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Abstract

Let G be finite, simple graph, we denote by 4(G) the domination
number of G. The bondage number of G, denoted by b(G), is the
minimum number of the edges of G whose removal increase the dom-
ination number of G. C, denote the cycle of n vertices. Forn > 5
and n # 5k + 3, the domination number of Cs x Cr, was determined
in [6]. In this paper, we calculate the domination number of C5 x Cy
for n = 5k + 3(k > 1), and also study the bondage number of this
graph, where Cs x C, is the cartesian product of Cs and C,.

1 Introduction

The graphs considered here are finite, undirected, and simple (no loops
or parallel edges). The set of vertices and edges of a graph G are denoted
by V(G) and E(G), respectively. dg(z), Ng(z) denote the degree, neigh-
borhood of z in G, respectively. Ng(z} := Ng(z)U {z}. For V' C V(G),
Ng[V'] := Uzev' Ng|z]. We often omit the index G if it is clear from the
context. For z,y € V(G), by zy we denote the edge joining z,y if they
are adjacent. In this case, we also say = dominates ¥, or y dominates z.
A set D of vertices of a graph G is called a dominating set if every vertex
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of V(G) — D is adjacent to at least one element of D, i.e., N[D] = V(G).
The domination number of G, denoted by ¥(G), is the size of its smallest
dominating set. The domination set with y(G) vertices is called minimum
dominating set of G. Let D be a dominating set of G, if y € V(G) — D
is adjacent to only z € D, then y is called a private neighbor of z with
respect to D. The bondage number, denoted by b(G), is the minimum
number of the edges of G whose removal increase the domination number,
i.e., b(G) = min{|E’| | E' C E(G) and (G - E') > v(G)}.

It has been proved that the decision problem corresponding to the dom-
ination number and bondage number for arbitrary graphs is N P-complete
(see [3]), Chapter 9). So, it is natural to turn to calculate these numbers
for some special graphs. Let G x H be the graph, whose vertex set is
V(G) x V(H), for a,b € V(G) and z,y € V(H), (a,z),(b,y) are adjacent
if and only if z = y and ab € E(G), or e = b and zy € E(H). It is called
cartesian product of G and H.

In [6], the domination number of cartesian product of cycles were con-
sidered, the following result was proved.

Theorem 1 [6] Let n > 5. Then,

n, n = 5k;
7(Cs x Cn) = { n+1, ne{5k+1,5k+2,5k+4},

For k> 1, 7(Cs x Csx43) < 5(k +1).
For bondage number, Fink et al. in [2] determined for complete graphs
and complete t-partite graphs, the paths and the cycles. By [1] and [2],

b(T) < 2 for any tree T. In [4], Hartnell and Rall gave an upper bound for
general graph.

Theorem 2 [4] If G is a graph, then for every pair u and v of adjacent
vertices b(G) < d(u) + d(v) — 1 — |[N(u) N N(v)|.

For the cartesian product of cycles, the following results were obtained
in [7] and [5), respectively.
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Theorem 3 [7] Let n > 4. Then,

2, n=d4k;
b(Cs xCp)=14¢ 4, ne€{4k+1,4k+2};
5 n=4k+3

Theorem 4 [5] Forn > 4, b(Cs x Cp) = 4.

In this paper, we study the domination number and bondage number
of Cs x Cy, for n > 5 (for smaller n the corresponding problem has been
solved). We decide the exact value of y(Cs x Csg43) for k > 1, and of
b(Cs x Cyp) for n > 5 and n # 5k + 3. For n > 5 and n = 5k + 3 we present
an upper bound for b(Cs x Cy).

2 Main Results

In the below we always assume n > 5. We regard the vertex set of
Cs x Cp, as an array of 5 x n and denote by V(Cs x Cp) = {zi; |i €
{0,1,---4},j € {0,1,n — 1}}. For 0 < ¢ < 4, let H; denote the vertex set
of ith row, whose induced subgraph is a cycle C,; For 0 < j <n -1, let
V; denote the vertex set of jth column, whose induced subgraph is a cycle
Cs. We distinguish the edges of C5 x Cp, to two kinds. An edge is called
horizontal edge if it belongs to the cycle C, induced by H; (0 < i < 4),
an edge is called vertical edge if it belongs to the cycle Cs induced by V;
(0<j<n-1). Fori=0,1,.--,4, we let
W, = {a:ij | j= O(mod 5)} U {:c(,-.,.z)j | i= l(mod 5)}
U {Z(i4+4); | § = 2(mod 5)} U {z(i11); | = 3(mod 5)}
U {z(,-.,_3)_,- | ji= 4(mod 5)},
fori=5,6,---,9, let
Wi = {zi; |  =0(mod 5)} U {Z(;+a); | § = 1(mod 5)}
U] {x(.-+1)j | 3 = 2(mod 5)} U {z(i+4)j | 7 = 3(mod 5)}
U {Z(i+2); | § = 4(mod 5)},
where the first index of z takes modulo 5 and 0 < j < n— 1. We note that
Wo, Wh, -, Wy are pairwise disjoint and their union is V(Cs x C,), and
Ws,- -+, Wy have the same property.
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Theorem 5 For k > 1, v(Cs x Csg+3) = 5(k + 1).

Proof. Let k > 1 and n = 5k + 3. Clearly, Cs x Cy, is 4-regular and vertex-
transitive. Here we will show v(Cs X Csg+3) > 5(k+ 1) = n + 2, combining
with Theorem 1 we have 4(Cs x Csx+3) = n+2. By contradiction. Suppose,
to the contrary, ¥(Cs % Csi+3) < n + 1, we deduce a contradiction. For
convenience, let G := Cs X Csi+3. From the structure of G we have the
following easy assertion.

Assertion 1 Let D be a dominating set of G. If DNV; = @, then |DN
(VicaU V)| 25, where0< j <n—1, and j — 1,5 + 1 take modulo n.

Now, let D be a dominating set of G with n + 1 vertices (by our assump-
tion, G has such a dominating set). We first check the distribution of D in
the columns of G.

Case 1. G has one column, saying Vp, such that [V N D| = 5. Let
D, :=VoND and D; := D — D,. Then, [N[D1]] = 15. As k > 1,
5n —15 > 0. So, there are at least 5n — 15 > 0 vertices of G which are not
dominated by any vertex in D,. Since |D;| = (n+1)—5 and G is 4-regular,
IN[D3]| < 5n.—20. Thus, [N[D]| < [N[Dy]| + IN[D2]] < 5n - 5 < [V(G)],
implying that D is not a dominating set of G, a contradiction.

Case 2. G has one column, saying Vj, such that |V N D| = 4. Similarly,
Let Dy := VN D, Dy := D — D,. Then, |N[D1]| < 13 and IN[D2]| <
5(n+1—4) = 5n—15, and hence, |N[D]| < 5n—-2 < |V(G)|, still contradict
the fact that D is not a dominating set of G.

Case 3. G has two columns V;,,V;, such that each of them contains
3 vertices of D. Let D, := (V;; UV;,) N D and Dy := D — D,. Then,
|IN[D1]] < 2(5 + 6) = 22. Since |Dz| = (n + 1) — 6, |[N[D,]| < 5n — 25.
Thus, |N[D]| £ 5n — 3 < |V(G)|, also a contradiction.

Case 4. G has one column V;, which contains 3 vertices of D, and two
columns V;,, V;, such that each of them contains 2 vertices of D. Let D, :=
(U3_,Vi,)ND and D, := D — D;. Then, |N[D;]| < (5+6)+2(5+4) =29,
and |Dy] = (n + 1) — (3 + 4), and |[N[D;]| < 5(n — 6) = 5n — 30. Thus,
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[N[D]| € 5n — 1 < |[V(G)|, also a contradiction.

Case 5. G has one column which contains 3 vertices of D and one column
which contains 2 vertices of D. Then, there are at least two columns V;,,V;,
of G such that V;, N D =@ = Vi, N D. Then, at least one of V;,,V;, does
not satisfy the properties of Assertion 1, a contradiction.

Case 6. G has one column which contains 3 vertices of D and all of
other column contain at most one vertices of D, then there is one column
Vj such that V; N D = @ which does not satisfy the properties of Assertion
1, a contradiction.

Summarizing the above cases, there is no column of G which contains
more than two vertices of D. Then, by Assertion 1, each column of G
contains at least one vertex of D. As |D| = n + 1, without loss of the
generality, we assume that |[V;ND|=1for j=0,1,---,n—2and [V, N
D| = 2. By symmetry, we may assume DNV = {ze}. As |DNWV| =|DN
V2| = 1, we can easily verify that D N'Vy = {z2,} or {z3,}. For the former
case, we can deduce that D' := D NUZ3V; = Wo ~ {Z4(n-1)}. Hence,
V(G) = N[D'} = (Va-1 — {ZTo(n—1)s T2(n-1)}) U {230, Ta(n-2)}- Now we can
see that the union of D’ and any two vertices of V,,_; can not dominate G, a
contradiction. Hence, v(G) > n+2, and thus v(C5 xCy) = n+2 = 5(k+1).
This proves the theorem. |

Theorem 6 Forn > 5 and n # 5k + 3,

_J 3, ne{5k5k+1};
b(Cstn)—{ 4, n € {5k + 2,5k + 4},

Forn=5k+3(k>1),bCs xCp)<T.

Proof. For n > 5 and n # 5k+ 3, by Theorem 1, v(C5 x C,) < n+1. Still
denote G := Cp x Cy, and let D be a minimum dominating set of G. By
the same reason as the proof of Theorem 4, we have that, if n = 5k, then
|IDNV;l=1for 0<j<n-1;ifn € {5k+ 1,5k + 2,5k + 4}, then, except
for one column, |DNV;| =1 for 0 < j < n -1, and the exception column
contains two vertices of D. We distinguish the following cases.
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1. n = 5k and G = Cs x Cse. By using the same reason as in the
proof of Theorem 4, we can deduce that W; (0 < i < 9) are all minimum
dominating sets of G. Let e; = zgoZ10,62 = T10T20,€3 = T30ZT40 and
G' :=G - {e1,€2,e3}. Then, we can easily verify that any of W; (0<i <
9) can not dominate G'. Assume y(G') = n, and let D’ be a minimum
dominating set of G'. Clearly, D’ dominates G, and thus D’ is also a
minimum dominating set of G. So, D' must be one of W; (0 <7< 9), a
contradiction. Hence, ¥(G') > n, and thus, b(Cs x Csx) < 3.

Next we show b(Cs X Cs) > 3. Let e; = z11,e2 = T2y2 be any two edges
of G. Clearly, there are at most four distinct vertices in 1, 1, 2, y2. Hence,
there is a W; (0 < ¢ < 4), saying Wy, which contains no these vertices.
Then, we can see that in Cs x Csx — {e1,€e2}, each vertex v in Wy is still
adjacent to every element of Ng(v), i.e., W, dominates Cs X Cex — {€1,€2}.
So, b(Cs x Csk) > 3, and hence b(Cs x Cs¢) = 3.

2. n=5k+1and G = Cs X Csk+1. Recall that any minimum dominating
set of G must intersect with each column of G. Let D be a minimum
dominating set such that |[DNV;,_;| = 2 and DNVy = {zeo}, DNV} = {z21},
then we can verify that D = Wy U {z3(n—1)}. We note that the vertex in
DnYV;for 0 £ j £ n—2 has two private neighbors in same column with
respect to D, and that each vertex in D NV,_; has one private neighbor in
Va-1, and Z4(5-1) is adjacent to both vertices in DN V,_;. By symmetry,
each minimum dominating set of G has similar properties as D.

Now let €1 = Zg(n—1)T1(n-1)> €2 = Ta(n—1)Z3(n-1) aNd €3 = T3(n—1)T4(n-1),
and G' := C5 x Csk+1 — {e1,€2,e3}. We come to prove that y(G') > n+1=
5k+2. By contradiction. Assume v(G') < n+1. As¥(G') > v(G) =n+1,
we have 7(G') = n + 1. Let D' be a minimum dominating set of G'. As
|D'| =n+1, D' is also a minimum dominating set of G. So, D' has sim-
ilar properties as D. However, in G’ each vertex of V;,_; has at most one

. neighbor in V,,_;, so, for any choices of the vertices of V;,_, N D’, they do
not have the similar properties as described above, a contradiction. So,
7(G') > n + 1, and thus b(Cs % Csk+1) < 3.

Next we show b(Cs x Cse+1) > 3. Let ey = ziy1,62 = Zay2 be any
two edges of G, and G" := G — {e;, ez}. Similarly, we can assume that W,
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contains none of z1, Z2,y1, ¥2. Then, it is clear to see that W,U{z10} or W4U
{2(n-1)} will dominate G" unless {e1, €2} C {Z10Z1(n-1),

Z20Z2(n—1)> £10220; T1(n—-1)T2(n-1) }

But, for the exceptions of {e;,e2}, Wo U {Z3(n—1)} dominates G”. Hence,
¥(G") = n+1, implying that b(Cs x Csz+1) > 3, and hence b(Cs x Csr1) =

3.
3. n=5k+2and G = C5 x Csp+2. Let e1,ez,e3,e4 are four edges

incident to zgo, and G’ := G — {e1, €2, €3,€4}. If G’ has a dominating set of
n + 1 vertices, as zg is an isolated vertex in G, then G, := G — {zgp} has
a dominating set of n vertices. Let D" be a dominating set of n vertices of
G,. By the similar counting as in the proof of Theorem 4 (case 1-case 6),
we can deduce that |[D" NV;| =1 for j =0,1,---n — 1. By symmetry, we
may assume that DNV = {v10} or {v20}. Then, we can easily deduce that
D" = W, or W for the former case, D" = W, or Wy for the latter case.
By direct checking, none of W, W,, Wg, W7 dominate G;, a contradiction.
So, 7(G1) > n, and thus v(G') > n + 1, implying b(Cs x Csx+2) < 4.

Next we show b(Cs x Csr+2) > 4. Let €1, ez, e3 be any three edges of G,
and G" := G - {e1,ez,e3}. We will prove y(G") =n + 1. For V' C V(G)
we denote by < V' > the subgraph induced of G by V'. We distinguish
four cases.

Case 1. All of ey, ez, €3 are vertical edges.

(1). Assume that e, ez, e3 are contained in < V,,_; >. By symmetry, we
only need to consider two cases:

{e1,e2,e3} = {T1(n—1)T2(n—1)s T2(n-1)T3(n—1)s T3(n—1)Ta(n—1) }
or = {30(n—1)$1(n—1),wz(n-1)xa(n_1),:va(,,_l):c4(,,_1) .

Then, (W2 — {4(n-1)}) U {Z3(n-2), To(n-1)} = (W2 NUFZV;) U (Ws N
UZa_,V;) dominates G" for the former case; W3 U {Z1(n—1)} dominates
G" for the latter case.

(2). Assume that e;, e; are contained in < V,,_; >, and that e3 isnot in <
Va-1 >. By symmetry, we let {e1, ez} be {Za(n-1)Z3(n-1), Z3(n-1)T4(n-1)},
or {Z1(n-1)%2(n-1)s T3(n—1)Ta(n—1) }-
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If {e1,e2} = {Z2(n-1)%3(n=1) T3(n—1)T4(n-1)}, then W3U {z;(n1)} dom-
inates G — {e1,e2}. By our choices, we assume that es is incident to a
vertex in W3 — {Zo(n-1y}. Let e3 €< Vip > 0 < m < n-1). If
m = 5h (0 < h < k), then, for e3 = ZamTam, (WoNUTLo V3)U(WsNUGZL V5)
dominates G; for e3 = TamTam, (Ws NUR,V;) U (Wy N UGS, V;) domi-
nates G". If m = 5h + 1 (0 < h < k), then, for e3 = Tor+1)Ta5h+1)s
(Wa2n U;-n=0Vj) uWwsn U;:,LVJ) dominates G"; for e3 = Zo(5h+1)L1(5h+1)»
(Ws NUR,V;) U (We N U}‘;‘1 V;) dominates G". For other cases of m,
by assuming eg is incident to a vertex z;, € Ws;, we can also deduce
that, (Wa NUTL,V;) U (W3 N U;-‘;,anj) dominates G" for ez = Z(;—1)mTim;

(WsnUTL, V) U (Wen U=} V;) dominates G for e = TimT(i+1)m, Where

= j=m

0<i<4,i—1,7+ 1 take modulo 5.

I {e1,e2} = {T1(n-1)T2(n-1)s T3(n-1)T4(n-1) }, then W) U{z4(n_1)} dom-
inates G — {e1,e2}. By our choices, we assume that e; is incident to a
vertex in Wi — {Z3(n—1)}. Then, Wj U {3(n1)} dominates G".

(3). By the symmetry, (1) and (2), we assume that each < V; > (0 <
j € n — 1) contains at most one edge of e;,ez,e3. Without loss of the
generality, let €; = Z3(n_1)T4(n-1)- Then, Dy := W) U{T4(n—1)} dominates
G - {e1}. Clearly, if neither of e;,es is incident to any vertices of D,
then D; dominates G"”. By our assumption, we may let e; be incident to
a vertex of W — {Z3(n-1)}. Then, Wy U {3(n—1)} dominates G — {ej, e2}.
Similarly, we let e3 be incident to a vertex of Wy — {)(n-1)}. Let e3 €<
Vm >,(0 £ m < n—1). Then, we can similarly deduce as in the proof of
(2) that, (Ws NUToV;) U(WeNUFZLV;) or W3 N {Z1(n—1)} dominates G".

Case 2. One of e,, e, e3 is a horizontal edge and two of them are vertical
edges. We assume that e; = {ZooZo(n—1)} is a horizontal edge. Then,
Dy := WU {3(n—1)} dominates G — {e; }. Similarly, we assume that e; is
incident to a vertices of Dj.

(1). ez # Ta(n—1)%T3(n—1). Then, e, is incident to a vertex in Wy. Then,

D, := W1 U {Z4(n-1)} dominates G — {e;,ez}. By the same reason, we
assume that es is incident to a vertex of D;.
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If e3 = To(n-1)T4(n—1), then Do := WoU{z3(n_1)} dominates G —{e1,e3}.
By the same reason, we assume e is incident to a vertex of Dg. As es is
a vertical edge, it is impossible for e; to join a vertex of Wy and z3(n_,).
Then, e; joins a vertex of Wy and a vertex of W,. Let e; €< Vi > (0 <
m < n—1), then, (Ws NUR,V;) U (Wo NUJZ,.V;) dominates G

If e3 # To(n-1)ZT4(n—1), then ez is incident to a vertex of W;. When
e3 €< Vi, > joins a vertex of W, and a vertex of Wa, then (W1 NUJL,) U
(W2 NU}Z,V;) dominates G, otherwise eg joins a vertex of Wp and a
vertex of Wy. And then, if e3 # zooz10, then Wo U {z10} dominates G”. If
€3 = TgoT10, by noting that Wi U {220} dominates G — {e;,e3}, then e; is
also incident to a vertex of W3. Then, e, joins a vertex of W3 and a vertex of
Wy. Let ez €< Vi, > (0 < m < n—1). Then, (W3 ﬂU}’E;o)U(W4ﬂU§‘=‘,1,I/,-)
dominates G".

(2). e3 = Ty(n—1)T3(n-1). Then, Do := Wo U {z3(n—1)} dominates G —
{e1,e2}. By the same reason, we assume that e is incident to a vertex of
Do. If €3 = T3(n-1)T4(n—1), then Wy U {30} dominates G". Otherwise, by
our choice, we have that, either e; joins a vertex of Wy and a vertex of Wy,
Or €3 # Ta(n-1)T3(n-~1) joins a vertex of Wy and a vertex of W;.

If e3 joins a vertex of Wy and a vertex of Wy, then W U {210} dominates
G". If e3 # To(n—1)T3(n—1) joins a vertex of Wy and a vertex of Wi, then
Wy U {z30} still dominates G".

Case 3. €; = T3(n-1)T4(n-1) is a vertical edge and ez,e3 are horizontal
edges. Then, D, := W) U {z4(n—1)} dominates G — {e;}. By the same
reason, we assume e, is incident to a vertex of D;.

(1). If ez is incident to Z4(n—1), D3 := W3 U {Z1(n_1)} dominates G —
{e1,e2}. By the same reason, we assume ej3 is incident to a vertex of Ds.
When ej3 is incident to )(n—1), then W3 U {z30} dominates G", otherwise
es is incident to a vertex of W3. Then, Wy U {Z2(n_1)} dominates G”.

(2). e is incident to a vertex of W;. Then, Wy U {z40} dominates

G —{e1,e;}. By the same reason, we assume that es is incident to a vertex
of Wy or z40.
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If e3 is incident to 249 and es = Z40%41, then Wy U {z40} still dominates
G". f e3 = T40T4(n-1), then, for e2 # T3(n_2)T3(n—1) We have that (W, —
{Z4(n-1)}) U {Z3(n—2), To(n—1)} dominates G"; for ez = Z3(n_2)T3(n—1) We
have that W3 U {z20} dominates G".

Otherwise, e is incident to a vertex of Wy. Let e; be incident to a vertex
zij € Wh. If e2 = z;(_1)%ij, then WyU{z30} dominates G”, where j <n—1
and j — 1,5 + 1 take modulo n. If ez = ZijT;(j41), then W3 U {Z1(n_1)}
dominates G—{e1, ez}, where j < n—1and j—1,j+1 take modulo n. Hence,
es is also incident to a vertex of W3 U {Ty(n—1)}. As es is a horizontal edge,
e3 joins a vertex of Wy and a vertex of W3. Note that e2 # Z3(n—2)T3(n—1)»
then we have (W2 N U;-‘='02V,-) U {%3(n—2)» To(n—1)} dominates G".

Case 4. All of e, €2, €3 are horizontal edges. Let e; = ZgoZo(n—1)- Then,
Dy := Wy U{T3(n—1)} dominates G — {e;}. By the same reason, we assume
that e, is incident to a vertex of Dj.

(1). If e is incident to (1), then Wy U {z30} dominates G — {e}, e2}.
By the same reason, we assume that e3 is incident to a vertex of WyU{z30}.
First let es be incident to z30. Then, if ez # T3(n—2)To(n-1), then Dy still
dominates G"'; otherwise, ez = Z20Z3(n—1), then Wo U {40} dominates G".

Next let e3 be incident to a vertex of Wy. Then, if e2 = ZTo(n_2)T2(n-1),
W3 U {20} dominates G"; if ez = Z20Z2(n-1), Wo U {Z3(n-1)} dominates
G".

(2). If e is incident to a vertex of Wy, then Doy := Wo U {T3(n-1)}
dominates G — {e1,e2}. By the same reason, we assume that eg is incident
to a vertex of Do.

If e3 is incident to Z3(n_1), then W3 U {z20} dominates G”.

So, let es be incident to a vertex of Wy. Let ez be incident to a vertex
i € Wa.

Ifez = x4(j_1)Ti; (Where j—1 takes modulo n), then W2U{z10} dominates
G — {e1, e2}. From this, we may assume that es joins a vertex of Wy and a
vertex of Ws. Let z;, € W2 and €3 = TimTi(m+1) (Where0<m<n-1),
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then W3 U {Z}(n-1)} dominates G".

ey = 7;Ti(j41) (Where j+1 takes modulo n), then W3U{z0} dominates
G - {e1,e2}. From this, we may assume that e3 joins a vertex of Wy and a
vertex of W3. Let zi, € W3 and e3 = ZimTi(m41) (Where 0 <m <n —1),
then W1 U {Z4(n—1)} dominates G".

Summarizing as above, we have that, v(G — {e;,e2,e3}) < n +1 for any
three edges of G, implying that b(G) > 4. Combining with the former
inequality we have b(G) = 4. This proves that b(Cs x Csx+2) = 4.

For the case of n = 5k + 4, we can similarly prove that 5(Cs x Cp) = 4,
we omit the details here.

For the case of n = 5k + 3, by Theorem 2 we have b(G) < 7. This proves
Theorem 5. [ |

References
(1] D. Bauer et al., Domination alteration sets in graphs, Discrete Math.,
47 (1983) 153-161.

[2] J.F. Fink et al., The bondage number of a graph, Discrete Math., 86
(1990) 47-57. "

[3] T.W. Haynes et al., Domination in Graphs: Advanced Topics, (Marcel
Dekker, Inc., New York, 1998).

[4] B.L.Hartnell and D.F.Rall, Bounds on the bondage number of a graph,
Discrete Math. 128 (1994) 173-177.

(5] L.Y. Kang, M.Y. Sohn and H.K. Kim, Bondage number of the discrete
torus Cy, x Cjy, Discrete Math., 303(2005) 80-86.

[6] Sandi Klavzar and Norbert Seifter, Dominating Cartesian products of
cycles, Discrete Applied Math., 59 (1995), 129-136.

[7] M.Y. Sohn, X.D. Yuan and H. S. Jeong, The bondage number of C3 x
Cy (n > 4), preprint.

309



[8] T.Chang and E.Clark, The domination numbers of the 5 xn and 6 x n
grid graphs, J. Graph Theory, 17 (1993) 81-107.

310



