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Abstract

We initiate a study of the toughness of infinite graphs by consid-
ering a natural generalization of that for finite graphs. After provid-
ing general calculation tools, computations are completed for several
examples. Avenues for future study are presented, including exis-
tence problems for tough-sets and calculations of maximum possible
toughness. Several open problems are posed.

1 Introduction

Throughout this article we consider only locally finite graphs G. For each
graph G, we use V(G), E(G), s(G) and A(G) to denote, respectively, the
vertex set, edge set, connectivity, and maximum degree for G. Given a
set of vertices U in a graph G, the number of components in the subgraph
of G induced by U is denoted by w(U). A separating set for G is a set
S € V(G) such that w(G \ S) > 1. Note that, if a locally finite graph G
is connected and S is a finite subset of V(G), then w(G\ S) is finite. We
extend Chvétal’s definition [1] of the toughness of a non-complete graph G
and allow G to be infinite by

= mi S|
(G) = mm{w(G \5)
We further adopt the convention of Pippert [7] and define 7(K,) =n - 1.
A graph G is said to be t-tough if 7(G) > t. A tough-set for G is a
separating set S for which 7(G) = |S|/w(G\ S). All standard notation and
terminology not presented here can be found in [8].

: S is a finite separating set for G}.
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2 General Bounds

The following two theorems extend directly from finite graphs to infinite
graphs.
Theorem 2.1 ([1])). For a graph G, 7(G) < k(G)/2.

Theorem 2.2 ([6]). For a graph G, if m is the largest integer such that the
complete bipartite graph K1 m is an induced subgraph, then 7(G) 2 &(G)/m.

The proofs of Theorems 2.1 and 2.2 for infinite graphs are the same
as those given for finite graphs. However, note that although the proof
of Theorem 2.2 given in [6] refers to a tough-set, it suffices in that proof
to merely consider a separating set. We shall see in Example 3.3 that an
infinite graph need not have a tough-set and consider this issue further in
Section 4.

Theorem 2.3. Lett € R, and suppose that there is a sequence of subgraphs
G1 C Gz C -+ C G such that |JV(Gk) = V(G) end Gy is t-tough for k
sufficiently large. Then, G is t-tough.

Proof. Suppose to the contrary that 7(G) < t. So there is some separating
set S C V(G) with |S|/w(G\ S) < t. Since |S| and w(G \ S) are finite, we
have some N such that Gy is t-tough, S C V(Gy), and each component
of G\ S has at least one vertex in V(Gn). Hence, w(Gn \ S) 2 w(G\ S).
We thus have

sl I8,

w(Gn\S) ~w(G\S) "
a contradiction. O

T(GNn) £

Since Hamiltonian graphs are 1-tough [1], we have an immediate corol-
lary.

Corollary 2.4. If there is a sequence of subgraphs Gy C G2 C --- C G
such that | JV(G,) = V(G) and G, is Hamiltonian for n sufficiently large,
then 7(G) 2 1.

Theorem 2.5. Let G be a connected locally finite graph with 7(G) = 0.
Then, G is infinite and A(G) is infinite.

Proof. Let n € Z*. Since 7(G) = 0, we have a separating set S C V(G)
such that |S|/w(G\ S) < 1/n. Since G is connected, each component of
G\ S is adjacent to at least one element of S. We claim that some vertex
in S is adjacent to at least n + 1 vertices. If not, then each vertex in S is
adjacent to at most n components of G \ S and we have w(G \ S) < n|S|.
This gives '



a contradiction, and establishes our claim. Since n is arbitrary, A(G) must
be infinite, and hence G must be infinite. O

Corollary 2.6. If G is a connected locally finite graph with A(G) finite,
then 7(G) > 0.

3 Examples

The converse of Corollary 2.6 does not hold.

Example 3.1. Consider the graph G such that V(G) is the set of positive
integers Z* and E(G) = {{i,i+j} : 1 < j < i}. So A(G) is infinite, and it
follows from Theorems 2.1 and 2.2 that 7(G) = 1/2 > 0. Of course, {2} is
a tough-set.

Theorem 3.2. Let T be a tree. Then T(T) = 1/A(T) if A(T) is finite,
and 7(T) = 0 otherwise.

Proof. If A(T) is finite, then it follows from Theorem 2.2 that a vertex of
maximum degree forms a tough-set for T'. So assume that A(T') is infinite.
Let n € Z*. So there must be some vertex v in T of degree at least n.

Hence,
m(T) <

IA

1
=,

1
w(T\{v})
Since n is arbitrary, 7(T") = 0. O

The following is an example of a tree with toughness 0.

Example 3.3. Let V = {(1,0)}U {(z,¥) : 2,y € Z,0 < y < z — 2}. Form
a tree T with vertex set V by connecting two vertices (z3,v;1) and (za,y2)
by an edge if and only if either y; = y2 =0 and |z — 21| = 1 or 2, = zo,
Y1 # ¥2, and y1y2 = 0. Note that deg((n,0)) = n. So A(T) is infinite and
thus 7(T") = 0. Moreover, T has no tough-set.

We shall use {1,...,n} as the vertex set for the path P,, the cycle C,,
and the complete graph K,,. Let Py, denote the two-way infinite path on
Z, and let P} denote the one-way infinite path on Z*. It follows from
Theorem 3.2 that 7(Ps) = 7(PE) = 1/2.

Theorem 3.4. The following graphs have toughness 1.
(a) P x P, forn>2,
(b) Pt x C,, for even n > 4,

(c) PE x P,
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(d) Py x P, forn >2,
(e) Poo x Cp, for evenn > 4,
(f) Poo x P4, and

(9) Peo X Peo.

Proof. To establish 1 as a lower bound, we apply Theorem 2.3, with ap-
propriate choices of finite subgraphs G for the graph G in each case.
() Gk = Pog X P,. (b) Gr = Por x Cn. (¢) Gx = Por x P. (d)
Gk = (Poo N[=k,k —1]) X P,. (€) Gk = (Poo N[=k,k = 1)) x Cp. (f)
Gk = (PooN[=k,k=1])x Pi. (g) Gk = (PooN[—k, k—1]) X (PooN[—k, k—1])).
That these graphs Gy are 1-tough is shown in [6].

To establish 1 as an upper bound in each case, let S) be the set of
vertices (¢, 7) in G with ¢ # j (mod 2), and observe that

: ISl
dm G\ Sy = & .

Note that the lower bound for parts (e) and (g) of Theorem 3.4 also
follows directly from Theorem 2.2.

Theorem 3.5. Foroddn > 5,1 < 7(Pt xCp) € 7(Poo xCp) < nf(n—1).

Proof. We apply Theorem 2.3. To establish n/(n — 1) as an upper bound,
let Sk be the set of vertices (¢, j) in Pox x Cp, with ¢ # j (mod 2), and note

that
lim |5 ==
k—oo W((Poo X Cp)\Sk) n-1
To establish the asserted middle inequality, let S be a finite separating
set for P, X C,, and let ! the the smallest first coordinate of a vertex in

S. By adding [{| + 2 to the first coordinate of each vertex in S, we obtain
a finite separating set S’ for P}, x Cy,. Since

1 _ 18]
W(PE X C)\5) _ @((Pow X Ca)\5)’

T(PE x Cp) <

and S is arbitrary, we see that 7(P} x Cp) < 7(Peo X Cp).
The lower bound of 1 follows from Corollary 2.4 and the observation
that P, x C, is Hamiltonian. a

It follows from Theorem 2.3 that the following infinite analog of Con-
jecture 5.7 from [6] is equivalent to it.

Conjecture 3.6. For oddn > 5, 7(P} x Cp) =n/(n - 1).
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Theorem 3.7. Forn > 2, 7(P} x Kp) = 7(Poo X Kp) = (n+1)/3.

Proof. In both cases, the separating set S given by the neighborhood of the
vertex (2,1) establishes (n + 1)/3 as an upper bound. For G = P} x K,,
let Gx = Py x K, and, for G = Py, X Ky, let Gy = (PooN[—k, k]) X K. By
Theorem 5.5 of [6], 7(Gx) = (n+1)/3, and thus our desired lower bound
follows from Theorem 2.3. a

4 Tough-Sets

Note that P} x P; has tough-set {(1,2),(2,1)}. Despite the fact that the
related graph Py, x P3 has the same toughness, it has no tough-set. In our
proof of this, we make repeated use of the following easily proven lemma
restricting the local structure of a tough-set.

Lemma 4.1 ([4, 3]). Separation Rule. Let S be a tough-set for a graph
G. Ifv € S, then v is adjacent to at least two components of G\ S.

Example 4.2. Py, x P; has no tough-set.

Proof. Suppose to the contrary that P, x P3 has a tough-set, and let S be a
tough-set of smallest possible size. By Theorem 3.4(d), w((Peo X P3)\ S) =
|S|. Without loss of generality, assume that 1 is the smallest first coordinate
for a vertex in S, and consider a subgraph Py x Ps of Py, x P3 such that k
is even and S C P, x P3. By Theorem 5.2 of [6], (P x P;) = 1.

Note that we cannot have all of (1, 1), (1,2), (1,3) € S, since the Separa-
tion Rule would then force (2,1),(2,2),(2,3) ¢ S, which would contradict
the assumption that S is a tough-set. Moreover, there must be a finite
component of (Pe X P3}\ S, and S is a separating set for P, x P3 with
w((Pr x P3)\ S) 2 w((Peo x P3)\ S). Since

18] 15|
(P x PI\S) > a((Br x P\ 8) = 1

it follows that we have equality throughout and S is a tough-set for P x P;.
We consider cases, based upon the portion of {(1,1),(1,2),(1,3)} in S.

Case 1: just (1,2) € S. It follows from the Separation Rule for (1,2) in
P x P; that (1,1) and (1, 3) must be in distinct components of (Pi x P3)\ S.
Since (1,1) and (1,3) collapse to the same component of (P, X P3) \ S,
this contradicts the fact that S is a tough-set for P, x Pj, also having
toughness 1.

Case 2: just (1,1) € S. By the Separation Rule for (1,1), we must
have (1,2) and (2,1) in distinct components of (Ps X P3) \ S. Letting

1=T(P°°><P3)=w
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S =8\ {(1,1)}, we see that w((Poo x P3)\ ') = w((Px x P3)\ S) — 1.
However,
I -
W((Poo X P3)\ ') w((Poo x P3)\ S)

and 9’ is seen to be a tough-set for P,, X Ps of smaller size that S, a
contradiction.

Case 3: (1,1),(1,2) € S. This contradicts the Separation Rule for (1,1)
in P, x Pj. ‘

Case 4: just (1,1),(1,3) € S. It follows from the Separation Rule that
(2,2) € S. Letting S’ = S\ {(1,1),(1,3)}, we see that w((Pe x P3)\ 5') >
w((Poo % P3)\ S) — 2. However,

$1 .18
W((Poo X P3)\ 8"} = w((Poo X P3)\ S)

1,

1

which contradicts the assumption that S is a tough-set of smallest possible
size.

Since any other case is symmetric to those considered, we see that S
cannot be a tough-set. 0

In light of the arguments used to establish upper bounds in Theorems
3.4 and 3.5, we extend the definition of a tough-set to allow infinite tough-
sets.

Definition 4.3. Given a graph G, call an infinite separating set S C V(G)
an infinite tough-set if there is a sequence of finite subsets §; C S2 C:-- C
S such that Si is a separating set for k sufficiently large and

. |Sk]
@) = Jim S\ sy

Based on Definition 4.3, P, x P; has the infinite tough-set
S={G,5):4,j €2, 1<j <3 andi#j(mod2)}.

Moreover, we see from the proofs of Theorems 3.4 and 3.5 that each of the
graphs therein has a tough-set or an infinite tough-set.

Question 4.4. What characterizes those graphs which have a finite tough-
set, those graphs which only have an infinite tough-set, and those graphs
with no tough-sets of any kind?
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5 Possible Toughness Values

The toughness of a finite connected graph is obviously a positive rational
number. In fact, any such number is achievable by both a finite graph and
an infinite graph.

Theorem 5.1. For any positive rational number q, there is a non-complete
finite graph G such that 7(G) = q.

Proof. Write ¢ = a/b for integers a and b with b > 1. From Theorem 3 of
(7], we see that the join K, + E} of the complete graph on a vertices and
the empty graph on b vertices has 7(K, + E}) = a/b=g. O

Theorem 5.2. For any nonnegative rational number q, there is a connected
infinite graph G such that 7(G) = q.

Proof. In light of Example 3.3, it remains to consider rational ¢ > 0. Write
g = a/b for integers a and b with b > 1. Note that the join K, + (Ep x K,)
provides an alternative to the construction used in the finite case. We
extend this construction to build an infinite graph. First, let H be the
quotient graph of P} x E; obtained by identifying all vertices of the form
(1,7) to a single vertex v. To form G, we replace each vertex of H by a
copy of K,. Two vertices in G are adjacent if and only if they come from
the same vertex of H or come from adjacent vertices in H. The set S of
vertices in G corresponding to the vertex v from H forms a separating set
that establishes 7(G) < a/b = q. Notice that G is a-connected and that the
largest integer m such that the complete bipartite graph K} , is an induced
subgraph of G is b. Hence, Theorem 2.2 gives that 7(G) > a/b = q. a

Chvital [1] conjectures that there is a ¢ such that any t-tough graph must
be Hamiltonian. It follows from Theorem 5.2 that there exist infinite, and
hence obviously non-Hamiltonian, graphs with arbitrarily high toughness.

Question 5.3. Does there erist an infinite graph with irrational toughness?

If the answer to Question 5.3 is yes, then what irrational numbers are
achievable? Is there some restriction to algebraic numbers?

6 Maximum Toughness

The determination of the maximum possible toughness among finite graphs
with a fixed number of vertices and edges has been considered extensively
(2, 3, 5]. In that work, the possible values for r-regular graphs are the most
significant.
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Question 6.1. What is the mazimum possible toughness among r-regular
infinite graphs?

It is easy to see that the answer to Question 6.1 in the case that r = 2
is 1/2, the toughness value achieved by P.,. Note that this is less than the
known value 1 when r = 2 in the analog of Question 6.1 for finite graphs
[5). Since Po X K,_1 is r-regular, we know from Theorem 3.7 that the
answer to Question 6.1 is at least 7/3. However, in the finite case (2], the
value r/2 is generally achievable.
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