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Abstract

Let an H-point be a vertex of a tiling of R? by regular hexagons
of side length 1, and D(n) a circle of radius n (n € Z*) centered at
an H-point. In this paper we present an algorithm to calculate the
number, A% (D(n)), of H-points that lie inside or on the boundary
of D(n). Furthermore, we show that the ratio A% (D(n))/n? tends
to 2r/S as n tends to oo, where S = 3%? is the area of the regular
hexagonal tiles.
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Introduction

Let @ and ¥ be two linearly independent real vectors in R2. The set of all
points P = m# + n¥ (m,n € Z) is called a general lattice A generated by
% and ¥. A point of the lattice A is called a lattice point. Specially, if @
and ¥ are mutually orthogonal unit vectors, then the lattice A is called an
integral lattice, which is denoted by Z2.

Let a planar tiling 7 be a countable family of closed sets T = {T},T5,-- - }

such that the union of the sets T}, T2, -« is to be the whole plane, and the
interiors of the sets T; are to be pairwise disjoint. Here T, T5, - - - are known
as the tiles of 7. The intersection of any finite set of tiles of 7 containing at
least two distinct tiles may be empty or may consist of set of isolated points

*Corresponding author

ARS COMBINATORIA 97A(2010), pp. 311-318



and straight line segments. The points of intersection are called vertices of
the tiling and the segments of intersection are called edges of the tiling.

An edge-to-edge tiling is a type of tiling where each tile is a polygon
and adjacent tiles only share full sides. A vertex around which, in cyclic
order, we have an nj-gon, an na-gon, etc., is said to be of type [ny.ng.- ).
Let an edge-to-edge tiling by regular polygons such that all vertices are of
the same type be Archimedean Tilings. The Archimedean Tilings with of
type [ni.ng.--- .n,] is called [ny.ny.- - .n,)-tiling. As far as we know, a
{3.3.3.3.3.3)-tiling, a [4.4.4.4]-tiling and a [6.6.6)-tiling are all Archimedean
Tilings ([1]). In fact, the set of vertices of a [4.4.4.4)-tiling is an integral
lattice Z?, and that of a [3.3.3.3.3.3]-tiling is a general lattice. Let H be
a [6.6.6)-tiling by regular hexagons of side length 1, and H be the set of
vertices of the tiling 7. A point of H is called an H-point. Some results
on integral lattice points have been generalized to H-points, for example,
Pick’s theorem and some related properties on lattice polygons ([2], (3], [4],
[5], (6])-

Let D(n) be a circle of radius n centered at the origin of the integral
lattice Z2, where n € Z*. In 1837, C. F. Gauss (7] discussed the number
N(n) of lattice points that lie inside or on the boundary of D(n). Fur-
thermore, he showed that the ratio N(n)/n? tends to 7 as n tends to oo.
Recalling that the set of vertices of a [4.4.4.4]-tiling can be treated as an
integral lattice, we are motivated to investigate the similar problem for H-
points. Let D(n) be a circle of radius n centered at an H-point, and let
Au(D(n)) denote the number of H-points lying inside or on the boundary
of D(n). In this paper we present an algorithm to calculate the value of
Au(D(n)). Furthermore, we show that the ratio A5 (D(n))/n? tends to
27/S as n tends to 0o, where S = %é is the area of the regular hexagonal
tiles.

2 Main Results

In fact, H can be considered as the union of two disjoint triangular lattices
denoted by H*, H~ such that for any two points in H* (H ™) there exists
a translation of the plane which maps one of the two points to the other
and H to H. A point of H* (resp. H™) is called an H*-point (resp.
H~ -point).

Let C denote the set of all centers of the hexagonal tiles which determine
H. A point of C is called a C-point. Then H* UH~ UC forms a triangular
lattice with the area of each triangular tile 34@. We denote this triangular
lattice by T and a point of T is called a T-point. If a segment P, P, contains
some T-points, then the ordered sequence (from P; to Pz) of the T-points
(to be precise, H*-points, C-points, or H~-points) lying on it is called a
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T-sequence of P, Pp, which is denoted by (H*,C,H™,---).
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Figure 1: H*-points, H-points and C-points

Without loss of generality, we establish an z — y coordinate system
with an H*-point as the origin, and the z-axis lying along one edge of
a regular hexagonal tile, as shown in Figure 1. Let D(n) be a circle of
radius n centered at the origin O, where n € Z*. Let the circumference
of D(n) intersect the z-axis (resp. y-axis) at points Ag, By (resp. E, F).
The line determined by ApBy is denoted by L. Now we translate L in
direction OFE. If L meets some T-points for the first time, then we stop
translating and denote the chord obtained by ;. Let A;, B; denote the
two endpoints of /;, and O; the midpoint of !;, as shown in Figure 2. We
continue translating L in the same direction, and denote the second chord
obtained in the same way by l5. Similarly, we denote the two endpoints of
l2 by Ay and By, and the midpoint of Iz by O.. We continue translating in
this way, and finally we obtain k chords l;,1ls,- - - ,l; with endpoints A;, B;
and midpoints O;, where k = [-"’43@11] (here [-] denotes the greatest integer
function). For the sake of convenience, let Iy = AgBy and Og = O. Clearly,
all the chords !; are parallel, and the distance between {; and [;, is equal

to ¥3,i=0,1,2,-- ,k— L

Let A5 (D(n)) denote the number of H-points that lie inside or on the
boundary of D(n). For the sake of brevity, we denote the number of H-
points (resp. T-points, C-points) on a chord {; by Ax(l;) (resp. A7(L),
A¢(l;)). Suppose that the diameter Iy cuts the circle D(n) into two semi-
circles Dy (n) and Ds(n), and all the chords iy, 13,12, - - ,l; defined above

k
are chords of Dy(n). Then we have A (D(n)) = #u(lo) +2- Y. (L),
i=1

M) = M) — He(l). Let z; = %/n2 — (%24)?; then the length of I
is equal to 2z;, where ¢ =0,1,.-- , k. There are two cases to consider.
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Figure 2: The chords of D(n)

Case 1. i is even.

In this case, the midpoint O; of l; is an H-point. Recall that the side
length of each hexagonal tile is equal to 1, then both of the closed segments
A;0; and O;B; contain [z;] + 1 T-points, sharing a common H-point O;.
Hence we have A7 (l;) = 2[z;]+1. In order to calculate the value of A¢(l;),
there are three subcases to consider.

Subcase 1.1. [z;] =0 (mod 3).

Then the T-sequence of the segment O;B; is (H+,C,H-,H*,C,--,
C, H-, H*). Therefore, the number of C-points on the segment O;B; is
1%51. Similarly, the T-sequence of the segment A;0; is (H*, C, H~, Ht,
C,:--,C, H-, H*). Thus the number of C-points on the segment 4;0;
is also 1%‘1 Hence, A (l;) = 3[%1 and therefore

Halt) = Al - Aott) = L2 11

Subcase 1.2. [z;] =1 (mod 3).

Then the T-sequence of O;B; is (H*,C,H~,H*,C,.-- ,C,H~,H*,C).
Thus, the number of C-points on the segments O;B; is [1%‘1] + 1. Simi-
larly, the T-sequence of A;0; is (H-,H*,C,H-,H*,C,--- ,C,H~,H*),
and hence the number of C-points on the segments A4;0; is [anil] So,
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Now we present an algorithm to calculate Ay (D(n)):

1. Start with an arbitrary nonnegative integer n, where n is the radius
of the circle D(n). Set k = [2f3n], i =0 and N =0.

2. Sety; = y/n?— (%—gi)z. If i is even, then go to step 3. Otherwise,

go to step 4.
3. Compute the number of H-points a; on the chord l;. If [y:] =

0 (mod 3), then set a; = W 4+ 1. If 3] = 1 (mod 3), then set a; =
4 [I%l] + 2. Otherwise, set a; =4 [L%l] + 3. Replace N by N + 2a; and go
to step 5.

4. Compute the number of H-points a; on the chord l;. If [y; — 0.5] =
0 (mod 3), then set a; = ﬂL;()ﬂ + 1. If [y — 0.5] = 1 (mod 3), then set

a; = 4[] 4 3. Otheruise, set i = 4 [4328] + 4. Replace N by
N + 2a; and go to step 5.
5. Ifi < k, then replace i by i + 1 and go to step 2. Otherwise, stop

and output the value of N — ayp.
By this algorithm, we can compute A (D(n)) for all n € Z*. Some

values of A% (D(n)) are listed in Table 1.

r=n M(Dn) 22N | o0 4 (D(n) L)

10 244 2.4 10000 241839646 2.41839646
20 979 2.4475 20000 967359343 2.4183983575
50 6049 2.4196 50000 6045997801 2.4183991204
100 24202 2.4202 ([ 100000 24183991576 2.4183991576
200 96715 2.417875 ([ 200000 96735966373  2.418399159325
500 644597  2.418388 | 500000 604599788545  2.41839915418
1000 2418358 2.418358 ||1000000 2418399151576 2.418399151576
2000 9673627 2.41840675(2000000 9673596608725 2.41839915218125
5000 60460099 2.41840396 (/5000000 60459978806305 2.4183991522522

Table 1: Some values of A (D(n))

From the table we find that as n increases, the ratio of A5 (D(n))/n?
tends to 2.418399152- - -. In fact, we have the following theorem.

Theorem 2.1. Let D(n) be a circle of radius n (n € Z*) centered at the

origin O. Then lim 250 — 2, where S = 3425 is the area of the
n—o0

regular hezagonal tiles.
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Proof. Let the family A = {l |l is a line with an equation z = 1+%m, meE
Z}, and B = {l | lis a line with an equation y = 3@ + l@m, m € ZL}.
Then all the lines in .4 and B divide the whole plane into small rectangles.
Furthermore, each H-point is related to such a rectangle (it is unique), as
shown in Figure 3. If an H-point lies inside or on the boundary of the
circle D(n), then we shade the rectangle related to it, also see Figure 3.
Now denote the area of the regular hexagonal tile by S. Then the area of
the rectangles in Figure 3 is equal to 34? = g Therefore, the area of the

shaded region is equal to Ay (D(n)) - %

o | e |c|- olt .| . .

Figure 3: Rectangles determined by H-points

Observe, however, that some parts of the shaded region are outside
of the disk 2% 4+ y? < n, and that the disk is not entirely shaded. This
observation lets us bound the shaded region from below and above. In
fact, we only need find the largest disk whose interior is completely shaded,
and the smallest disk whose exterior is completely unshaded. Because the
diagonal of the rectangle is /3, all the shaded rectangles must be contained
in a circle of radius = n + /3. Similarly, the circle of radius r = n — /3
is contained entirely within the shaded rectangles. It follows that

m(n? = 2v3n - 3) <r(n? — 2v3n +3) = v(n — V3)? A (D(n)) -
<r(n+ v3)? = w(n? + 2v3n + 3),

8| tn

which implies that
MDD 5|0 (10, 5),
n

n? 2 n?
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Therefore we have

lim /H(e(n)) 5 _ -
n—oo n 2
that is, lim LaBm) — 21 a5 desired. o
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