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Abstract A graph G is supereulerian if G has a spanning eulerian sub-
graph. We use SL to denote the families of supereulerian graphs. In 1995,
Zhi-Hong Chen and Hong-Jian Lai presented the following open problem
(2, problem 8.8 ] : Determine

minmaz |E(H)|
cesL- (K} E@
For a graph G, O(G) denotes the set of all odd-degree vertices of G.
Let G be a simple graph and |[O(G)| = 2k. In this note, we show that if
G e SL and k < 2, then L > 2/3.
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L= : H is a spanning eulerian subgraph of G}

We use [1] for terminology and notations not defined here, and consider
finite simple graphs only. For a graph G, let O(G) denote the set of all odd-
degree vertices of G. An eulerian graph G is a connected graph with O(G) =
0. A graph G is supereulerian if G has a spanning eulerian subgraph. We
use SL to denote the families of supereulerian graphs.
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In 1995, Zhi-Hong Chen and Hong-Jian Lai presented the following open
problem [2, problem 8.8 | :
Problem. Determine

minmaz (2H)]| |E(H)|
GeSL-{K}"|EG)
P. A. Catlin once thought that L could be 2/3. In (3], we presented
infinite families of graphs to show L should be less than 2/3.
In the present paper, we prove the following result.

L= : H is a spanning eulerian subgraph of G}

Theorem Let G be a simple graph with |O(G)| = 2k. If G € SL and
k <2, then L > 2/3.

Proof: Suppose that H is a spanning eulerian subgraph of G with maxi-
mum number of edges. Therefore, every nontrivial connected component of
the graph G — E(H) is a tree. According to k =1, and k = 2, respectively,
we distinguish two cases to complete the proof of the theorem. Suppose
that u and v are the vertices of G, we use P(u — v) to denote the path from

u tovin G.

The case of k = 1:

We assume that the vertices u and v are the vertices of odd-degree
in G. Since H is a spanning eulerian subgraph of G, we have O(G) =
‘O(G — E(H)). Hence, O(G — E(H)) has two vertices of odd-degree only.
It follows that O(G — E(H)) has a nontrivial connected component P only,
where P is a path from u to v.

Suppose that |V(P)| = n. Since H is a spanning eulerian subgraph of
G, for each vertex w in V(P), there exist at least two edges wv',wv” in
E(H)(See Fig. 1). Note that G is a simple graph. If v'(or v" ) € V(P),
then the length of the path Py(w — v') (or Py(w — v"))C P greater than
1. Thus, the graph Hy = H — wv' + Py(w — 'v') is also a spanning eulerian
subgraph of G, and |E(H;)| > |E(H)|, contrary to the assumption of H.
Therefore, |E(H)| > 2n.

Let B = {wv',wv"|w € V(P),wv,wv" € E(H)} and E' = E(G) -
(E" UE(P))
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Thus, we have that

|E(H)| =2n+|E'|,|E(G)| =2n+|E | +n -1,
|E(H) _ 2n+|E n

>2
3

[E(G)] 2n+n-1+|E|“3n-1

Figure 1, The path P(u — v), and the heavy edges belong to E(H).

The case of k = 2:

Suppose that the u;,v1, ug, vo are the vertices of odd-degree of G. With-
out loss of generality, we may assume that nontrivial components of the
graph G — E(H) are two paths or two paths with a vertex in common.
Case 2.1. Suppose that G — E(H) has a nontrivial connected component
T only. ‘

Since T is a tree and O(T') = {s1,t1,82,t2},T = PLUP, , P; is a path
from s; to t;,i = 1,2, and the paths P,, P, have one vertex in common only.
(Figure 2,(a))

Define E” = {wv',wv” |w € V(T),wv’,wv” € E(H)}.

Let E' = E(G) — (E" U E(T)).

Analogously, for each vertex in V(P), there exist at least two edges
wv',wv" € E(H). Since G is simple, if there exist distinct w,,w; € V(T)
and wyws is an edge in E(H) , it cannot be an edge in T". Therefore, the
distance of w; and ws in T is at least 2. Let P3 denote the only path in
T connecting w; and we. Then H — wyws + E(Ps) is a spanning eulerian
subgraph of G with more edge than H, contrary to the choice of H. Thus
for any distinct w1, we € V(T), {w1vy, w19, } N {wavg, wovg } = 0.
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Figure 2. the heavy edges belong to E(H).

Suppose that |V(P1)| = n1, |V(P,)| = n2. By a similar argument to the
case k = 1, we have the following:

|E(H)| _ 2(n1 +ng — 1) + |E'| > 2(n1 + nz) -2

2
BQ)| ~ Zmtrma—+m—l+n—1+1E] > 3(ni+mz) -4 3

Case 2.2. Suppose that G — E(H) has two nontrivial connected compo-
nents P;, P,, where P; is a path from s; to ¢;, i = 1,2.(See Fig. 2,(b))

Set E; = {wv|uv € E(H),u € V(P,),v € V(P2)} and |E;| = y. Since
H is a spanning eulerian subgraph of G, for each vertex w € V(P) U
V(P2), there exist at least two edges wv ,wv” € E(H). But each edge
e € E) counts twice, therefore |E(H)| > 2(n; + n2) — ¥, using an analogous
argument in the case k = 1, we obtain

|E(H)| 2(n1 +n2) —y > _2m+na) -y
IE(G)] ~ 2(ni+nz)—y+m —1+nz—1- 3(n;+ng) —y—2

If y < 4,then

2(n1 +n2)-y > 2

3(ni+ng)—y—2°-3

In the following, we assume that |E;| =y = 5.

The subgraph of G induced by E; is denoted by G[E;] and G[E,] is
a bipartite graph with bipartition (X,Y). Let K = G[E,] = (X,Y; E4),
where X C V(P,),Y Cc V(P).

If | X| £ 2 and |Y] £ 2, then |Ey| < |E(K22)| = 4, contrary to the
assumption that |Ey| =y > 5. Therefore, |X| + |Y] > 5.
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Case 2.2.1. If y = 5 and |X|+ |Y| = 5,then |X| =2 and |Y| = 3 (or
|X| =3 and |Y| = 2). Suppose v;,v3 € V(P,), and v, vy, vs € V(P,), then
there are two cases only:

(1) v is incident with two edges in E; and v3 is incident with three
edges in E;(See Fig. 3(a)).

(2) vs is incident with two edges in E; and v, is incident with three
edges in E;(See Fig.3(b)).

Without loss of generality, we may assume that v,v3 € E(P,) , vov4, v4vs €
E(P,) in Figure3(a),(b). In Figure3(a), the edge set {v; v, v1v4, vovs, v3v4, vaus} C
E(H) and the edge set {v1vs,v2v4,v4vs} is not in E(H).

Define Hy = H — {vyv2,v3vs} + {v1v3, voug, vqus}.

Since the cycles (vyvov3v:) and (vsvavsvs) C HU Hy, it follows that H,
is a connected graph. Since the edge set {v,vs, vovs,v4vs} is not in E(H)
and the edge set {vyvq,v3v5} C E(H), it follows that H; is also a spanning
eulerian subgraph of G. But |[E(H;)| > |E(H)|, a contradiction.

In Figure 3(b), define H, = H — {v1vs, vovs} + {v1v3, vova, v4vs}.

By the same reason, H; is also a spanning eulerian subgraph of G, but
|E(H1)| > |E(H)|.

M v3 v v3

Vg V4 Vs Vg vy Us

(a) (%)
Figure 3, the heavy edges belong to E(H).

Case 2.2.2. Let y =5, and |X| > 4 (or|Y| > 4 )(See Fig. 4(a))

Let P;[v;,v;] (respectively, Psfu;,u;] ) denote the only (v;,v;)-path in
Py (respectively, the only (u;,u;)-path in P). Since |X| > 4, the length of
the path Py [v;,v;] > 3. Hence in Figure 4(a), H — {v;ur, vjus} + Py [vs, 5]+
Pu,, u,) is a spanning eulerian subgraph with more edges than H, contrary
to the choice of H(See Fig. 4(a)).
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v Figure 4, the heavy edges belong to E(H).

Case 2.2.3. Let y > 5, and |X| = |Y| = 3.Note that K = G[E,] =
(X,Y; E)), where X CV(P),Y CV(R).

If |O(K)| 2 4, we assume that vy, vy, vs,v4 € O(K). Since H is a span-
ning eulerin subgraph, there exist at least four edges vyu, vous, vaus, vauy
are in E(H) — E(K), where u; is not in V(P, UV (P,).(See Fig. 4(b))

Let E” = {wv',wv"|w € (V(P) - X)U(V(B)-Y),wv ,wv” € E(H)}
and let E' = E(G) - E” - E(Pl) - E(Pz) -FE, - {01U1,1)2u2,'03U3,v4u4}.
Thus,

|EH)| _ 2n1+ny—6) +y+4+|E|
|[E(G)|  2(n1+ne—=6)+y+4+n—1+ny—1+|E|
2(n; +ng)+y—8
~ 3(m +n2)+y—10

When y > 4,
2(ny+ng)+y—8 > g
3(n1+n2)+y—-10 = 3
Hence,
|E(H)| | 2
[E(G)| ~ 3

If |O(K)| < 2, we would obtain a new spanning eulerian subgraph H;
with |E(Hy)| > |E(H)|, contrary to the assumption of H. We distinguish
two cases to show the claim. We may assume that v;,v;,vx are in X and
Ur,Ug,Ug aTE N Y .

(i) |[O(K)| = 0. Note that dg(v) < 3 and y > 5, we have for any
v € V(K),dg(v) = 2.Therefore, K = Cs.(See Fig.5(a))

(ii) |O(K)| = 2. Note again that dg(v) <3 and |X| =|Y| = 3. There-
fore, there are two even-degree vertices in X, and there are two even-degree
vertices in Y. Hence the subgraph K is one of two graphs in Fig.5(b),(c).
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(a) (®) (e)
Figure 5, the heavy edges belong to E(H).

In every case, H — {vur,vkus} + Pyi[vi,vk] + Polur,us] is a spanning
eulerian subgraph with more edges than H, contrary to the choice of H.
This complete the proof of the theorem.

Remark The bound L > % in theorem is best possible. Suppose that H is
a spanning eulerian subgraph of G with maximum number of edges.
For the case of k = 2, Let G = K ,then

EGH)| _ 2
E@G)| 3
For the case of k = 1, Let G be the graph in Fig.6, then
|EH)| _ 2n lim 2n 2
3

E©Q)] ~3mn-1"" nooodno1

Figure 6, The path P(v; — v,), and the heavy edges belong to E(H).

Therefore, the results in Theorem cannot be improved.
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