ON THE NUMBER OF GENERALIZED DYCK PATHS
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ABSTRACT. It is known that the number of Dyck paths is given by a Catalan
number. Dyck paths are represented as plane lattice paths which start at the
origin O and end at the point P, = (n,n) repeating (1,0) or (0, 1) steps
without going above the diagonal line OP;,. Therefore, it is reasonable to ask
of any positive integers a and b what number of lattice paths start at O and end
at point A = (a, b) repeating the same steps without going above the diagonal
line OA. In this article, we show a formula to represent the number of such
generalized Dyck paths.

1. INTRODUCTION

For a positive integer n, a Dyck n—path is usually defined as a plane lattice
path which starts at the origin O = (0,0) and ends at (27, 0) repeating (1, 1) or
(1, —1) steps without ever going below the z—axis. It is a common result that the
number of the Dyck n—paths is equal to the Catalan number

1 2n
) Cﬂ-n—u(n)‘

An equivalent definition of a Dyck n—path is given as a plane lattice path which
starts at the origin O and ends at the point P, = (n,n) repeating (1,0) or (0,1)
steps without going above the diagonal line OP,,.

For any positive integers r and k, a plane lattice path which starts at O and
ends at the point P, ;. = (rk,r) by repeating (1,0) or (0, 1) steps without going
above the diagonal line OP,; of the (rk-X r) rectangle is called a k~Catalan
path, which has appeared in Goulden and Jackson [2] and been given noteworthy
interpretations by Pak [6], Mansour and Sun (5] and Heubach, Li and Mansour
[3). For any fixed integer 7 > 1, the total number C*¥+1 of the k—Catalan paths is
named as the (k + 1)-ary number in [3], and given as

Kbl 1 (k+1)r+1)
@ Cr _(k+1)r+1( r )
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Next, we consider a plane lattice path which starts at O and ends at a point
A = (a, b) repeating (1, 0) or (0, 1) steps without going above the diagonal line
OA for any positive integers a and b. In this article, we shall refer to such a lattice
path as a Dyck path of type (a,b), and analyze the number of such generalized
Dyck paths. Duchon [1] has called the Dyck paths of type (a, b) the rational slope
Dyck paths, and given good estimations of the number of them. He has studied
the rational slope Dyck paths as special cases of “generalized Dyck words”, and
his estimations of the number of them have been obtained applying 2 kinds of
“conjugations of words.” In the lower bound estimation, he has used one of the
conjugations of words, which corresponds to our action of a cyclic group on a
set of lattice paths to be introduced in the next section. We shall elaborate on the
effects of the actions to count relevant values, and give a formula representing the
number of Dyck paths of type (a,b) in Theorem 1.1 as seen below. Some more
generalized notions of Dyck paths have been studied by Labelle and Yen [4], but
our methods seem to be too specialized to apply to such further generalizations.

Now, we shall state our concrete results. For any positive integers a and b, we
set r = ged{a, b}, @ = rc and b = rd, and denote the number of all Dyck paths
of type (a, b) by d.(c,d). Thus, for any integer k > 1 and any coprime integers
i >1landj > 1, dx(%, ) denotes the number of all Dyck paths of type (ki, kj).

We set

1 ilc+

) sted) = g (i ?) e
for any integer ¢ > 1. We notice that s;(c, d) is not an integer in general but is a
rational number. So, our main result is stated as follows.

Theorem 1.1. For any integer r > 1 and any coprime integersc > 1andd > 1,
we have a formula
ted=y, ¥ @ uld st
k=livjybtinge=r U Ji:
where the second sum is taken over sequences (iy,- - - ,ix) € N* and (51, ,ji) €
N satisfying both iy < ip < ++- < iy andiyjy + -+ +ixje = 1.

As a special case, we have the following corollary, originally our cause for
using the values s;(c, d) in (3).

Corollary 1.2. For any coprime integersa > 1 and b > 1,
1 fa+b
di(a,b) = s1(a,b) = ( )

a+b\ a
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As aresult, we can give a basic proof of the formula for C¥+! = d,.(k,1) in (2)
as an application of Corollary 1.2, which we shall show at the end of this paper.

We can estimate the difference between the values of d,.(c,d) and s.(c,d)
using the terms for (k, %1, 1) = (1,7, 1) and (1, 1,7) on the right-hand side of the
equation in Theorem 1.1, as follows.

Corollary 1.3. For any integer v > 2 and any coprime integersc > 1 andd > 1,
8 kd
dr(c,d) — s(c,d) 2 _I'(CT"‘!')—‘
Let Cj. be the Catalan number as in (1). Then, since
2ks;(1,1) =.(k + 1)Cy = (k + 1)di(1, 1),

we have the following relation of the Catalan numbers as a special casec =d =1
in Theorem 1.1.

Corollary 1.4. For any positive integer r, we have
i1 . ) .
o=y oy GEG  GRc
" J! Ji!
k=1iyjy+--+icjesr

where the second sum is taken over sequences (i1, -+ i) € N¥ and (41, -+ ,jx) €
N satisfying both iy < iz < -+ < i andiyfy + -+ +irjr = 1.

)

From here, we organize this paper as follows. In the next section, we count
various necessary values and prove Theorem 2.6 as a goal; and, in the last section,
we complete the proof of Theorem 1.1 using Theorem 2.6.

The authors would like to express their thanks to the referee for the valuable
suggestions to organize the paper in an accurate form.

2. COUNTINGS

Let any coprime integers ¢ > 1 and d > 1 be given. Then, for a positive integer
T, we denote by E, the set of all plane lattice paths which start at the origin O
and end at the point P, = (rc,rd) repeating (1,0) or (0,1) steps. Thus, any
element of E, is a lattice path in the (rc¢ x rd) rectangle with vertices O, (rc, 0),
P, and (0,rd); and, E, has ("(*?)) elements. We denote the lattice points on the
diagonal OP, of the rectangle by P; = (ic,id) for0 < i < r, where O = B,.

As in the previous section, a Dyck path of type (r¢,rd) is an element of E,
which does not go above the diagonal OP,. That is, it is not ever higher than
OP.,. We set

(4  D.(i) = {l € E, | lis aDyck path of type (rc, rd) which passes P; }
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foreach ¢ with 1 < ¢ < r, and put
D, = D.(r).

Then, D, is the set of all Dyck paths of type (rc, rd), and our main result (Theo-
rem 1.1) will show a formula representing the number d,(c, d) = |D,|. Here, |S]|
denotes the number of elements of a finite set S.

Let Fy = Dy ~ U <i<r—1 Dr(%). Then, Fy is the set of Dyck paths of type
(re, vd) which do not passany P; for1 <i <r—1. Also, let Fy for1 < k < r—1
denote the set of Dyck paths of type (re, rd) each of which passes exactly k of
the lattice points among {P,,- - - , P,—1}. Then, D, is represented as the disjoint
union

(5) D, =FRUFRU---UF,_;.

Now, we shall introduce the notion of a peak. For any lattice point A in the
(rexrd) rectangle with the diagonal line OP,, where P, = (rc, rd), [(A) denotes
the (Euclidean) distance between A and OP, if A is in the region y > (d/c)z,
and (—1) times the distance between A and OF, if A isin the regiony < (d/c)z.
Then, forany ! € E,., we say that a lattice point Q on ! is a peak of | if Q # O and
Q is the lattice point which has the maximal distance to OP,. Thus, ifl € D,,
then the set of peaks of [ is a subset of {P,,-- , P }.

. .
? t

A Dyck path ! of type (9, 6) A peak @ of a lattice path I
Fig. 1. A Dyck path and a peak
LetGpm = {1,0,02%,--- ,d™ 1} be the cyclic group of order m with generator
o. Then, Gy(c+q) acts on E, in the following way. For any | € E,, if [ passes

the lattice points {A4; | 0 < ¢ < r(c + d)} in an ascending order of indices, we
denoteitby O = Ap =+ A; = -+ = Ar = - = Ay(cd) = Pr. Then, for
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0 < k < r(c+d) — 1, we define o*1 € E, as the lattice path which passes the
lattice points as

oFl: O = (App1 — Ar) o (Appa —Ap) = -+ = (Pr — Ag)
—)(P.-—Ak+A1)—)"‘—)(Pr-Ak"'Ak-l)")Pr-

That is, the lattice path o1 is obtained by cutting the path O — - -- — Py at Ay,
translating the second part of the path such that A, maps to the origin, and then
attaching the first part of the original path at the end of the translated part. Let
o(l) = {o'1 | 0 < i < r(c + d) — 1} be the orbit of | € E, under the action of
Gr(c+ay; and, let G, o = {0° € Gr(cta) | o'l =1} be the stabilizer to | € E,.
Then, the following lemma is clear from the definitions.

Lemma 2.1. (i) Ifo(l) = o(l'), then the number of peaks of | is equal to that of
v

(ii) Foranyl € E,, o(l) N D, # 0.

(iii) Foranyl € E,, |o(l)| = r(c+ d)/IGf.(c+d)|.

For0 < k < r — 1, let F. be the subset of D,. introduced above and satisfying
(5). Then, we set

(6) Jr ={l € E. | o(l) = o(l') for some I' € Fy}.

That is, Jj is the set of lattice paths in E,. each of which has exactly (k+ 1) peaks.
Then, by (5) and Lemma 2.1, the set E,. is represented as the disjoint union

@) E.=JoU/JhU---UJ._3.

Now, for 0 < k < r — 1, the cyclic group 5“.1 = {c¢| 0 < i < k} of order
(k + 1) acts on Fy in the following way. For any ! € Fy, if  passes the diagonal
lattice points O = Pj,, P;,,- -+, P, in an ascending order of indexes, then we
set ¢!l = g7l for 0 < i < k, where ¢ is the generator of the cyclic group Gr(c+a)
acting on E, as above. That is, the Dyck path c¢'l is obtained by translating a part
of LU (I + P,) by —P;,. We notice that the map h : Gry1 — G (c+q) defined by
h(c*) = g% is injective.

Let G, = {¢/ € Giy1 | /L = I} be the stabilizer to I € Fy. Then, we have
the following lemma.

Lemma 2.2. For anyl € Fy, we have |é’k+1| = IGf.(c +ayl and
k+1

lo(l) N Fy| =
IG (c-l--d)I
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Proof We fixany ! € Fi. Leth : C~¥k+1 = Gy(c+d) be the above injective
map sansfymg il = h(c')l. Thus, |G4 w1l £ IG,(C +a)| holds. But, if ol =1,
there exists ¢! € G k+1 Which satisfies h(c¢!) = o7. Thus, the first equation
|Gh1] = Gh(cyq)| holds. _

Since the restriction of the action of G+1 on o(l) N Fy is transitive, we have
lo()) N Fie| = Grall = 1Grnal/IGhyy| = (k + 1)/IGL 4 4| 8 required. D

Let J;. be the subset of E,. givenin (6) for0 < k <r—1landletc > 1and
d > 1 be given coprime integers. Then, we have the following proposition.

Proposition 2.3, For0 < k <r -1, we have
r(c+d)
E+1
Proof. For any l € F, we have |o(l)| = r(c + d)/ |G,(c +ay| by Lemma 2.1(iii),
and |o(l) N Fx| = (k + 1)/|G. (c+a)| by Lemma 2.2. Thus, we have |o(!)| =
(r(c + d)/(k + 1))|o(l) N Fy| for any | € F}. Since |Fi| = Y |o(l) N F| and
|Jkl = X |o(l)|, where both sums are taken over all o(l) with ! € F}, we conclude
that |Ji| = (r(c + d)/(k + 1))| Fi|. 0O

Let s;(c,d) = (1/(i(c + d))) ("("".td)) be the rational number in (3). Then, the
next proposition follows from Proposition 2.3.

|Jk| = ——==|Fl-

Proposition 2.4. For any integer r > 1, we have

srled) = 3 Tl

k=0

Proof. By (7) and Proposition 2.3, it follows
r—1 r—1
ric+
B =1 =Y et Dy,
k=0 k=0
Since |E,| = ("<+%), we have

1 (r(c+d) =
s'(c’d)—r(c+d)( re ) Zk+1'FkI

k=0
as required. ]

Let D,.(?) be the subset of D, in (4) foranyr > landanyiwithl1 <i < r.
Then, we set

(8) ar(ilyi%' v aik) = IDr(zl) n Dr(il + ":2) n-.-N Dr(il +-- 4 'lk)l
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for any integer k with 1 < k < r — 1 and any sequence (i;,--- ,ix) € N*
satisfying ¢; + -+ + 4 < r — 1. Then, applying Proposition 2.4, s.(c,d) is
represented by using |D,| and a, (43,2, -+ , %) as follows.

Proposition 2.5. For any integer r > 1, we have

r—1
1 ., ,
8r(C:d) = lDrI + Z(—l)km ) Z a,-(ll,Zz, tet ,Zk),
k=1 (1, yik)
where the latter sum is taken over all sequences (i1,--- %) € N* satisfying
i1+ o+ <r-1L

Proof. We denote the right-hand side of the equation of Proposition 2.5 by H,.,
and the right-hand side of the equation of Proposition 2.4 by K,.. Then, it is
sufficient to show the equation K, = H,.. However, we can write K, = 3 teD, O
and H, = 3, p b for some g; € Q and by € Q where a; and b; are the
contributions of / to K. and H, respectively, and thus it is sufficient to show that
a; = b foranyl € D,.

Recall that D, is the disjoint union of F, for0 < m < r — 1 as in (5). First,
we assume that | € Fp. Then, the contribution of / is 1 (to the count of |Fp|) in
K,, thus ¢; = 1. Such a path contributes only to the term |D,.| in H,, and the
contributionis b = 1 = a;. Ifl € F,, for1 < m < r — 1, then { contributes
1/(m + 1) to K, as it is counted once in |Fy,|, therefore a; = 1/(m + 1). On
the other hand, ! contributes to several terms in H,.. It is counted once in the term
| Dy|, and it is also counted in a,(41,%2, - ,%&) for 1 < k < m; each time, the
path is counted for any selection of the k points P; that [ passes. Thus the path is
counted (') times in a,(i1,42," - - ,ix). The overall contribution is

_ 1 (m 1 « m+1 1
= _n\k_ 1 -1 _1\k+1 =
b 1+§( 1) k+1(k) 1 m+1,§1( 1) (k+1) m+1
Thus, a; = b; holds in this case too, and we have completed the proof. O

Let d;(c, d) be the number of Dyck paths of type (ic, id) for any integer¢ > 1
and given coprime integers ¢ > 1 and d > 1. Then, using Proposition 2.5, we can
prove the next theorem from which our main theorem (Theorem 1.1) will follow.

Theorem 2.6. For any integerr > 1, we have

2o = (1 T du(6d)dmy (e, d),
h=1

(ma1,e- i)
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where the latter sum is taken over all sequences (my,--- ,my) € N* satisfying
my+--+mp =T

Proof. We notice that the partial sum limited to A = 1 on the right-hand side of
the required equation is equal to d,(c,d) = |D;|. Let a, (1,33, -- ,ix) be the
integersin (8) for1 < k < r —1and (i1, ,ix) € N*. Then, a,(iy, 42, - ,ix)
is the number of Dyck paths, each of which passes all the lattice points P; =
(ic,id) fori = iy,4; +d,--+ ,41 + - -+ + i;. Hence, we have

ar(in, iz, 0« i) = di, (e d)d;, (e,d)--- d;, (e, d)dr—(i1+~--+ik) (c,d).

Thus, by Proposition 2.5, we have the required representation of s.(c,d) using
the values of d;(c, d). O

3. PROOF OF MAIN RESULTS

In this section, we prove Theorem 1.1 by applying Theorem 2.6. Hereafter, we
abbreviate the notations d;(c, d) and s;(c, d) for any fixed coprime integers ¢ > 1
and d > 1 to d; and s, respectively. Then, we denote the generating functions of
the sequences {d;} and {s;} by

fa(@) =) diz* and g,(z) = ) _ si’,
i>1 i>1
respectively.

By Theorem 2.6, we have the equation

< a1l
©) sr=h2=:1(—1)" t2e(r,h),

where we set
e(rh)= Y. dm, e dm,.
(ml RITIK. 1Y )
Here, the sum in the expression for e(r, h) is taken over sequences (my, -+ - ,mp) €
N? satisfying m; + - - - + ma = r. Then, e(r, h) is equal to the coefficient of ="
in the power series f4(z)?, and thus using (9) we have

s = E( (-l)h'I%e(r,h)) .
r21 \h=1
= YD)
h>1
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By taking the differentials of both sides in this expression, we have

£i(@) Y (- fa(z)h?

h>1

filz)  _ p
1—_'%5(2:—) = (log(1 + fa(z)))".

Since f4(0) = g,(0) = 0, we have log(1 + fa(z)) = g,(z). Hence, we have
1+ fa(z) = exp(gs(z)) = ) k,ga(av)’c
E>0
By the polynomial expansion of the power series, it follows

gu(@)" =3, ( 2 AR kv’ﬁ 3'1:) z’,

r21 \diji+-+icie=r

9s(2)

where the second sum is taken over all sequences (i1, - - - ,ix) € N* and (jy, - - -

N* satisfying both 4 < -++ < 4 and 4351 + -+ + ixjx = r. Thus, we have

fae) = Y k,g,<m)*

k21

- 2x (5, dedetea)

k21 r21 \drji4-dirie=r

- sho sk .

)

r21 \k=li1j1+tigje=r
Hence, we obtain the required expression
r i1 Jh
wey ¥ e
=

k=1i1j1+ipjr=r
and we have completed the proof of Theorem 1.1.
Corollaries 1.2, 1.3 and 1.4 are clear from Theorem 1.1.
Lastly, as an application of Corollary 1.2, we shall prove the formula
1 (k+1r+1
k+1)r+1 ( r )’
as remarked in the first section.

Y

al g

(10) dr(k,1) =

7jk) €

Since the formula is true for » = 1, we assume that » > 2. We consider a
((rk + 1) x r) rectangle with vertices A = (—1,0), B = (rk,0), C = (rk,r)
and D = (—1,r); and, we consider the Dyck paths in this rectangle, that is, the
lattice paths starting at A = (—1,0) and ending at C' = (rk, r), repeating (1,0)

277



or (0, 1) steps, and not entering the regiony > (r/(rk +1))(z + 1). Temporarily,
we call such a Dyck path an e-path. Since (rk + 1) and r are coprime, the number
of e-paths is equal to d, (rk + 1,7) which is equal to the right-hand side of the
required equation in (10) by Corollary 1.2.

We now show that there are no lattice points in the interior of the triangle AGC
defined by min{(1/k)z,0} < y < (r/(rk +1))(z + 1) and -1 < z < rk using
Pick’s Theorem. Note that there are no lattice points in the interior of the segment
AC since (rk + 1) and r are coprime. On the segment OC, there are exactly
(r + 1) lattice points (ki, ¢) for 0 < 1 < r. Thus, the number b of the lattice points
on the boundary of the triangle AOC is equal to (r+2). The area S of the triangle
AOQC is obviously 7/2, and thus the number ¢ of the lattice points interior to the
triangle AOC is equal to O since we have S = i + b/2 — 1 by Pick’s Theorem [7].

Therefore, any e-path goes first from (—1,0) to O since » > 2, and then
continues on a Dyck path of type (rk,r) from O to C. Thus, the set of e-paths
is bijective to the set of Dyck paths of type (rk,r), and we have d.(k,1) =
dy (rk + 1,7). In this way we can prove (10) only using Corollary 1.2.
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