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Abstract A vertex cut that separates the connected graph into compo-
nents such that every vertex in these components has at least g neighbors
is an R9-vertex-cut. R9-vertex-connectivity, denote by x9(G), is the cardi-
nality of a minimum R9-vertex-cut of G. In this paper, we will determine
k9 and characterize the R9-vertex-atom-part for the first and second type

Harary graphs.
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1 Introduction

A network can be modelled as a graph G =(V,E). A classic mea-
sure of network reliability is the vertex connectivity x(G). In general, the
larger %(G) is, the more reliable the network is. It is well known that
£(G) £ MG) £ 4(G), where A(G) is the edge connectivity, and §(G) is
the minimum degree of G. Hence a graph G is called marimally edge
connected or A-optimal if \(G) = 4(G) and mazimally vertex connected
if K(G) = 6(G). However, x(G) is a worst case measure and thus un-
derestimates the resilience of the network [11). To overcome such short-
coming, Harary [6] introduced the concept of conditional connectivity by
putting some requirements on the connected components. The R?-vertez-
connectivity and g-ertraconnectivity are in this trend.

A subset F C V(G) is called an R9-vertez-set of G if each vertex v €
V(G) — F has at least g neighbors in G — F. An R9-vertez-cut of a con-
nected graph G is an RY9-vertez-set F such that G — F is disconnected.
The RS-vertez-connectivity of G, denoted by x9(G), is the cardinality of
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a minimum R9-vertez-cut of G. The idea behind this concept is that the
probability that the failures concentrate around a vertex is small. For ex-
ample, suppose G is a graph of order n which has t vertices of minimum
degree g . If there are g faulty vertices in G, then the probability that
these g vertices are exactly the neighbor set of some vertex is ¢/ ('g') , which
is very small when n is large. While in the definition of R9-vertez-set, the
requirement that there are at least g good neighbors around each vertex
takes such resilience into account.

The set of vertices adjacent to a vertex v is called the neighborhood of
v and denoted by N(v). A vertex in the neighborhood of v is a neighbor
of v. For a subset S C V(G), N(S) denotes the vertex set in which every
vertex has at least one neighbor in S. The degree of a vertex v is d(v) =
|N(v)| and the minimum degree § = 6(G) (respectively, mazimum degree &
= A(G)) of G is the minimum degree (respectively, maximum degree) over
all vertices of G. If S C V(G), then G[S] stands for the subgraph induced
by S.

Let S(G) = {T: |T| = s%(G), T'is an RY-vertez-cut of G, k9(G) is RI-
vertex connectivity of G}. For some C € S(G), if P is one of the components
of G[V(G) — C], then P is called an R9-vertez-part related with C. If an
R9-vertez-part P has the property |V (P)| = min{min{|V(H)|: His an R9-
vertez-part relative with C }; C € S(G)}, then the R9-vertez-part P is
called an R9-vertez-atom-part.

Harary graphs play an important role in optimal designing of networks
since they are most reliable in some sense (3, 4, 12]. A Harary graph H, 4
has vertex set {0,1,...,n — 1}. According to the parities of n and d, there
are three types of Harary graphs. In the following, additions are all taken
module n.

Type 1. When d is even, suppose d = 2k. Two vertices ¢ and j of Hp ok
are adjacent if and only if |i — j| < k.

Type 2. When d is odd and n is even, suppose d = 2k 4+ 1. Then Hp 4
of the second type is obtained from Hy ok by adding edges {(i,i+ 3):i=
0,1,...,2 —1}.

Type ?9 When d and n are both odd, suppose d = 2k+1. Then H, 4 of
the third type is obtained from H,, 2x by adding edges {(i,i + (n +1)/2) :
i=0,1,...,(n—3)/2} U {(0,(n — 1)/2)}.
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2 RI-vertex Connectivity of the First Type
Harary Graphs

It is well known that the Typel Harary graph has both vertex and edge
connectivity § = 2k [9].

Lemma 2.1. Let G = H,, ok be a Harary graph of the first type. Then for
any nonnegative integer g, G has an RI-vertez-cut if and only if g < k and
n2>2k+2(g+1).

Proof. Let P = G[{i,i + 1,--- ,i + g}] for some i € {0,1,2,--- ,n — 1}.
Since g < k, we see that every vertex in P has at least g neighbors. As
N(P) = {2— 1’7:—2s'” :i_kt(i+g)+ 1!(i+g)+2:"’ ,(i+g)+k},
G|V (G) — N(P)) is disconnected. Since n > 2k +2(g+1), we have |V(G) —
N(P)-V(P)|=n—2k—(g+1)>2k+2(g+1) -2k~ (g+1)>g+1.
This implies that G[V(G) — V(P) — N(P)] has at least g+1 vertices and
every vertex in it has at least g neighbors. Thus N(P) is an R9-vertex-cut.

We prove the converse by way of contradiction.
Case 1. If g > k, then G dose not contain any R9-vertex-cut. Otherwise,
assume C'is an R9-vertex-cut of G and H is an R9-vertex-part related with
C. Suppose H = G[{ny,ng,*+ ,m}], ni = ni_y + s (mod |V(G)|) for some
i € {2,---,l} and s € {1,2,--- ,k}. It is easy to see that the vertices n;
and n; have at most & neighbors in H, a contradiction.

Case 2. n < 2k+2(g + 1). Assume Cis an R9-vertex-cut of G. Since
k(G) = 2k, we have |C| > &(G) =2k and |V(G)-C| < 2k+2(g+1) -2k =
2(g+1). As G—C has at least two components, this implies that there is a
component of G — C which has at most g vertices. This is impossible. O

Lemma 2.2. Let G = Hy, o be a Harary graph of the first type. Let g be a
nonnegative integer with g < k andn 2 2k+2(g+1), and let S C V(G) be
a minimum RY-vertez-cut. Then every component of G — S is the subgraph
induced by some consecutive vertices.

Proof. By contradiction. Assume there is a component P of G — S such
that its vertex order is not contiguous. Decompose P into ¢ maximal con-
tiguous parts, say Py, P,,- -, P, such that G[P; U P,y,) is connected and
the gaps between P; and P, are denoted by g; forall 1 <i <t —1. Let
P'=V(P)U{g1, - ,9:}. Then |[N(P)| > |N(P')| and V(G)~P'—~N(P') =
V(G) — P — N(P). This means that N(P’) is a smaller R9-vertex-cut, a
contradiction. (]
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Lemma 2.3. Let G = Hy, 2, be a Harary graph of the first type. Let g be
a nonnegative integer with g < k andn > 2k+2(g+1), and let S C V(G)
be a minimal R9-vertez-cut of G. Then G — S has ezactly two components.

Proof. Let Py, Py, ---,P;, t > 3 be the components of G — § such that
[V(P)| 2 g+ 1 and every vertex in them has at least g neighbors. By
Lemma 2.2, P; has contiguous vertex order for all 1 < ¢ < t. Since
0(G[Py]) 2 g and 6(G[V(G) - P, — N(P1)]) > g, N(P,) is an R9-vertex-cut
of G. Then |N(P,)| < S, a contradiction. O

Theorem 2.4. Let G = Hy o be a Harary graph of the first type. Then,
for any nonnegative integer g with g < k and n 2 2k +2(g + 1), k9 = 2k
and each RI-vertez-atom-part is isomorphic to the clique induced by the
vertex set {i,i+1,.--,i+ g} for someie€ {0,1,2,--- ,n—1}.

Proof. By Lemma 2.1, if g < k and n > 2k + 2(g + 1), then G has an R9-
vertex-cut. Let P = G[{i,i+1,--- ,(i+g)}] forsome € {0,1,2,-.- ,n—1}.
By a similar argument as the proof of Lemma 2.1, we have that N(P) is
an R9-vertex-cut of G with |N(P)| = 2k, which implies that x9(G) < 2k.
Since k9(G) > &(G) = 2k, it follows that x9(G) = 2k.

Obviously, an RY9-vertex-atom-part has at least g + 1 vertices and con-
tiguous vertex order by Lemma 2.2. As P is an R9-vertex-part related
with N(P) with |V(P)| = g + 1, thus every R9-vertex-atom-part has ex-
actly g + 1 vertices and is isomorphic to G[{%,% + 1,--- ,i + g}] for some
i€{0,1,2,--- ,n—1}. O

3 RI(G)-vertex-cut of Harary Graph of the
Second Type
3.1 k%(G) of Harary Graph of the Second Type

The following theorem can be found in Harary (7).

Theorem 3.1. x(H,a) = d, and hence the minimum number of edges in
a k-connected graph on n vertices is [521'-] '

From the Theorem 3.1, it is easy to see when g = 0, the second type
Harary graphs have k?(G) = d.
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3.2 «!(G) of Harary Graph of the Second Type

It is easy to see that x!(Hg3) = 4 and Hyg s has no R!-vertex-cut. So
in the following, we assume that all the second type Harary graphs are not
isomorphic to Hg 3 and Hjg,s.

Lemma 3.2. Let G = H, 4 be a Harary graph of the second type and
G % Hyp,5, Hs,3. Then there is an R'-vertez-cut of G if and only if
n—-d>35.

Proof. Let e = {i,i + 1} for some ¢ € {0,1,2,--- ,n — 1}. As N(e) =
{i-1,i-2,-+ i- S0 {E+1)+1,(6+1)+2,--- , i+ 1)+ FL U {i +
2,(i+1)+3%}, and [N(e)| = 452 + 452 +2 = d+1, G- N{(e) is disconnected.
Since n — d > 5, then |V(G—-N(e)-V(e))| =n—(d+1)-2=n-d-3 > 2.

Case 1. n—d > 5. From above, we have |V(G — N(e) — V(e))| = n —
(d+1)—2=n—-d—-3> 2. Since n is even, dis odd, d + I is even, then
n— (d+ 1) — 2iseven, thus |[V(G—N(e)-V(e))| = 4. By the construction
of the second type Harary graphs, there must be V(G-N i =V vertices
between (i+ 1)+ % and ¢, and Mfﬂ(fm vertices between ¢ 4 I and

i+ . Clearly, all MG—"—"%)ﬂfm vertices are connected.

Case 2. n—d = 5. Since G 2 Hyo,5, Hg,3, we have d > 7 n > 12, and
V(G- N(e)-V(e))]=n—(d+1) -2 =n—d -3 = 2. There must be
one vertex labeled larger than i 4+ % and one vertex smaller than ¢ + % — 1
(since d > 7). It follows that there is one edge between the two vertices,
this implies that G — N(e) — V'(e) is a connected component.

We prove the converse by way of contradiction. As n is even, d is odd.
Ifn—-d<5,thenn-d=3o0orn-d=1.

Case 1. n —d = 1. Then G = H, 4 is a complete graph, it follows that G
has no R!-vertex-cut, which is a contradiction.

Case 2. n —d = 3. From the condition of the Lemma we know that G
has an R!-vertex-cut. Assume S is an R!-vertex-cut of G, then G — S has
at least two components. Because every vertex in each component has at
least one neighbor, each component has at least two vertices. By Lemma
3.1, we have |S| > d. Wethushaven ~d > n—|S| >2(g+1) >4, a
contradiction. O
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Theorem 3.3. Let G = H, 4 be a Harary graph of the second type and
G2 Hyps, Hgs. If n—d > 5, then k}(G) = d + 1 and each R!-vertez-
atom-part of G is isomorphic to a Ky induced by the vertez set {i,i + 1}
or {i,i+ 3} for somei€ {0,1,2,-.. ,n—1}.

Proof. By Lemma 3.2, if n — d > 5, then G has an R!-vertex-cut, and
by the proof of Lemma 3.2, we know that N(e;) is an Rl-vertex-cut and
[N(e1)] = d+1, where e; = (i,i+ 1). Let S be an R!-vertex-cut of G with
S is minimal, and let P be the smallest component of G — S. Then we will
prove [N(P)| 2 |N(e1)), so that k1(G) = |[N(e1)| =d + 1.

Casel. Pej e;=(i,7),2<j< 3. AsS=N(ej) = {i-—l,i-2,--- yi—
S U{i+i+1,i+5+2, - i+ + S Ui+1,i42, - i+ - 1}U{i+
2,i+j+3}, wehave |S| = |[N(e;)| = d‘1+d‘1+1 14242 =d+j > d+2.
It implies that |[N(e;)| > |N(e1)|, a contradlctlon

Case2. Peg,e3 =(i,3). AsS=N(eg )—{z—l i-2,---,i-%1u
ﬁ+ld+z-~,v+**}u{@+") -1, (i+3)-2, ,o+")—**}u{u+"»+

1, (i+32)+2, ,(z+")+d“}, we have || = |N(e )| = 4x 4zt = 2(d-1).
Smce |N(e1)| =d+1, then |N(e§)|-—|N(e1)| = 2(d 1)- (d+1) =d-3>0
and with equality holds when d = 3. For any d > 5, |[N(eg)| — |[N(e1)| 2
2 > 0, contradicting the fact that S is minimal.

Case 3. P = G[{n1,n2, -+ ,m} U {mi,mq,--- ,m;}], [V(P)| = 3, where
l22) 1< -SSI, Ng — Ng—1 S g-'g-'l', {mlamZa”' 1m_7} g {n1+%,n1+l+
B p+24 8o ,m+2},0<5<L.

Subcase 1. j > 0. AsS NP) 2 {n1—-1,n -2, -,nl——}u
{nl+1,nl+2, ’nl+ }U{(ml—lml 2)"',m1——}u{mj
1,mj+2,-- ,m; +“;1}, we have |S| = |N(P)| > 4x 451 =2(d—1). Then
IN(P)| - |N(e1)] =2(d — 1) — (d + 1) = d — 3 > 0 and with equality holds
when d = 3. For any d > 5, |[N(P)| — |[N(e1)| = 2 > 0, a contradiction.

Subcase 2. j=0,then!>3. AsS=NP)={m -1,n1 —2,-+- ,ny —
L u{m+1lm+2,- m+Su{n + Fne+ 3, ,m+ 3}U
{{n1,71 + 1,m +2,--- ,m} = {n1,n2,--- ,m}}, we have |S| = |[N(P)| =
g1y d-l i) = d—1+1 > d+1. Then [N(P)|—|N(e1)| > (d+1)—(d+1) =0,
a contradiction.

From above, we know that N(e;) is an R!-vertex-cut and for any small-
est component P, |N(P)| > |N(e;)}, and only when d = 3, we have
IN(eg)| = |N(e1)l, that is to say when d > 3, the R'-vertex-atom-part
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of Gis isomorphic to a K, induced by the vertex set {i,i + 1} for some
i€{0,1,2,--. ,n—1}, and when d = 3, the R!-vertex-atom-part of G is
isomorphic to a K2 induced by the vertex set {i,i+ 3} or {i,i + 1} for
some i € {0,1,2,--- ,n - 1}.

a

3.3 «* (G) of Harary Graph of the Second Type for 2 <
g=<

Lemma 3.4. Let G = H, 4 be a Harary graph of the second type. For any
integer g with 2 < g < 451, andn > 3d + 1, G has an R9-vertez-cut.

Proof. Let P, = G[i,i + 1,---,i + g] for some i € {0,1,2,--- ,n —1}.
Then |V(P,)| = g+ 1. Clearly P, is connected and every vertex in P;
has g neighbors in P,. As N(P)) ={i-1,i-2,-- i-d—‘—l}u{(z+g)+
Li+g)+2,(i+9)+ 51U {i+ 2,(z+1)+ i+ 9)+3h
we have |[N(Py)| = 451 + ";‘ +(g+1) =d+g. Smce n > 3d + 1, then
[V(G)-N(P)-V(P)|=n—(g+1)—(d+g) =n—g-1-d-g=n—d-
29—-12>3d+1-d—2g—-1=2d-2g > 2(29+1)—2g = 49+2—29 = 2g+2 =
2(g+1), by the construction of the second type of Harary graphs, there must
be (G 'V(f')—N Pl vertices labeled consecutively between (i + g) + —‘i;—l
and ¢ + %, and another 'V(G)'V(P =N yertices labeled consecutively
between (i +g)+ 5 and i — a1 Smce [V(G)-N(R)-V(P)| 2 2(g+1),
then (G- V(P 1)- N Pl > ¢4 + 1. Let P, be the induced subgraph by the
vertices set which are labeled consecutively between (i +g)+ % and i+ %,
and let P; be the induced subgraph by the vertlces set which are labeled

consecutively between (i + g) + % and ¢ — 451, Clearly |V(P)| > g + 1,
every vertex in P; has g neighbors in P; (z = 2,3). Then N(P,) is an
R9-vertex-cut of G. O

Lemma 3.5. Let G = H, 4 be a Harary graph of the second type. Let g be
an integer with2 < g < d; Ifn > 3d+1, and S be a minirmal R9-vertez-
cut of G — S, then the smallest component of G — S must be the subgraph
induced by the vertez set {i,i+1,-+ ,i+g} for somei€ {0,1,2,--- ,n—1}.

Proof. Let P be the smallest component of G — §. If P does not have
consecutive vertex order {¢,i+1,-- ,i+g}, then P must have the following
cases, in each case we will have a contradiction.

P = G[{ny,ns, -+ ,m} U {my,ma, -+ ,m;}], wherel > g,1 < s <1,
Ng—MNz—1 < d_;l_, {ml)m27"' )mj} - {nl+§7nl+l+%,nl+2+% AL o
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ghi=0org<j<m-m+1

Case 1. j >0. AsS=NP)2{nm1-1,n1 —2,--- ,ny — ——}U{m+
L,y +2,- n¢+d'1}U{m1—1 my — 2---,m1-—}U{m,+1 m;+
2,--~,m_.,+—} we have |S| = [N(P)| >4 x %t =2(d-1)>d+g,a
contradiction.

Case 2. j=0.

Subcase 1. If thereexits s € Z;,1 < s < l,suchthat 2 < ny—n,; < 5—;—1-
then [ > g+ 1. Clearly we have N(P) 2 {ny —1,my —2,-+- ,ny — 51} U
{nl+1,nl+2,' S+ u{n +3na+ 3+ YU {{n,n +
]-"n'l""2 ,Tl[} {nlvnﬁs ¢ snl}}u{na-—l"'l n3—1+2 °,n3—1}
LetP' = G[V(P) u {n,_l +1,n5_1 +2,--+ ,n; — 1}], then N(P') 2 {n; -
1,n; -2, nl——}U{n1+1n¢+2 ',nz+d1}U{n1+ 2 ng +
g‘"";nl'l' Q}U{{nlanl+1 n+2,--- 7nl} {17.1,17.2, e ’nl} {na—1+
1,n51 +21"‘ y g — 1}};

Thus we have |[N(p)| = |N(P')| + 1, and N(P’) is an R9-vertex-cut, a
contradiction.

Subcase 2. If there does not exist s € Z4., 1 < 8 < I, such that 2 <
ns—n3_1< thenl>g+2 AsS=N(P)= {nl—l,n1—2,-~,n1—
d;l}u{nl'l"l nl+2 : :nl+d I}U{nl+21n2+2, * nl+ }U{{nl,nl""
1,m+2, - ,nl}—{nl,ng, .- ,m}}, then |S| = |[N(P)| = d‘l L d‘l +1l=
d—1+l=d—1+(g+2)>d+g,acontradictlon 0

Theorem 3.8. Let G = Hy 4 be a Harary graph of the second type. Let g
be an integer with 2 < g < d‘ . Ifn>3d+1, then k9(G) =d+g and
each R9-vertez-atom-part is zsomorphic to a (g + 1)-clique induced by the
vertez set {i,i+1,--- ,i+ g} for someic€ {0,1,2,--- ,n—-1}.

Proof. By Lemma 3.4, if n > 3d + 1, then G has an R9-vertex-cut. Let S
be a minimal R9-vertex-cut of G, and let P be the smallest component of
G - S. By Lemma 3.5, P = G[i,i+1,i+2,--- ,i+g]. Since S = N(P), we
have |S| = |[N(P)| =3g+2k+1=2g9+2k+1+g=2(g+k)+1+g=d+g.
Obviously, an R9-vertex-atom-part has at least g+1 vertices and contiguous
vertex order by Lemma 3.5. Since P is an R9-vertex part relative with
N(P) with |N(P)| = g + 1, thus every R9-vertex-atom-part has exactly
g + 1 vertices and is isomorphic to G[i,i + 1,i +2,--+ ,i + g] for some i €
{0,1,2,--- ,n—1}.

O
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3.4 £9(G) of Harary Graph of the Second Type for g =
g+l
2

Lemma 3.7. Let G = H, 4 be a Harary graph of the second type. Let g be
an integer with g = 451 > 2. Then G has an R9-vertez-cut if n > 8g — 4.

Proof. Let P = G[{i,i+1,: .- ,i+g—1}U{i+ %, (i+1)+3, -+ ,i+g—1+3}].
AsNP)={i-1,i—2,--+ ,i—(g-1)}U{GE+g-1)+1,(i+g-1)+
2, (i+20g - D} U{(i+2) - LG+2) -2 ,G+3) - (9-1}U
{G+9-1+3)+1(i+g—-1+58)+2,---,(i+g-1+3)+ (gD},
we have [N(P)| = (g—1)+(9-1)+(g—-1)+(9-1) =4(g—1). Itis
easy to see that every vertex in P has g neighbors. Since n > 8g — 4, then
[V(G) - N(P)-V(P)|=n—-29—4g—-1)=n—-6g+4 >85—4-
6g + 4 = 2g. By the construction of the second type Harary graphs and
d = 2g — 1, there must be 'V(G)"V(zp)_N(P A vertices labeled consecutively

between ¢ + 2(g — 1) and (¢ + §) — (¢ — 1), and another 'V(G)_V(f)"N(P)'
vertices labeled consecutively between (i + g—1+ %) + (g —1) and i —
(g —1). Suppose P; be the induced subgraph by the vertices set which are
labeled consecutively between i+ 2(g— 1) and (¢ + §) — (g — 1), and P; be
the induced subgraph by the vertices set which are labeled consecutively
between (i+g—1+ %)+ (g—1) and i — (g — 1), clearly |V(P)| = g,
every vertex in P; has g — 1 neighbors in P; (i = 1, 2) respectively. For any
vertex in P, suppose it is labeled j, i + 2(j — 1) < (¢ + §) — (¢ — 1), then
i+2(g—-1)+% <j+% <i—(g—1), we have (j,j+ §) is an edge between
P; and P,, then P, U P, is connected, and every vertex in P, U P, has g
neighbors. We have proved N(P) is an R9-vertex-cut of G. a

Lemma 3.8. Let G = H, 4 be a Harary graph of the second type. Let g be
an integer with g > 2 withd = 2g—1. Ifn > 8g—4, and S be a minimal R9-
vertez-cut, then every component of G — S must be the subgraph induced
by the vertez set {i,i+1,--- i+ j,i+ 5,4+ 1+ 3,4+ j+ §} for some
1€{0,1,2,--- ,n—1}, where j > g—1.

Proof. The result is clear for d = 3. For d > 5, we prove our result by
contradiction. If the Lemma is not true, then there exists a component
P which is not induced by the vertex set {i,s+1,--- i+ j,i+ §,i+1+
2,4+ 7+ &} for some i € {0,1,--- ,» — 1}. Since every vertex in each
component of G — S has exactly g neighbors, then the vertex set of P must
be the unit of several copies of {i,i+1,--- ,i+4,i+%,i+14+5,5+5+ 3}
Without loss of generally, we only need to prove the following case: P =
Gli,i+ 1,542, i+iui+2,i+1+2, i+ i+ 2}U{(i+4)+
my, (E+51)+mi+1, -0, (E4+51) +ma+d2; ((+51) +ma + 2, G+ 51) +my +
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143, ,(@+5)+mi1+jo+ 5}, where j1,52 2 9—1,2<m; <g-1.In
this case, S = N(P) = {i=1,i—2,-+ ,i—= (g~ 1D)}U{(i+51) +mi1+j2 +
Lo, (i470) £ +G2+2, 0, (i 1) +ma+Ga+(g= D}U{i+ 3~ L,i+
52 i+ 3 —(g-1}V{(E+an)+m+i+F+1,(E+50)+mi+h2+
342, (G+0)+mit+ie+ 5+ (g-DIU{(i+5)+1, (i +5)+2,- -, (i+
J)+mi—-1}0{(E+n+3)+L0E+H+5)+2,- ,(i+H +m }) -1},
and [S| = [N(P)| 24 x (g9-1)+2(m1—-1) 24(9—-1)+2>4(g—-1),a
contradiction. (]

From the above two Lemmas, we can obtain a sufficient and necessary
condition for the Harary graph G = H, 4 having an R9-vertex-cut when
9= 22

Corollary 3.9. Let G = H, 4 be a Harary graph of the second type. Let
g be an integer with g = 41 > 2. Then there is an R9-vertez-cut of G if
and only if n > 8¢ — 4.

Theorem 3.10. Let G = H,, 4 be a Harary graph of the second type. Let g
be an integer withg > 2 andd = 2g—1. Ifn > 8g—4, then k9(G) = 4(g—1),
and the R9-vertez-atom-part is isomorphic to the subgraph induced by the
vertez set {i,i+1,--+ ,i+g—1,i+5,i+1+%,--- ,i+g—1+3} for some
i€{0,1,2,--- ,n—1}.

Proof. By Lemma 3.7, when n > 8g — 4, G has an R9-vertex-cut. Let S
be a minimal R?-vertex-cut of G, and let P is the smallest component of
G - S. By Lemma 3.8, every component of G — S must be the subgraph
induced by the vertex set {i,i+1,--- ,i+j,i+ 3,4+ 1+ 3,i+j+ 3},
where j > g—1, so does P. Thus we have S = N(P) = {i—1,i-2,--- ,i—
(-DYu{i+i+Li+5+2,-,i+i+(g-D}IU{(i+3)-1,(G+3)-
2, (i+2) = (- DIUi+i+2+1,6+5+2+2, ,i+5+3+(g—1)}
It follows that kK9 = |S| = |[N(P)| = 4(g — 1). By Lemma 3.8, the second
part is obvious. [m]
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