all transitive groups of degree p2. We shall have need
of this result, as well as some of the results used to prove this.

Definition 2.2 Let G be a transitive permutation group of degree mp
acting on Zm x Zp that admits a complete block system B of m blocks of
cardinality p. If g € G, then g permutes the m blocks of B and hence induces
a permutation in Sy, denoted g/B. We define G/B = {g/B : g € G}, and
let fixg(B) = {g € G : g(B) = B for every B € B}.
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Definition 2.3 Let G be a transitive permutation group of degree mp
acting on Z, X Zp. Assume that fixg(B) # 1 so that a Sylow p-subgroup Py
of fixg(B) is nontrivial. Define 2;: Zpm X Zp — Zm X Zp by 2i(j, k) = (4, k)
if j # i and zi(4, k) = (4, k + 1) if j = <. Without loss of generality, assume
that P, is contained in (z; : ¢ € Z,,). For h € Py, we then have that
h= l‘[:’lol 2§, a; € Zp. Define v: Pp — Z7* by v(h) = (ao,ay,...,am-1).

With the above definitions in hand, we have the following result.

Lemma 2.4 (Lemma 3, [8]) If there exists x € G such that z(i,j) =
(i+ 1,05 +b), bi € Zp, a € Z;, then {v(h) : h € Ry} is a cyclic code of
length m over GF(p). Conversely, if C is a cyclic code of length m over

m-1 a; ,

GF(p), then there exists a group G as above such that Py = {[]ieg" 2
(ag,a1,...,8m-1) €C }.

Definition 2.5 The code of Lemma 2.4 will be denoted by Cg, and will
be called the code induced by B. If G admits a unique block system B of
m blocks of cardinality p, we say Cp is the code over GF(p) induced by G.

We will have need of the permutational wreath product of two groups.

Definition 2.8 Let G < Sx and H < Sy. We define the (permutational)
wreath product of G and H, denoted G ! H, to be the group of all permu-
tations in Sxxy of the form (z,y) — (g(z), hz(y)), where g € G and each
hy € H.

Definition 2.7 Let a;; = ( )(—1)i~3. A straightforward calculation will
show that a; j_1 = aiy1,; + ai;. For 1<i<p,let

%=t
Define 7:Zp2 — Zy2 by
(i) = i + 1(mod p?)
“and p1, p2: L — Z% by
p1(4,7) = (i,5 + 1) and p2(3,5) = (i + 1, 5)

We remark that we may also view 2; as acting on Zyz, in which case z;(a +
bp)=a+bpifa#iand z(a+bp)=a+(b+1)pifa=i. Let

P; = (1,7:) and P| = (p1, p2, W),

for 1 < i < p. We remark that P, = P, & Z,1Z,. There are thus 2p—1
distinct groups P;, P/, 1 <i <p.
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Theorem 2.8 (Theorem 9, [8]) Let G be a transitive group of degree p
with Sylow p-subgroup P. Let |P| =p**t1, i > 1.

o IfT€ P, then P=P,.

e If{p1,p2) < P, then P = o' P}a for some a € Aut(Z2).

It is not difficult to show (see [8]) that every transitive group of de-
gree p? contains a regular subgroup (so permutation isomorphic to () or
{(p1,p2)). Thus the above result gives, up-to permutation isomorphism,
all Sylow p-subgroups of a transitive group of degree p?>. The following

result characterizes when a transitive p-subgroup of S, contains regular
subgroups isomorphic to both Z;» and Z2.

Lemma 2.9 (Lemma 4, [8]) Let P be a transitive p-subgroup of Spa.
Then P admits a complete block system B of p blocks of cardinality p.
Furthermore, the following are equivalent:

1. P does not contain regular copies of both Z,» and Zf,.
2. PEZ, Zy.

3. Letting C be the code induced by B, we have Zz-—o a; = 0 (mod p),
for every (ao, a1,...,a,-1) € C.
The following result gives all transitive groups of degree p? whose Sylow
p-subgroup is not a full Sylow p-subgroup of Sp2 (which is Z, 1 Z,).

Theorem 2.10 (Theorem 4, [8]) Let G be a transitive group of degree
p? such that a Sylow p-subgroup P of G is not isomorphic to ZpZyp. Then,
after replacing G by a conjugate, one of the following is true.

1. G is doubly transitive, and either
o G= Ay or Sp; or
e PSL(n, k) < G < PTL(n, k), where (k" —1)/(k — 1) = p?; or
o Zp xZp, < G < AGL(2,p).

2. G is simply primitive, has an elementary abelian Sylow p-subgroup
and either

® Zp x Zp < G < AGL(2,p); or

e G has a transitive, imprimitive subgroup H of indez 2, such that
H < Sp x S, (H is described in [8, Lemma 1)),
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3. G is imprimitive, P % Z, x Zp, P % P,_,, and P<G, so P < G <
Ns,;(P) (and Ns_,(P) is described in [8 Lemma 5] or [8, Lemma

6]),

4. G is imprimitive, P = Zp X Zy, and G < Sp x Sp (G s described in
[8, Lemma 1}); or

5. G is imprimitive, P = P,_,, and G = LP, where Z, x Z, < L <
Sp x AGL(1,p) (L s descrzbed in [8, Lemma 1]).

Remark 2.11 We remark that in the preceding result, if PSL(n,k) < G <
PI'L(n, k), where (k" — 1)/(k — 1) = p?, then G contains a regular cyclic
subgroup but does not contains a subgroup isomorphic to 22 while if Zp x
Z, < G < AGL(2,p), then G contains a regular subgroup zsomorphw to 22
but does not contains a regular cyclic subgroup.

Definition 2.12 ([6, p. 168]) Let H be a group and let A be an H-module.
(That is, A is an abelian group on which H acts by automorphisms.) A
function ¢: H — A is a crossed homomorphism if, for every hy,hy € H, we
have

$(h1he) = h3! - d(hy) + ¢(ha).

(This is equivalent to the assertion that the function H — H x A defined
by A+ (h,¢(h)) is a homomorphism.)

The following result characterizes all transitive groups of degree p? that
have Sylow p-subgroup isomorphic of Zp ! Z,.
Proposition 2.13 (Proposition 1, [8]) Let

1. p be a prime;

2. H and L be transitive subgroups of Sp, such that L is simple;

8. K/L? be an H-invariant subgroup of the abelian group (Ns,(L)/ L)%;

4. ¢:H — Ns,(L)?/K be a crossed homomorphism; and

5. Gu,L k¢ = {(h,v) € Hx Ng,(L)?: ¢(h) =vK } < Sp1 5.

Then GH,L k.4 i8S o transitive, imprimitive subgroup of Spz, such that a
Sylow p-subgroup of G is isomorphic to Zp 1 Zyp.

Conversely, if G is a transitive, imprimitive permutation group of de-
gree p?, such that a Sylow p-subgroup of G is isomorphic to Zy1Z,, then G
is equivalent to Gy 1 k¢, for some H, L, K, and ¢ as above.
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Definition 2.14 (cf. [6, Prop. 4.1]) Let H be a group, let A be an H-
module, and let ¢1,¢2: H — A be crossed homomorphism. We say that ¢,
is cohomologous to ¢, if there is an element a of A, such that, for every
h € H, we have

$1(h) — g2(h) = h~'a —a.
(This is equivalent to the assertion that the homomorphisms k — (&, ¢1(h))

and h — (h, $2(h)) are conjugate via an element of A.)
We remark that the equivalence classes of this equivalence relation are,
by definition, the elements of the cohomology group H!(H, A).

Theorem 2.15 (Theorem 13, [8]) Let
¢ p be a prime;
o H be either Ap, Sp, or subgroup of AGL(1,p) that contains Z,;
o n be a natural number such thatn|p-1 ;
e K be an H-invariant subgroup of (Z,)?; and
o ¢:H — (Zn)P/K be a crossed homomorphism.

Then ¢ is cohomologous to a homomorphism from H to Co/(KNCy), where
Co 1is the repetition code in (Z,)P.

Remark 2.16 The conclusion of the theorem can be stated more concretely:
If ¢ is not cohomologous to 0, then either

1. H < AGL(1,p), and there is some ¢ € Z,, and some generator h
of H/Z,, such that |h|(c,c,...,c) € K and, after replacing ¢ by a
cohomologous cocycle, we have ¢(h®,2) = a(c,c,...,c), fora € Z and
2 €Zy; or

2. H = Sp, n is even, and there is some ¢ € Zy,, such that (2¢,2¢,...,2c) €
K and, after replacing ¢ by a cohomologous cocycle, we have ¢(h) =
0+ K ifge Ay or ¢(h) =(c,c,...,0) + K if g ¢ Ap.

We now turn to combinatorial topics.
Definition 2.17 A k-ary relational structure is an ordered pair (V, E),

with V a set and F a subset of V*. A 3-ary relational structure will be
called a ternary relational structure.
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Definition 2.18 For a group G, define gz, : G — G by gr(h) = gh, and
let Gr = {gL : g € G}. It is easy to verify that G is a group, called the
left regular representation of G. We will say a k-ary relational structure
X is a k-ary Cayley object of G if G < Aut(X) (note that this implies
V = G). In general, a combinatorial object X will be a Cayley object of G
if G € Aut(X).

Definition 2.19 Let G < Sq, and X;,..., X, be all k-ary relational struc-
tures with G < Aut(X). We define the k-closure of G, denoted by G(¥), to
be NI_, Aut(X;), and say that G is k-closed if G*¥) = G.

We shall have need of the following results.

Lemma 2.20 ([12]) For permutation groups G < Sx and H < Sy, the
following hold for every k > 2:

1. Let G x H act canonically on X xY. Then (Gx H)?) = G*) x H(*),
2. Let GUH act canonically on X x Y. Then (GLH)®) = G*)  H(*),

Lemma 2.21 (Theorem 5.12, [19]) Let G be a permutation group act-
ing on Q. Let k > 2 and suppose there ezists o,...,ax—1 € §) such that
Gay...on_y =1 (Gay...ar_, is the stabilizer of the points a1, ...,ax_1). Then
G*) =G.

3 Results

We begin by determining the orders of Sylow p-subgroups in k-closed groups
of degree p2. We have the following preliminary result.

Lemma 8.1 Let X be a vertez-transitive k-ary relational structure of order
-p? such that k < p and G < Aut(X) such that G is a transitive subgroup of
Aut(X) that admits a complete block system B of p blocks of size p. Suppose
that whenever Bi,...,Bk_1, Br are distinct blocks of B, then there ezists
v € fixg(B) such thatvy|p, =1,1< i< k—1, andv|B, # 1. Then a Sylow
p-subgroup of Aut(X) is isomorphic to Zy 1 Zy.

PROOF. Let P be a Sylow p-subgroup of fixg(8). Then P is nontrivial, and
so P|p is a cyclic group of order and degree p for every B € B. For B € B,
define zg : V(X) — V(X) by zg(z) =z if z ¢ B and 2p(z) = ép(z), where
dp € P and ((08)|) = P|g. We will show that zp € Aut(X) for every
B € B. As P|g = (zg) for every B € B, we will then have that |P| = p?
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so that a Sylow p-subgroup of Aut(X) has order pP*!. Thus a Sylow p-
subgroup of Aut(X) is a Sylow p-subgroup of S,2, which is isomorphic to
Z Zy.

i Le: e = (z1,...,%x) € E(X), and By,..., B; be the blocks of B such
that for each z;, 1 < i < k, there exists By, 1 < ¢ < j such that z; € B,
and if 1 £ £ < 7, then there exists 1 < i < k such that z; € B,. That is,
B, ..., B; is the shortest list of distinct blocks of B such that z; € Uj_, By,
1 <i < k. Clearly j < k. By hypothesis, for 1 < ¢ < j there exists vy, €
fixg(B) such that y¢|p, # 1 but v¢|p, =1 foreveryi # ¢, 1 < i < j. Let H,
denote the normal closure of (v} in fixg(8). Then of course, Ho<fixg(B)
so that He|p<fixg(B)|p for every B € B. Furthermore, Hy|p, = 1 for every
1< i< j,1# ¢, and as a normal subgroup of a primitive group is transitive
(17, Theorem 8.8] and a transitive group of prime degree is primitive [17,
Theorem 8.3], we have that Hy|g, is transitive. Whence Hy|p, contains
a p-cycle. We may thus assume without loss of generality that |, is a
p-cycle, 1 < ¢ < j. Raising each «¢ to an appropriate power, we may also
assume that each v, has order p. By conjugating each v, by an appropriate
element of fixg(B), we may additionally assume that v, € P, 1 < ¢ < j.
Note that for each 1 < £ < 7, there exists a; € Z,, such that 7}%|p, = zp,.
Thus by raising each 7, 1 < £ < j, to an appropriate power, we assume
that 42|, = 2B,. Clearly, if B # By for any 1 < ¢ < j, then zp(e) = e. If
B = By for some 1 < € < j, then y(e) = 2p,(e), so that zp,(e) € E(X).
We conclude that zp € Aut(X) for every B € B, and the result follows.

0O

Lemma 3.2 Let P be a transitive p-subgroup of Sy2 that is not isomorphic
to Zp x Zp. Then P is contained in a unique Sylow p-subgroup of Spa.

PROOF. If P is a Sylow p-subgroup of Sy, then the result is trivial. Oth-
erwise, |P| < pP. By the comment following Theorem 2.8, we may assume
without loss of generality that either (Z,2), < P or (Z2), < P. Suppose
that P is contained in Sylow p-subgroups II; and II, of Sp2. Then there
exists § € Sp2 such that 671116 = II;. Whence §~1P§ <1I, and P < II,.

By (17, Exercise 6.5], a regular cyclic subgroup admits a unique complete
block system of p blocks of size p. As Z, ! Z, contains a regular cyclic
subgroup, Z,!Z, admits a unique complete block system B consisting of p
blocks of size p. Now, if |P| > p?, then by [8, Theorem 14], P = Z,1Z,.
By [18, Theorem 4.11], the blocks of P are the same as the blocks of P('*’g,
and so P admits B as a unique complete block system of p blocks of size p.
The only remaining possibility for P is that it is a regular subgroup, and if
P is cyclic, then by the reference above P admits B as a unique complete
block system. Otherwise, P & Zg, so in every case P admits B as a unique
complete block system.
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As B is a block system of Z,1Z, > §~'P6§, B is a block system of
6-1P§. Clearly then P/B = §~1P§/B = Z,. Furthermore, as there is a
unique cyclic code of length p over GF(p) of a given dimension, the code
of P induced by B must be the same as the code of 1 P§ induced by B,
so that fixp(B) = fix;-1ps(B) and P = 6~'P5. Then § € N5 ,(P) and all
such elements normalize IT; by [8, Lemmas 5 and 6]. Whence II; = II,.

0O

Lemma 3.3 Let P be a transitive p-subgroup of Syz admitting a complete
block system B of p blocks of size p. If |P| > p**1, then a Sylow p-subgroup
of P is isomorphic to Zy1 Zy, k > 2.

PRrROOF. Let X be a k-ary relational structure such that P < Aut(X).
We will show that a Sylow p-subgroup of Aut(X) is isomorphic to Zy 1 Z,.
As P is contained in a unique Sylow p-subgroup of Sy2 by Lemma. 3.2, the
result will follow. In order to apply Lemma 3.1, we will show that whenever
Bi,...,Bk-1, B are distinct blocks of B, then there exists v € fixp(B) such
that 7|p, =1,1<i < k-1, and v|p, # 1. By Lemma 2.4, the code Cp
induced by P is a cyclic code of length p over GF(p). We remark that it
suffices to show that Cp contains a codeword that is 0 in any fixed £ — 1
coordinates, and non-zero in every other. Note that Cp contains a cyclic
code C of dimension k. By [3, Lemma, pg. 127), C' is maximal distance
separable so that the minimum distance in C is exactly p — k + 1. By
[14, Theorem 11.4], C has a minimum weight codeword in any p —k + 1
coordinates. The result then follows. O

Corollary 3.4 Let X be a k-ary relational structure of order p?, with Sylow
p-subgroup P. Then P is k-closed and

o if P contains a regular cyclic subgroup, then P is conjugate to one of
Pi,...,Pey, or Zp1Zy, or

o if P contains a regular elementary abelian subgroup, then P is conju-
gate to one of P{,...,P|_,, or Zp1Zy.

PROOF. By the comment following Theorem 2.8, we may assume without
loss of generality that either (7) < P or {p1,p2) < P, where 7,p1, and p;
are as in Definition 2.7. Thus P = P; if (r) < P or P = P! if {p1,p2) < P
by Theorem 2.8, 1 < i < p. By Lemma 3.3, either P = Z,1Z, or |P| < p*.
Thus P = P, if (1) < Por P = P/ if (p1,p2) S P,1<i<k-1,0r
P = Z,1Z,. By [18, Exercise 5.28 and Theorem 5.10], the k-closure of
any p-group is a p-group, so that P < P(®) < Z,1Z, (as Zp1Z, is a
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Sylow p-subgroup of Sy2). Hence Z, ! Z, is k-closed for every k > 2. It
P % Z,1Zy, then let B be a complete block system of P consisting of p
blocks of size p, with Cp the code induced by P. Let Cp have dimension
4,80 that 1 <¢ < k—1. By [3, Lemma, pg. 127], Cp is maximal distance
separable so that the minimum distance in Cp is exactly p — 7 + 1. Let
¢ be a codeword of Cp of minimum distance p — i + 1, with v € fixp(B)
such that v(y) = c (v is defined as in Lemma 2.4). Then 7 acts trivially on
exactly ¢ — 1 blocks of B, say By,...,B;—1. Choose z; € B,, 1<j<i-1,
and z; to be any point not contamed in U‘_IB Let v’ € Ga,...z,- Then
v € fixp(B) and the weight of v(v') is less than that of , and so 4/ = 1.
Then P is k-closed by Lemma 2.21. ]

The following results follow directly from Lemma 3.3, Corollaries 1 and
2 of (8], and the results implicit in (9] and [2] regarding conjugates of regular
subgroups of groups that contain a full Sylow p-subgroup of Sp2. In order to
succinctly state these results, we will need some notation. Let 8 € Z; be of
order p — 1. Define B, 3 : Z% — Z2 by B(i, 5) = (Bi, ) and (i, 5) = ( B3j)-
For w € Z7; of order p -1, deﬁne W : Zpz = Zy2 by &(i) = wi.

Corollary 3.5 Let X and Y be Cayley k-ary relational structures of Zy:
k < p, such that a Sylow p-subgroup of Aut(X) has order pt!, for some
1<i<p. Theni=1,2,...,k—1, orp and

1 ifi=1,...,k~1, then X andY are isomorphic if and only if they are
isomorphic by o =&j'yf+1, forsomel<j<p—1and0<{<p-1,

2. ifi =p, then X and Y are both canonically Cayley k-ary relational
structures of Z;‘;, and are isomorphic if and only if they are isomorphic

by B3¢, for some1<j,6<p—1.

Corollary 3.6 Let X and Y be Cayley objects of 22 with I1) e Sylow p-
subgroup of Aut(X ) and Il a Sylow p-subgroup of Y Let ay € Aut(Zz)
such that eqllioy! = P! and a3 € Aut(Z2) such that aollro;! = P,
1<i<p. Theni=1,...,k—-1o0rpand

1L ifi=1,...,k—1, then X and Y are isomorphic if and only if they
are zsomorphzc by oy 'ﬁ’ﬂ"'y,_,,lal, 1<jk<p-1,0<€<p-1,

2. ifi =p, then X andY are isomorphic if and only if they are isomor-
phic by e group automorphism of Zy x Z,.

Lemma 3.7 Let G < Sp2 be transitive such that G admits a complete block
system B of p blocks of size p and a Sylow p-subgroup P of G has order at
least p*. Then fixge) (B) = 1s, 1 (fixge (B)|8).
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PROOF. As |P| > p%, it follows by Lemma 3.3 that P is isomorphic to Z,1Z,.
Let p € fixp(B) such that p is semiregular of order p. Then p|p € G(g
for every B € B. Let e = (z1,%2,23) € E(X), where X is a ternary
relational structure with G < Aut(X). We will show that if v € fixgw (B),
then (v|g)(e) € E(X). If there exists B’ € B such that z;,z2,23 € B’,
then clearly (v|s)(e) € E(X) for every v € fixgw (B) as (7|B)(e) = e or
(7|g)(e) = ~(e). If there exist distinct blocks Bj, Bz, B3 € B such that
z; € By, 7o € By, and z3 € Bs, then, as noted above, p|g, € G® for
1 < i < 3. Applying p|p, to e p — 1 times, we have that (z},x2,z3) €
E(X) for every =} € B,. Applying p|g, to each of the p edges (z}, 2, z3),
7} € By, p — 1 times gives that (z},z5,7z3) € E(X) for every z; € B,
and zj € B,. Finally, applying p|g, to each of the p? edges (z},z},z3),
7} € By, 5 € B, p— 1 times yields that (z},z5,23) € E(X) for every
=) € By, 4 € By, and z§ € Bs. Then v(e) € E(X) for every v € 15,15y
so clearly (v|g)(e) € E(X) for every B € B. If there exist distinct blocks
By, B, € B such that z,,z2 € By and z3 € By, then applying p|, to e
p — 1 times gives that (z1,22,23) € E(X) for every z3 € B;. Clearly if
B # By, By, then (v|B)(e) = e for every v € fixgw (B). If v € fixgw (B),
then y(e) = (v(z1),7(z2),7(z3)). Applying pls, to (v(z1),7(z2),7(z3))
p—1 times, we have that (y(z;), y(z2),25) € E(X) for every z3 € Ba. Then
(v(21),7(z2), 23) = (7|8, )(€) € E(X). Finally, (v8,)(e) = (z1,22,7(z3))-
As (z1,72,73) € E(X) for every z3 € Bz, (7|B,)(e) € E(X). Whence
7|8 € G® for every B € B and v|p € fixg (B) as required. O

Lemma 3.8 Let p > 5 and G < S,z be transitive such that G admits a
complete block system B of p blocks of size p and a Sylow p-subgroup P of G
has order at least p*. If fixg (B)|p = Ap or Sp, then GB® = (G/B)N S,

PROOF. As p > 5, fixgws (B)|s 2 Ap is a doubly transitive group with
nonabelian socle for every B € B. Let Kg be the normal closure of (p|g) in
fixgs) (B)| B, where p € fixg(B) is any semiregular element of order p. As
Kpdfixge (B)|s, Kp = A, or S, for every B € B. We conclude that G()
contains a transitive subgroup isomorphic to Z, ! A, by Lemma 3.7, and
hence by Lemma 2.20, we have that (Z,14,)®) = (Z,)®(4,)® < G®). As
Z, is regular, by Theorem 2.21 (Z,)® = Z,, and so (Z,)®) = (Z,)?®) =
Z, by [18, Theorem 5.10]. As 3 < p —~2 and A, is (p — 2)-transitive, we
have that A = S,. Thus Z,1S, < G® and fixge (B) = 1s,15,. By [15,
Theorem 2.6] we have that G® = (G /B)S,. Note that (G/B)S, < G®
s0 by Lemma 2.20, (G/B)®15, < G®. As G® /B < (G/B)®), the result
follows.

O
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We will now calculate the full automorphism groups of ternary rela-
tional structures of some prime-squared orders. Again, we begin with a
preliminary result. For p a prime, let M(p) = {z — az:a € Z}}.

Lemma 3.9 Let p be a prime such that the only doubly transitive non-
abelian simple group of degree p is Ap. Let G < Sp2 be transitive such that
G is imprimitive with Sylow p-subgroup of order at least p*. Then one of
the following is true for some A, B < AGL(1, p):

1. G® = 85,18,
2. G® = A1 S,
3. G® =5,14, or

4. GO = GB,2,,40,¢. Furthermore, there is some ¢ € M(p), and some
generator h of B/Z,, such that (c!Pl ¢l ... c*) € AP and we have
#(h%,2z) = (c®,c?,...,c%) fora €Z and z € Z,.

PROOF. As G is imprimitive, G(® admits a complete block system B of
p blocks of size p. Let P be a Sylow p-subgroup of G®). As |P| > p4, it
follows by Lemma 3.7 that fixge) (B) = 1s, ! (fixgwe (B)|5).

If fixge (B)|g is a doubly transitive group with nonabelian socle for
some B € B, then fixge) (B)|s = Ap or S, and by Lemma 3.8, G® =
(G/B)® 1 S,. If (G/B)® < AGL(L,p) then (2) follows. Otherwise, by
Theorem 2.1, (G/B)®) is a doubly-transitive group with nonabelian socle,
so that (G/B)®) = A, or S,. As S is solvable, p > 5, so that A, is
(p—2) > 3 transitive. Hence (G/B)® = S, and (1) follows. We henceforth
assume that fixg(s (B)|p is solvable, so that fixg (B)|s = A < AGL(1, p)
and ﬁxG(a) (B) = AP,

By Proposition 2.13, there exists

1. H and L transitive subgroups of Sp such that L is simple;

2. K/LP an H-invariant subgroup of the abelian group (Ns,(L)/L)?;
3. ¢: H — Ns,(L)?/K a crossed homomorphism; and

4. GyLk,¢ = {(h,v) € Hx Ns,(L)?: $(h) = vK } < Sp1.Sp,

such that G® = Gy 1 k4. As fixge (B) = AP, we have that L = Z, and
Ns,(L) = AGL(1,p). We now show that if G(® /B is a doubly-transitive
group with nonabelian socle, then G®)/B = 3,,.

If G® /B is doubly-transitive with nonabelian socle (and so p > 5 and
Ap is 3-transitive), then G®)/B = A, or Sp. In either case, there exists
H < G® such that H/B = A,. As ¢ is cohomologous to 0 (see Theorem
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2.15 and the remark following it), we have that G® contains a subgroup
isomorphic to Ap1Z, and so G®) contains a subgroup isomorphic to A, XZy.
B)(rs)Lemma 2.20, G® contains a subgroup isomorphic to S, x Zp. Hence
GO /B =285,

B/y Theorem 2.1, we then have that G® /B = S, or G®/B = B <
AGL(1,p). Thus H < AGL(1,p) or H = Sp. As ¢(1) = K = fixgw (B),
we have that K = AP for some A < AGL(1,p) as above. Note then that
Ns,(L)?/K = (Ns,(L)/Z,)?/(K/Zy) = CP, where C < M(p), and M(p)
is a cyclic group of order p — 1. By Theorem 2.15 and the remark following
it, either ¢ is cohomologous to 0 or (1) or (2) of Remark 2.16 hold. If ¢ is
cohomologous to 0, then clearly G® = S;1A or Bl A, where B < AGL(1,p)
and either (3) or (4) follow. Otherwise, (1) or (2) of Remark 2.16 holds.
Recall that if G®)/B = S, then S, x Z, < G®. This implies that if
G® /B = S,, then ¢ is cohomologous to 0. Hence (2) of Remark 2.16 holds
and so (4) follows. 0O

Theorem 3.10 Let G be a 3-closed subgroup of Sy2 that contains the left
regular representation of Zy:, and the only nonsolvable doubly transitive
groups of degree p are A, or Sp. Then one of the following is true:

1. G is doubly transitive and G = Spa, or PSL(n,k) < G < PI'L(n, k),
where (k" — 1)/(k — 1) = p?,

2. G is imprimitive and one of the following is true:

(a) G< NS,z ((Zp°)b):
(b) G < Ns,,(Py),

(c) G = G11Ga, where G1 and G2 are 3-closed groups of degree p,
or

(d) G = Gz, 45,4, where A,B < AGL(1,p). Furthermore there
is some ¢ € M(p), and some generator h of B/Z,, such that
(c™ e, .. ) € AP and we have ¢(h%,2) = (c%,c%,...,c?)
fora € Z and z € Zp.

PROOF. As Z,: is a Burnside group, if G < Sp2 such that (Z2), < G, then
G is doubly transitive or imprimitive [17, Theorem 25.3]. If G is doubly
transitive, then (1) follows from Theorem 2.10 and the Remark following
it. If G is imprimitive, by Lemma 3.3, we have that a Sylow p-subgroup P
of G has order p?, p?, or pP*1. If | P| = p?, then (2a) follows from Theorem
2.10, while if |P| = p?, (2b) follows from Theorem 2.10 as well. Finally, if
|P| = pP*?, then (2¢) or (2d) follows from Lemma 3.9. O
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Theorem 3.11 Let G be a 3-closed subgroup of Sp2 such that G contains
the left regular representation of Zf, and the only nonsolvable doubly tran-
sitive groups of degree p are Ap and Sp.

1. If G is doubly transitive, then G = Sp2, or (Zp)L < G < AGL(2,p).
2. If G is simply primitive and solvable, then G < AGL(2,p).

3. If G is simply primitive and nonsolvable, then G = S 1 S, in its
product action or G < AGL(2,p).

4. If G is imprimitive, solvable, and has elementary abelian Sylow p-
subgroup, then G < AGL(1,p) x AGL(1,p).

5. If G 1is imprimitive, nonsolvable, and has elementary abelian Sylow
p-subgroup, then either G = S, X S, or G = S, x A, where A <
AGL(1,p).

6. If G is imprimitive and has Sylow p-subgroup Pj of order p°, then
G < Ns,,(Py).

7. If G is imprimitive with Sylow p-subgroup of order at least p*, then

(a) G = G11Gs, where Gy and G are 3-closed groups of degree p,
or

(b) G=Gugz, a4, A H < AGL(1,p). Furthermore, there is some
¢ € Zn, n|(p — 1), and some generator h of H/Z,, such that
|kl(c,¢c,...,c) € K and have ¢(h®,z) = a(c,c,...,c), fora € Z
and z € Zy.

PRroor. (1) If G is doubly transitive, then by Theorem 2.10 and the remarks
following it G = A2, Sy, or (Z;‘;)L < G < AGL(2,p). If G = Ap2 and
p? # 4, then G is p?> -2 > 7 transitive. Whence Aga) = Sp2. If p? =4, then
Sy = AGL(2,2).

(4) and (5) By Theorem 2.10, G < S, x S,. If G is solvable, then
G < AGL(1,p) x AGL(1,p). If G is nonsolvable, then G < H x K, where
H,K < S,, and one of H and K are nonsolvable. Thus p > 5. By Theorem
2.1, if H or K is nonsolvable, then H or K is doubly transitive. As the
only nonsolvable doubly transitive groups of degree p are A, and S,, A,
or S, are both at least 3-transitive. It then follows by Theorem 2.20 that
G® = H® x KG®) = 8, x S, or S, x A, where A < AGL(1, p).

(2) and (3) By Theorem 2.10 either G < AGL(2, p) or G has a transitive,
imprimitive subgroup H < S, x S, of index 2. We thus assume that G has
an imprimitive subgroup H < Sy, x Sy, of index 2. If G is solvable, then H is
solvable so that H < AGL(1,p) x AGL(1,p). Whence H has a unique Sylow
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p-subgroup P & Z, x Z, which is characteristic in G. Thus G < AGL(2, p).
If G is nonsolvable, then H is nonsolvable. By (4) and (5), H® =S, x 4
or S, x Sp. As H<G, soc(G) is nontrivial. Furthermore, as H is nonsolvable
and H < S, x Sp, soc(G) % Z, x Z,. We conclude that the socle type of
G is Ap. By the O’Nan-Scott Theorem (7, Theorem 4.6A), soc(G) = A,
soc(G) = A3, and G is of diagonal type, or soc(G) = A2, and G is a
subgroup of Sz U in its product action, where U is & primitive nonregular
group. As G is primitive and soc(G)<G, if soc(G) = A,, then soc(G) is
not transitive and so the orbits of soc(G) form a nontrivial complete block
system of G. This contradicts the assumption that G is primitive. As
s0¢(G) < H, |soc(G)| < |Ap|? so that soc(G) % A3. Whence soc(G) = A2
and G is a subgroup of S 1 U in its product action, where U is a primitive
nonregular group. As soc(G) = A2, H® = S, x S, so that U = S, as
required.

(6) This follows directly from Theorem 2.10.

(7) This follows directly from Lemma 3.9. =)

We remark that neither of the two preceding results claim that all of the
groups given are 3-closed, just that all 3-closed groups of the appropriate
degree occur on the appropriate lists.

Finally, we would like to point out that the above results have impli-
cations for more general combinatorial structures. We define a relational
structure X to be an ordered pair (V(X), E(X)), where V(X) is a set and
E(X) is a subset of UL, (V (X)), for some k € Z*. If e € E(X), then
e = (z1,...,z¢) for some £ € Z*. We define the length of e to be £. We
remark that every hypergraph is a relational structure.

Proposition 3.12 Let X be a relational structure such that X has mazi-
mum edge length k. Then Aut(X) is k-closed.

PROOF. Let X be a relational structure. Let E;, 1 < ¢ < k be the set of all
edges of X of length i. Let o € Aut(X). Clearly a(E;) = E; for every 1 <
i < k. Define i-ary relational structures X;, 1 <1 < k, by V(X;) = V(X)
and E(X;) = E;. Clearly if a € Aut(X), then a € Aut(X;), 1 <i < k.
Conversely, if @ € Aut(X;), 1 <i <k, then a(E;) = E;forevery 1 <i< k
and so a(e) € E(X) for every e € E(X). Thus Aut(X) = Nk Aut(X;).
As each Xj; is an i-ary relational structure, Aut(X;) is ¢-closed for every
1 < i < k. It is straightforward to show that the intersection of k-closed
groups is k-closed, and by L18, Theorem 5.10], if £ < k, then for any group
G, G®O) = k) = Gf As Aut(X;) is i-closed, we then have that
Aut(X;) is k-closed, and as Aut(X) = N%_; Aut(X;), we have that Aut(X)
is k-closed. 0
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