Domination and Bondage number of $C_5 \times C_n^*$

Cao Jian Xiang¹, Yuan Xudong², Moo Young Sohn³

School of Animation, Communication University of China 100024, Beijing, P.R.China

² Mathematics, Guangxi Normal University 541004, Guilin, P.R.China

Abstract

Let G be finite, simple graph, we denote by $\gamma(G)$ the domination number of G. The bondage number of G, denoted by b(G), is the minimum number of the edges of G whose removal increase the domination number of G. C_n denote the cycle of n vertices. For $n \geq 5$ and $n \neq 5k + 3$, the domination number of $C_5 \times C_n$ was determined in [6]. In this paper, we calculate the domination number of $C_5 \times C_n$ for $n = 5k + 3(k \geq 1)$, and also study the bondage number of this graph, where $C_5 \times C_n$ is the cartesian product of C_5 and C_n .

1 Introduction

The graphs considered here are finite, undirected, and simple (no loops or parallel edges). The set of vertices and edges of a graph G are denoted by V(G) and E(G), respectively. $d_G(x), N_G(x)$ denote the degree, neighborhood of x in G, respectively. $N_G[x] := N_G(x) \cup \{x\}$. For $V' \subseteq V(G)$, $N_G[V'] := \bigcup_{x \in V'} N_G[x]$. We often omit the index G if it is clear from the context. For $x, y \in V(G)$, by xy we denote the edge joining x, y if they are adjacent. In this case, we also say x dominates y, or y dominates x. A set D of vertices of a graph G is called a dominating set if every vertex

³ Applied Mathematics, Changwon National University 641-773, Changwon, Korea

^{*}This paper was accomplished with research fund provided by Korea Council for University Education, support for 2004 Domestic Faculty Exchange.

[†]He is partially supported by Guang Xi Youth Science Foundation (Grant number: 0135028).

of V(G)-D is adjacent to at least one element of D, i.e., N[D]=V(G). The domination number of G, denoted by $\gamma(G)$, is the size of its smallest dominating set. The domination set with $\gamma(G)$ vertices is called minimum dominating set of G. Let D be a dominating set of G, if $y \in V(G)-D$ is adjacent to only $x \in D$, then y is called a private neighbor of x with respect to D. The bondage number, denoted by b(G), is the minimum number of the edges of G whose removal increase the domination number, i.e., $b(G) = \min\{|E'| \mid E' \subseteq E(G) \text{ and } \gamma(G - E') > \gamma(G)\}$.

It has been proved that the decision problem corresponding to the domination number and bondage number for arbitrary graphs is NP-complete (see [3], Chapter 9). So, it is natural to turn to calculate these numbers for some special graphs. Let $G \times H$ be the graph, whose vertex set is $V(G) \times V(H)$, for $a, b \in V(G)$ and $x, y \in V(H)$, (a, x), (b, y) are adjacent if and only if x = y and $ab \in E(G)$, or a = b and $xy \in E(H)$. It is called cartesian product of G and H.

In [6], the domination number of cartesian product of cycles were considered, the following result was proved.

Theorem 1 [6] Let $n \geq 5$. Then,

$$\gamma(C_5 \times C_n) = \left\{ \begin{array}{ll} n, & n = 5k; \\ n+1, & n \in \{5k+1, 5k+2, 5k+4\}, \end{array} \right.$$

For $k \ge 1$, $\gamma(C_5 \times C_{5k+3}) \le 5(k+1)$.

For bondage number, Fink et al. in [2] determined for complete graphs and complete t-partite graphs, the paths and the cycles. By [1] and [2], $b(T) \leq 2$ for any tree T. In [4], Hartnell and Rall gave an upper bound for general graph.

Theorem 2 [4] If G is a graph, then for every pair u and v of adjacent vertices $b(G) \le d(u) + d(v) - 1 - |N(u) \cap N(v)|$.

For the cartesian product of cycles, the following results were obtained in [7] and [5], respectively.

Theorem 3 [7] Let $n \geq 4$. Then,

$$b(C_3 \times C_n) = \left\{ \begin{array}{ll} 2, & n = 4k; \\ 4, & n \in \{4k+1, 4k+2\}; \\ 5, & n = 4k+3 \end{array} \right.$$

Theorem 4 [5] For $n \geq 4$, $b(C_4 \times C_n) = 4$.

In this paper, we study the domination number and bondage number of $C_5 \times C_n$ for $n \geq 5$ (for smaller n the corresponding problem has been solved). We decide the exact value of $\gamma(C_5 \times C_{5k+3})$ for $k \geq 1$, and of $b(C_5 \times C_n)$ for $n \geq 5$ and $n \neq 5k+3$. For $n \geq 5$ and n = 5k+3 we present an upper bound for $b(C_5 \times C_n)$.

2 Main Results

In the below we always assume $n \geq 5$. We regard the vertex set of $C_5 \times C_n$ as an array of $5 \times n$ and denote by $V(C_5 \times C_n) = \{x_{ij} \mid i \in \{0,1,\cdots 4\}, j \in \{0,1,n-1\}\}$. For $0 \leq i \leq 4$, let H_i denote the vertex set of *i*th row, whose induced subgraph is a cycle C_n ; For $0 \leq j \leq n-1$, let V_j denote the vertex set of *j*th column, whose induced subgraph is a cycle C_5 . We distinguish the edges of $C_5 \times C_n$ to two kinds. An edge is called horizontal edge if it belongs to the cycle C_n induced by C_n an edge is called vertical edge if it belongs to the cycle C_n induced by C_n induced by

$$W_{i} = \{x_{ij} \mid j \equiv 0 \pmod{5}\} \cup \{x_{(i+2)j} \mid j \equiv 1 \pmod{5}\} \\ \cup \{x_{(i+4)j} \mid j \equiv 2 \pmod{5}\} \cup \{x_{(i+1)j} \mid j \equiv 3 \pmod{5}\} \\ \cup \{x_{(i+3)j} \mid j \equiv 4 \pmod{5}\},$$

for $i = 5, 6, \cdots, 9$, let

$$W_{i} = \{x_{ij} \mid j \equiv 0 \pmod{5}\} \cup \{x_{(i+3)j} \mid j \equiv 1 \pmod{5}\} \cup \{x_{(i+1)j} \mid j \equiv 2 \pmod{5}\} \cup \{x_{(i+4)j} \mid j \equiv 3 \pmod{5}\} \cup \{x_{(i+2)j} \mid j \equiv 4 \pmod{5}\},$$

where the first index of x takes modulo 5 and $0 \le j \le n-1$. We note that W_0, W_1, \dots, W_4 are pairwise disjoint and their union is $V(C_5 \times C_n)$, and W_5, \dots, W_9 have the same property.

Theorem 5 For $k \ge 1$, $\gamma(C_5 \times C_{5k+3}) = 5(k+1)$.

Proof. Let $k \geq 1$ and n = 5k + 3. Clearly, $C_5 \times C_n$ is 4-regular and vertex-transitive. Here we will show $\gamma(C_5 \times C_{5k+3}) \geq 5(k+1) = n+2$, combining with Theorem 1 we have $\gamma(C_5 \times C_{5k+3}) = n+2$. By contradiction. Suppose, to the contrary, $\gamma(C_5 \times C_{5k+3}) \leq n+1$, we deduce a contradiction. For convenience, let $G := C_5 \times C_{5k+3}$. From the structure of G we have the following easy assertion.

Assertion 1 Let D be a dominating set of G. If $D \cap V_j = \emptyset$, then $|D \cap (V_{j-1} \cup V_{j+1})| \geq 5$, where $0 \leq j \leq n-1$, and j-1, j+1 take modulo n.

Now, let D be a dominating set of G with n+1 vertices (by our assumption, G has such a dominating set). We first check the distribution of D in the columns of G.

- Case 1. G has one column, saying V_0 , such that $|V_0 \cap D| = 5$. Let $D_1 := V_0 \cap D$ and $D_2 := D D_1$. Then, $|N[D_1]| = 15$. As $k \geq 1$, 5n 15 > 0. So, there are at least 5n 15 > 0 vertices of G which are not dominated by any vertex in D_1 . Since $|D_2| = (n+1) 5$ and G is 4-regular, $|N[D_2]| \leq 5n 20$. Thus, $|N[D]| \leq |N[D_1]| + |N[D_2]| \leq 5n 5 < |V(G)|$, implying that D is not a dominating set of G, a contradiction.
- Case 2. G has one column, saying V_0 , such that $|V_0 \cap D| = 4$. Similarly, Let $D_1 := V_0 \cap D$, $D_2 := D D_1$. Then, $|N[D_1]| \le 13$ and $|N[D_2]| \le 5(n+1-4) = 5n-15$, and hence, $|N[D]| \le 5n-2 < |V(G)|$, still contradict the fact that D is not a dominating set of G.
- Case 3. G has two columns V_{i_1}, V_{i_2} such that each of them contains 3 vertices of D. Let $D_1 := (V_{i_1} \cup V_{i_2}) \cap D$ and $D_2 := D D_1$. Then, $|N[D_1]| \leq 2(5+6) = 22$. Since $|D_2| = (n+1) 6$, $|N[D_2]| \leq 5n 25$. Thus, $|N[D]| \leq 5n 3 < |V(G)|$, also a contradiction.
- Case 4. G has one column V_{i_1} which contains 3 vertices of D, and two columns V_{i_2} , V_{i_3} such that each of them contains 2 vertices of D. Let $D_1 := (\bigcup_{h=1}^3 V_{i_h}) \cap D$ and $D_2 := D D_1$. Then, $|N[D_1]| \le (5+6) + 2(5+4) = 29$, and $|D_2| = (n+1) (3+4)$, and $|N[D_2]| \le 5(n-6) = 5n-30$. Thus,

 $|N[D]| \leq 5n - 1 < |V(G)|$, also a contradiction.

Case 5. G has one column which contains 3 vertices of D and one column which contains 2 vertices of D. Then, there are at least two columns V_{i_1}, V_{i_2} of G such that $V_{i_1} \cap D = \emptyset = V_{i_2} \cap D$. Then, at least one of V_{i_1}, V_{i_2} does not satisfy the properties of Assertion 1, a contradiction.

Case 6. G has one column which contains 3 vertices of D and all of other column contain at most one vertices of D, then there is one column V_j such that $V_j \cap D = \emptyset$ which does not satisfy the properties of Assertion 1, a contradiction.

Summarizing the above cases, there is no column of G which contains more than two vertices of D. Then, by Assertion 1, each column of G contains at least one vertex of D. As |D| = n+1, without loss of the generality, we assume that $|V_j \cap D| = 1$ for $j = 0, 1, \dots, n-2$ and $|V_{n-1} \cap D| = 2$. By symmetry, we may assume $D \cap V_0 = \{x_{00}\}$. As $|D \cap V_1| = |D \cap V_2| = 1$, we can easily verify that $D \cap V_1 = \{x_{21}\}$ or $\{x_{31}\}$. For the former case, we can deduce that $D' := D \cap \bigcup_{j=0}^{n-2} V_j = W_0 - \{x_{4(n-1)}\}$. Hence, $V(G) - N[D'] = (V_{n-1} - \{x_{0(n-1)}, x_{2(n-1)}\}) \cup \{x_{30}, x_{4(n-2)}\}$. Now we can see that the union of D' and any two vertices of V_{n-1} can not dominate G, a contradiction. Hence, $\gamma(G) \geq n+2$, and thus $\gamma(C_5 \times C_n) = n+2 = 5(k+1)$. This proves the theorem.

Theorem 6 For $n \geq 5$ and $n \neq 5k + 3$,

$$b(C_5 \times C_n) = \begin{cases} 3, & n \in \{5k, 5k+1\}; \\ 4, & n \in \{5k+2, 5k+4\}, \end{cases}$$

For n = 5k + 3 $(k \ge 1)$, $b(C_5 \times C_n) \le 7$.

Proof. For $n \geq 5$ and $n \neq 5k+3$, by Theorem 1, $\gamma(C_5 \times C_n) \leq n+1$. Still denote $G := C_5 \times C_n$, and let D be a minimum dominating set of G. By the same reason as the proof of Theorem 4, we have that, if n = 5k, then $|D \cap V_j| = 1$ for $0 \leq j \leq n-1$; if $n \in \{5k+1, 5k+2, 5k+4\}$, then, except for one column, $|D \cap V_j| = 1$ for $0 \leq j \leq n-1$, and the exception column contains two vertices of D. We distinguish the following cases.

1. n=5k and $G=C_5\times C_{5k}$. By using the same reason as in the proof of Theorem 4, we can deduce that W_i $(0 \le i \le 9)$ are all minimum dominating sets of G. Let $e_1=x_{00}x_{10}, e_2=x_{10}x_{20}, e_3=x_{30}x_{40}$ and $G':=G-\{e_1,e_2,e_3\}$. Then, we can easily verify that any of W_i $(0 \le i \le 9)$ can not dominate G'. Assume $\gamma(G')=n$, and let D' be a minimum dominating set of G'. Clearly, D' dominates G, and thus D' is also a minimum dominating set of G. So, D' must be one of W_i $(0 \le i \le 9)$, a contradiction. Hence, $\gamma(G')>n$, and thus, $b(C_5\times C_{5k})\le 3$.

Next we show $b(C_5 \times C_{5k}) \geq 3$. Let $e_1 = x_1y_1, e_2 = x_2y_2$ be any two edges of G. Clearly, there are at most four distinct vertices in x_1, y_1, x_2, y_2 . Hence, there is a W_i ($0 \leq i \leq 4$), saying W_4 , which contains no these vertices. Then, we can see that in $C_5 \times C_{5k} - \{e_1, e_2\}$, each vertex v in W_4 is still adjacent to every element of $N_G(v)$, i.e., W_4 dominates $C_5 \times C_{5k} - \{e_1, e_2\}$. So, $b(C_5 \times C_{5k}) \geq 3$, and hence $b(C_5 \times C_{5k}) = 3$.

2. n=5k+1 and $G=C_5\times C_{5k+1}$. Recall that any minimum dominating set of G must intersect with each column of G. Let D be a minimum dominating set such that $|D\cap V_{n-1}|=2$ and $D\cap V_0=\{x_{00}\}, D\cap V_1=\{x_{21}\},$ then we can verify that $D=W_0\cup\{x_{3(n-1)}\}$. We note that the vertex in $D\cap V_j$ for $0\leq j\leq n-2$ has two private neighbors in same column with respect to D, and that each vertex in $D\cap V_{n-1}$ has one private neighbor in V_{n-1} , and $x_{4(n-1)}$ is adjacent to both vertices in $D\cap V_{n-1}$. By symmetry, each minimum dominating set of G has similar properties as D.

Now let $e_1 = x_{0(n-1)}x_{1(n-1)}$, $e_2 = x_{2(n-1)}x_{3(n-1)}$ and $e_3 = x_{3(n-1)}x_{4(n-1)}$, and $G' := C_5 \times C_{5k+1} - \{e_1, e_2, e_3\}$. We come to prove that $\gamma(G') > n+1 = 5k+2$. By contradiction. Assume $\gamma(G') \le n+1$. As $\gamma(G') \ge \gamma(G) = n+1$, we have $\gamma(G') = n+1$. Let D' be a minimum dominating set of G'. As |D'| = n+1, D' is also a minimum dominating set of G. So, D' has similar properties as D. However, in G' each vertex of V_{n-1} has at most one neighbor in V_{n-1} , so, for any choices of the vertices of $V_{n-1} \cap D'$, they do not have the similar properties as described above, a contradiction. So, $\gamma(G') > n+1$, and thus $b(C_5 \times C_{5k+1}) \le 3$.

Next we show $b(C_5 \times C_{5k+1}) \ge 3$. Let $e_1 = x_1y_1, e_2 = x_2y_2$ be any two edges of G, and $G'' := G - \{e_1, e_2\}$. Similarly, we can assume that W_4

contains none of x_1, x_2, y_1, y_2 . Then, it is clear to see that $W_4 \cup \{x_{10}\}$ or $W_4 \cup \{x_{2(n-1)}\}$ will dominate G'' unless $\{e_1, e_2\} \subseteq \{x_{10}x_{1(n-1)}, x_{20}x_{2(n-1)}, x_{10}x_{20}, x_{1(n-1)}x_{2(n-1)}\}$.

But, for the exceptions of $\{e_1, e_2\}$, $W_0 \cup \{x_{3(n-1)}\}$ dominates G''. Hence, $\gamma(G'') = n+1$, implying that $b(C_5 \times C_{5k+1}) \ge 3$, and hence $b(C_5 \times C_{5k+1}) = 3$.

3. n=5k+2 and $G=C_5\times C_{5k+2}$. Let e_1,e_2,e_3,e_4 are four edges incident to x_{00} , and $G':=G-\{e_1,e_2,e_3,e_4\}$. If G' has a dominating set of n+1 vertices, as x_{00} is an isolated vertex in G', then $G_1:=G-\{x_{00}\}$ has a dominating set of n vertices. Let D'' be a dominating set of n vertices of G_1 . By the similar counting as in the proof of Theorem 4 (case 1-case 6), we can deduce that $|D''\cap V_j|=1$ for $j=0,1,\cdots n-1$. By symmetry, we may assume that $D''\cap V_0=\{v_{10}\}$ or $\{v_{20}\}$. Then, we can easily deduce that $D''=W_1$ or W_6 for the former case, $D''=W_2$ or W_7 for the latter case. By direct checking, none of W_1,W_2,W_6,W_7 dominate G_1 , a contradiction. So, $\gamma(G_1)>n$, and thus $\gamma(G')>n+1$, implying $b(C_5\times C_{5k+2})\leq 4$.

Next we show $b(C_5 \times C_{5k+2}) \ge 4$. Let e_1, e_2, e_3 be any three edges of G, and $G'' := G - \{e_1, e_2, e_3\}$. We will prove $\gamma(G'') = n + 1$. For $V' \subseteq V(G)$ we denote by $\langle V' \rangle$ the subgraph induced of G by V'. We distinguish four cases.

Case 1. All of e_1, e_2, e_3 are vertical edges.

(1). Assume that e_1, e_2, e_3 are contained in $\langle V_{n-1} \rangle$. By symmetry, we only need to consider two cases:

Then, $(W_2 - \{x_{4(n-1)}\}) \cup \{x_{3(n-2)}, x_{0(n-1)}\} = (W_2 \cap \bigcup_{j=0}^{n-2} V_j) \cup (W_3 \cap \bigcup_{j=n-2}^{n-1} V_j)$ dominates G'' for the former case; $W_3 \cup \{x_{1(n-1)}\}$ dominates G'' for the latter case.

(2). Assume that e_1 , e_2 are contained in $< V_{n-1} >$, and that e_3 is not in $< V_{n-1} >$. By symmetry, we let $\{e_1, e_2\}$ be $\{x_{2(n-1)}x_{3(n-1)}, x_{3(n-1)}x_{4(n-1)}\}$, or $\{x_{1(n-1)}x_{2(n-1)}, x_{3(n-1)}x_{4(n-1)}\}$.

If $\{e_1,e_2\}=\{x_{2(n-1)}x_{3(n-1)},x_{3(n-1)}x_{4(n-1)}\}$, then $W_3\cup\{x_{1(n-1)}\}$ dominates $G-\{e_1,e_2\}$. By our choices, we assume that e_3 is incident to a vertex in $W_3-\{x_{0(n-1)}\}$. Let $e_3\in V_m>(0\leq m< n-1)$. If $m=5h\ (0\leq h\leq k)$, then, for $e_3=x_{2m}x_{3m}$, $(W_2\cap \bigcup_{j=0}^m V_j)\cup (W_3\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G''; for $e_3=x_{3m}x_{4m}$, $(W_3\cap \bigcup_{j=0}^m V_j)\cup (W_4\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G''. If $m=5h+1\ (0\leq h< k)$, then, for $e_3=x_{0(5h+1)}x_{4(5h+1)}$, $(W_2\cap \bigcup_{j=0}^m V_j)\cup (W_3\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G''; for $e_3=x_{0(5h+1)}x_{1(5h+1)}$, $(W_3\cap \bigcup_{j=0}^m V_j)\cup (W_4\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G''. For other cases of m, by assuming e_3 is incident to a vertex $x_{im}\in W_3$, we can also deduce that, $(W_2\cap \bigcup_{j=0}^m V_j)\cup (W_3\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G'' for $e_3=x_{(i-1)m}x_{im}$; $(W_3\cap \bigcup_{j=0}^m V_j)\cup (W_4\cap \bigcup_{j=m}^{n-1} V_j)$ dominates G'' for $e_3=x_{im}x_{(i+1)m}$, where $0\leq i\leq 4, i-1, i+1$ take modulo 5.

If $\{e_1,e_2\} = \{x_{1(n-1)}x_{2(n-1)}, x_{3(n-1)}x_{4(n-1)}\}$, then $W_1 \cup \{x_{4(n-1)}\}$ dominates $G - \{e_1,e_2\}$. By our choices, we assume that e_3 is incident to a vertex in $W_1 - \{x_{3(n-1)}\}$. Then, $W_4 \cup \{x_{2(n-1)}\}$ dominates G''.

- (3). By the symmetry, (1) and (2), we assume that each $\langle V_j \rangle$ ($0 \le j \le n-1$) contains at most one edge of e_1, e_2, e_3 . Without loss of the generality, let $e_1 = x_{3(n-1)}x_{4(n-1)}$. Then, $D_1 := W_1 \cup \{x_{4(n-1)}\}$ dominates $G \{e_1\}$. Clearly, if neither of e_2, e_3 is incident to any vertices of D_1 , then D_1 dominates G''. By our assumption, we may let e_2 be incident to a vertex of $W_1 \{x_{3(n-1)}\}$. Then, $W_4 \cup \{x_{2(n-1)}\}$ dominates $G \{e_1, e_2\}$. Similarly, we let e_3 be incident to a vertex of $W_4 \{x_{1(n-1)}\}$. Let $e_3 \in \langle V_m \rangle$, $0 \le m < n-1$. Then, we can similarly deduce as in the proof of (2) that, $(W_3 \cap \cup_{j=0}^m V_j) \cup (W_4 \cap \cup_{j=m}^{n-1} V_j)$ or $W_3 \cap \{x_{1(n-1)}\}$ dominates G''.
- Case 2. One of e_1, e_2, e_3 is a horizontal edge and two of them are vertical edges. We assume that $e_1 = \{x_{00}x_{0(n-1)}\}$ is a horizontal edge. Then, $D_4 := W_4 \cup \{x_{2(n-1)}\}$ dominates $G \{e_1\}$. Similarly, we assume that e_2 is incident to a vertices of D_4 .
- (1). $e_2 \neq x_{2(n-1)}x_{3(n-1)}$. Then, e_2 is incident to a vertex in W_4 . Then, $D_1 := W_1 \cup \{x_{4(n-1)}\}$ dominates $G \{e_1, e_2\}$. By the same reason, we assume that e_3 is incident to a vertex of D_1 .

If $e_3 = x_{0(n-1)}x_{4(n-1)}$, then $D_0 := W_0 \cup \{x_{3(n-1)}\}$ dominates $G - \{e_1, e_3\}$. By the same reason, we assume e_2 is incident to a vertex of D_0 . As e_2 is a vertical edge, it is impossible for e_2 to join a vertex of W_4 and $x_{3(n-1)}$. Then, e_2 joins a vertex of W_0 and a vertex of W_4 . Let $e_2 \in V_m > 0 \le m \le n-1$, then, $W_4 \cap \bigcup_{j=0}^m V_j \cup W_0 \cap \bigcup_{j=m}^{n-1} V_j$ dominates G''.

If $e_3 \neq x_{0(n-1)}x_{4(n-1)}$, then e_3 is incident to a vertex of W_1 . When $e_3 \in V_m > \text{joins a vertex of } W_1$ and a vertex of W_2 , then $(W_1 \cap \cup_{j=0}^m) \cup (W_2 \cap \cup_{j=m}^{n-1} V_j)$ dominates G'', otherwise e_3 joins a vertex of W_0 and a vertex of W_1 . And then, if $e_3 \neq x_{00}x_{10}$, then $W_2 \cup \{x_{10}\}$ dominates G''. If $e_3 = x_{00}x_{10}$, by noting that $W_3 \cup \{x_{20}\}$ dominates $G - \{e_1, e_3\}$, then e_2 is also incident to a vertex of W_3 . Then, e_2 joins a vertex of W_3 and a vertex of W_4 . Let $e_2 \in V_m > (0 \leq m \leq n-1)$. Then, $(W_3 \cap \cup_{j=0}^m) \cup (W_4 \cap \cup_{j=m}^{n-1} V_j)$ dominates G''.

(2). $e_2 = x_{2(n-1)}x_{3(n-1)}$. Then, $D_0 := W_0 \cup \{x_{3(n-1)}\}$ dominates $G - \{e_1, e_2\}$. By the same reason, we assume that e_3 is incident to a vertex of D_0 . If $e_3 = x_{3(n-1)}x_{4(n-1)}$, then $W_4 \cup \{x_{30}\}$ dominates G''. Otherwise, by our choice, we have that, either e_3 joins a vertex of W_0 and a vertex of W_4 , or $e_3 \neq x_{2(n-1)}x_{3(n-1)}$ joins a vertex of W_0 and a vertex of W_1 .

If e_3 joins a vertex of W_0 and a vertex of W_4 , then $W_2 \cup \{x_{10}\}$ dominates G''. If $e_3 \neq x_{2(n-1)}x_{3(n-1)}$ joins a vertex of W_0 and a vertex of W_1 , then $W_4 \cup \{x_{30}\}$ still dominates G''.

- Case 3. $e_1 = x_{3(n-1)}x_{4(n-1)}$ is a vertical edge and e_2, e_3 are horizontal edges. Then, $D_1 := W_1 \cup \{x_{4(n-1)}\}$ dominates $G \{e_1\}$. By the same reason, we assume e_2 is incident to a vertex of D_1 .
- (1). If e_2 is incident to $x_{4(n-1)}$, $D_3 := W_3 \cup \{x_{1(n-1)}\}$ dominates $G \{e_1, e_2\}$. By the same reason, we assume e_3 is incident to a vertex of D_3 . When e_3 is incident to $x_{1(n-1)}$, then $W_3 \cup \{x_{20}\}$ dominates G'', otherwise e_3 is incident to a vertex of W_3 . Then, $W_4 \cup \{x_{2(n-1)}\}$ dominates G''.
- (2). e_2 is incident to a vertex of W_1 . Then, $W_0 \cup \{x_{40}\}$ dominates $G \{e_1, e_2\}$. By the same reason, we assume that e_3 is incident to a vertex of W_0 or x_{40} .

If e_3 is incident to x_{40} and $e_3 = x_{40}x_{41}$, then $W_0 \cup \{x_{40}\}$ still dominates G''. If $e_3 = x_{40}x_{4(n-1)}$, then, for $e_2 \neq x_{3(n-2)}x_{3(n-1)}$ we have that $(W_2 - \{x_{4(n-1)}\}) \cup \{x_{3(n-2)}, x_{0(n-1)}\}$ dominates G''; for $e_2 = x_{3(n-2)}x_{3(n-1)}$ we have that $W_3 \cup \{x_{20}\}$ dominates G''.

Otherwise, e_3 is incident to a vertex of W_0 . Let e_2 be incident to a vertex $x_{ij} \in W_1$. If $e_2 = x_{i(j-1)}x_{ij}$, then $W_4 \cup \{x_{30}\}$ dominates G'', where $j \leq n-1$ and j-1, j+1 take modulo n. If $e_2 = x_{ij}x_{i(j+1)}$, then $W_3 \cup \{x_{1(n-1)}\}$ dominates $G - \{e_1, e_2\}$, where $j \leq n-1$ and j-1, j+1 take modulo n. Hence, e_3 is also incident to a vertex of $W_3 \cup \{x_{1(n-1)}\}$. As e_3 is a horizontal edge, e_3 joins a vertex of W_0 and a vertex of W_3 . Note that $e_2 \neq x_{3(n-2)}x_{3(n-1)}$, then we have $(W_2 \cap \bigcup_{j=0}^{n-2} V_j) \cup \{x_{3(n-2)}, x_{0(n-1)}\}$ dominates G''.

- Case 4. All of e_1, e_2, e_3 are horizontal edges. Let $e_1 = x_{00}x_{0(n-1)}$. Then, $D_4 := W_4 \cup \{x_{2(n-1)}\}$ dominates $G \{e_1\}$. By the same reason, we assume that e_2 is incident to a vertex of D_4 .
- (1). If e_2 is incident to $x_{2(n-1)}$, then $W_4 \cup \{x_{30}\}$ dominates $G \{e_1, e_2\}$. By the same reason, we assume that e_3 is incident to a vertex of $W_4 \cup \{x_{30}\}$. First let e_3 be incident to x_{30} . Then, if $e_2 \neq x_{2(n-2)}x_{2(n-1)}$, then D_4 still dominates G''; otherwise, $e_2 = x_{20}x_{2(n-1)}$, then $W_0 \cup \{x_{40}\}$ dominates G''.

Next let e_3 be incident to a vertex of W_4 . Then, if $e_2 = x_{2(n-2)}x_{2(n-1)}$, $W_3 \cup \{x_{20}\}$ dominates G''; if $e_2 = x_{20}x_{2(n-1)}$, $W_0 \cup \{x_{3(n-1)}\}$ dominates G''.

(2). If e_2 is incident to a vertex of W_4 , then $D_0 := W_0 \cup \{x_{3(n-1)}\}$ dominates $G - \{e_1, e_2\}$. By the same reason, we assume that e_3 is incident to a vertex of D_0 .

If e_3 is incident to $x_{3(n-1)}$, then $W_3 \cup \{x_{20}\}$ dominates G''.

So, let e_3 be incident to a vertex of W_0 . Let e_2 be incident to a vertex $x_{ij} \in W_4$.

If $e_2 = x_{i(j-1)}x_{ij}$ (where j-1 takes modulo n), then $W_2 \cup \{x_{10}\}$ dominates $G - \{e_1, e_2\}$. From this, we may assume that e_3 joins a vertex of W_0 and a vertex of W_2 . Let $x_{im} \in W_2$ and $e_3 = x_{im}x_{i(m+1)}$ (where $0 \le m < n-1$),

then $W_3 \cup \{x_{1(n-1)}\}\$ dominates G''.

If $e_2 = x_{ij}x_{i(j+1)}$ (where j+1 takes modulo n), then $W_3 \cup \{x_{20}\}$ dominates $G - \{e_1, e_2\}$. From this, we may assume that e_3 joins a vertex of W_0 and a vertex of W_3 . Let $x_{im} \in W_3$ and $e_3 = x_{im}x_{i(m+1)}$ (where $0 \le m < n-1$), then $W_1 \cup \{x_{4(n-1)}\}$ dominates G''.

Summarizing as above, we have that, $\gamma(G - \{e_1, e_2, e_3\}) \le n + 1$ for any three edges of G, implying that $b(G) \ge 4$. Combining with the former inequality we have b(G) = 4. This proves that $b(C_5 \times C_{5k+2}) = 4$.

For the case of n = 5k + 4, we can similarly prove that $b(C_5 \times C_n) = 4$, we omit the details here.

For the case of n = 5k + 3, by Theorem 2 we have $b(G) \le 7$. This proves Theorem 5.

References

- [1] D. Bauer et al., Domination alteration sets in graphs, Discrete Math., 47 (1983) 153-161.
- [2] J.F. Fink et al., The bondage number of a graph, Discrete Math., 86 (1990) 47-57.
- [3] T.W. Haynes et al., Domination in Graphs: Advanced Topics, (Marcel Dekker, Inc., New York, 1998).
- [4] B.L.Hartnell and D.F.Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177.
- [5] L.Y. Kang, M.Y. Sohn and H.K. Kim, Bondage number of the discrete torus $C_n \times C_4$, Discrete Math., 303(2005) 80-86.
- [6] Sandi Klavzar and Norbert Seifter, Dominating Cartesian products of cycles, Discrete Applied Math., 59 (1995), 129-136.
- [7] M.Y. Sohn, X.D. Yuan and H. S. Jeong, The bondage number of $C_3 \times C_n$ $(n \ge 4)$, preprint.

[8] T.Chang and E.Clark, The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs, J. Graph Theory, 17 (1993) 81-107.