The dimension of the kernel for intersections of certain starshaped sets in \mathbb{R}^3

Marilyn Breen

Abstract

Let S be a finite family of sets in \mathbb{R}^d , each a finite union of polyhedral sets at the origin and each having the origin as an extreme point. Fix d and $k, 0 \le k \le d \le 3$. If every d+1 (not necessarily distinct) members of S intersect in a starshaped set whose kernel is at least k-dimensional, then $\cap \{S_i : S_i \text{ in S}\}$ also is a starshaped set whose kernel is at least k-dimensional. For $k \ne 0$, the number d+1 is best possible.

Mathematics Subject Classification (2000):Primary 52.A30, 52.A35. Keywords: Starshaped sets, intersections of starshaped sets, kernels.

1 Introduction.

We begin with some familiar definitions: Let S be a set in \mathbb{R}^d . A point s of S is called an *extreme point* of S if and only if s is not on any segment (a,b) contained in set S. For points x,y in S, we say s sees y (x is visible from y) via S if and only if the corresponding segment [x,y] lies in S. A set S is called starshaped if and only if for some point p in S, p sees each point of S via S, and the set of all such points p is the (convex) kernel of S, denoted ker S. A set S is called a cone if and only if for some point v in S and for every point s in S, $s \neq v$, the associated ray R(v,s) emanating from v through s lies in S. The point v is called a vertex of S. Clearly v belongs to ker S, so every cone will be starshaped.

Recent work by Bobylev [1] provides a starshaped set analogue of Helly's familiar theorem on intersections of convex sets. Since there are some well known Helly-type theorems that concern the dimension of an intersection of convex sets (see Grünbaum [6] and Katchalski [8]), it is reasonable to expect analogous results to hold for the dimension of the kernel in an intersection of

starshaped sets. Some theorems in [2] and [3] offer these kinds of analogues for the planar case but establish few answers for higher dimensions. In this paper, we present a small result concerning the dimension of the kernel for intersections of certain starshaped sets in \mathbb{R}^3 and a Helly-type result for intersections of cones in \mathbb{R}^d .

Throughout the paper, bdry S and conv S will denote the boundary and convex hull, respectively, for set S. The reader may refer to Valentine [10] to Lay [9], to Danzer, Grünbaum, Klee [4], and to Eckhoff [5] for discussions on Helly-type theorem and starshaped sets.

2 Preliminary comments.

In this section we present some terminology and results from [2] and [3] that will be useful in subsequent arguments.

Fix d and $k, 0 \le k \le d$, and let S be a finite family of closed sets in \mathbb{R}^d . Assume that every d+1 (not necessarily distinct) members of S intersect in a starshaped set whose kernel is at least k-dimensional. Define set $S = \cap \{S_i : S_i \text{ in } S\}$. By Bobylev's results [1], set S is nonempty and starshaped. Adapting Bobylev's proof, for each set S_i we define an associated set $M_i = \{x : x \text{ in } S_i, x \text{ sees each point of } S \text{ via } S_i\}$. Every set M_i is closed, and we let M denote the family of all the sets M_i . Observe that $ker S_i \subseteq ker M_i$ for each i. Similarly, for any d+1 (not necessarily distinct) members S_1, \ldots, S_{d+1} of S, $ker(S_1 \cap \ldots \cap S_{d+1}) \subseteq ker(M_1 \cap \ldots \cap M_{d+1})$. Therefore, every d+1 members of M have a starshaped intersection, and by a version of Helly's topological theorem [7], $\cap \{M_i : M_i \text{ in } M\} \neq \phi$.

Select any point w in $\cap \{M_i : M_i \text{ in } M\}$. It is not hard to show that $w \in \ker M_i$ for every i. Similarly, w is in the kernel of every intersection of sets M_i . The point w belongs to $\ker S$ as well, and it is easy to verify that $\cap \{M_i : M_i \text{ in } M\} = \ker S$. For each i, since $\ker S_i \subseteq \ker M_i$ and $w \in \ker M_i$, $\ker M_i$ contains a k-dimensional set at w. Likewise, every d+1 (not necessarily distinct) members of S meet in a starshaped set having at least a k-dimensional kernel at w.

3 The results.

The first lemma and theorem concern the dimension of the kernel for intersections of certain starshaped sets.

Lemma 1. Let $S = \{S_i : 1 \le i \le n\}$ be a finite family of sets in \mathbb{R}^d , each a finite union of polyhedral sets at the origin and each having the origin

as an extreme point. If every d+1 (not necessarily distinct) members of S meet in a starshaped set whose kernel is at least one-dimensional, then $S \equiv \bigcap \{S_i : S_i \text{ in } S\}$ also is a starshaped set whose kernel is at least one-dimensional. The number d+1 is best possible.

Proof. As in our preliminary remarks, for each set S_i in S, define the associated set $M_i = \{x : x \text{ in } S_i, x \text{ sees each point of } S \text{ via } S_i\}$. By our preliminary comments, every d+1 of the M_i sets meet in a starshaped set having at least a one-dimensional kernel. Clearly this kernel contains the origin θ .

Let B denote a d-dimensional ball centered at θ . For each i, define $B_i = \bigcup \{R(\theta,m) \cap bdry \ B: m \in M_i, m \neq \theta\}$. Since S_i is a finite union of polyhedral sets, so is M_i , and B_i is closed. We assert that B_i is starshaped relative to $bdry \ B$ in the following sense: There is a point p in B_i such that, for each b in B_i, B_i contains the smaller great circle arc from p to b. Also, b cannot be antipodal to p. To verify this, let $[\theta, s_p]$ be a nondegenerate segment in $ker \ S_i \subseteq ker \ M_i$, and let $\{p\} = R(\theta, s_p) \cap bdry \ B$. For b in B_i , say $\{b\} = R(\theta, m_b) \cap bdry \ B$ for m_b in M_i . Clearly b and p cannot be antipodal since θ is an extreme point of S_i . Segment $[\theta, s_p]$ sees m_b via M_i , and the family of rays from θ through $[s_p, m_b]$ meets $bdry \ B$ in the required arc.

Similarly, every d+1 of the B_i sets have an intersection which is starshaped relative to $bdry\,B$. By the topological version of Helly's theorem, $\cap\{B_i:1\leq i\leq n\}\neq \phi$. Select z in this intersection. For every $i,1\leq i\leq n$, there is a corresponding nondegenerate segment $[\theta,z_i]$ in $R(\theta,z)\cap M_i$. The shortest of these segments lies in $\cap\{M_i:1\leq i\leq n\}=ker\,S$ and satisfies the lemma.

Example 1 will show that the number d+1 in the lemma is best possible.

Theorem 1. Let $S = \{S_i : 1 \le i \le n\}$ be a finite family of sets in \mathbb{R}^d , each a finite union of polyhedral sets at the origin and each having the origin as an extreme point. Fix d and $k, 0 \le k \le d \le 3$. If every d+1 (not necessarily distinct) members of S intersect in a starshaped set whose kernel is at least k-dimensional, then $\cap \{S_i : S_i \text{ in } S\}$ also is a starshaped set whose kernel is at least k-dimensional. For $k \ne 0$, the number d+1 is best possible.

Proof. If k=0, the result is trivial, and if k=d, the result follows from [2, Corollary 1.2]. When k=1, Lemma 1 above establishes the result. Thus we may restrict our attention to the case for k=2, d=3. We adapt an argument by Katchalski [8], also employed in [3]. Using the notation from the proof of Lemma 1, for each $i, 1 \le i \le n$, define set M_i , and select a nondegenerate segment $[\theta, z]$ in $\bigcap \{M_i : 1 \le i \le n\} = \ker S$. Let H be a plane orthogonal to $[\theta, z]$ at a point z' on (θ, z) . Using our preliminary remarks, since every d+1=4 of the S_i sets intersect in a starshaped set whose kernel is at least two-dimensional, every four of the M_i sets intersect

in such a set as well. Furthermore, $[\theta, z]$ is a subset of these kernels. That is, for any four of the M_i sets, say $M_1, M_2, M_3, M_4, \ker(M_1 \cap M_2 \cap M_3 \cap M_4)$ is at least two-dimensional and contains $[\theta, z]$. Since θ and z are in opposite open halfplanes determined by $H, H \cap \ker(M_1 \cap M_2 \cap M_3 \cap M_4)$ is at least one-dimensional. Furthermore, since $H \cap \ker(M_1 \cap M_2 \cap M_3 \cap M_4) \subseteq \ker((M_1 \cap H) \cap (M_2 \cap H) \cap (M_3 \cap H) \cap (M_4 \cap H))$, every four of the sets $M_i \cap H$ intersect in a starshaped set in H whose kernel is at least one-dimensional. By [2, Theorem 2], $\cap \{M_i \cap H : 1 \le i \le n\}$ is a starshaped set whose kernel is at least one-dimensional. Hence $\cap \{M_i : 1 \le i \le n\} = \ker S$ contains a one-dimensional convex set C in H as well as the segment $[\theta, z]$, and $\operatorname{conv}(C \cup [\theta, z])$ is a two-dimensional subset of $\ker S$, the desired result.

Example 1 will demonstrate that the number d+1 is best for $k \neq 0$. The second theorem is a Helly-type result for intersections of cones.

Theorem 2. Let $S = \{S_i : 1 \le i \le n\}$ be a finite family of closed cones in \mathbb{R}^d . If every d+1 (not necessarily distinct) members of S intersect in a cone, then $S \equiv \cap \{S_i : S_i \text{ in } S\}$ also is a cone. The number d+1 is best possible.

Proof. Again we use a technique from Bobylev [1]. By the topological version of Helly's theorem [7], observe that $S \equiv \cap \{S_i : 1 \leq i \leq n\} \neq \phi$. If S is degenerate, there is nothing to prove, so assume that this is not the case. For each $i, 1 \leq i \leq n$, define an associated set $A_i = \{v : \text{for all } s \text{ in } S, s \neq v, R(v, s) \subseteq S_i\}$. Clearly A_i contains every vertex of S_i , so $A_i \neq \phi$. Similarly, for any d+1 (not necessarily distinct) sets S_i and corresponding sets $A_i, 1 \leq i \leq d+1$, if v is a vertex of $\cap \{S_i : 1 \leq i \leq d+1\}$, then $v \in \cap \{A_i : 1 \leq i \leq d+1\}$, so every d+1 of the A_i sets have a nonempty intersection as well.

We assert that each A_i set is starshaped, as are intersections of d+1 of these sets: For A_1,\ldots,A_{d+1} (not necessarily distinct), let v be a vertex of $\cap \{S_i:1\leq i\leq d+1\}$, to prove that $v\in ker\cap \{A_i:1\leq i\leq d+1\}$. That is, for $a\in\cap\{A_i:1\leq i\leq d+1\}$ considering the formula $i\in\{v,a\}$ considering the following that $i\in\{v,a\}$ considering the following that $i\in\{v,a\}$ considering the following term $i\in\{v,a\}$ considering the following term

Finally, since the S_i sets are closed, so are the A_i sets. Again by the topological version of Helly's theorem [7], $\cap \{A_i : 1 \leq i \leq n\} \neq \phi$. For w

in $\cap \{A_i : 1 \leq i \leq n\} \subseteq \cap \{S_i : 1 \leq i \leq n\}, R(w,s) \subseteq S_i$ for all s in $S \setminus \{w\}$ and for all $i, 1 \leq i \leq n$. We conclude that w is a vertex for $\cap \{S_i : 1 \leq i \leq n\} = S$, and S is a cone, finishing the proof.

The following easy examples will show that the number d+1 is best in Lemma 1, Theorem 1, and Theorem 2.

Example 1. Let S be a d-dimensional simplex in \mathbb{R}^d , with the origin θ interior to S. Let $F_i, 1 \leq i \leq d+1$, denote the facets of S, and consider the convex (hence starshaped) cones $C_i \equiv \bigcup \{R(\theta, x) : x \in F_i\}, 1 \leq i \leq d+1$. Clearly every d of the cones C_i meet in d ray, yet $\bigcap \{C_i : 1 \leq i \leq d+1\} = \{\theta\}$. If we enlarge each cone slightly but keep the origin as the vertex, every d of these new cones will meet in a full d-dimensional convex cone while all d+1 cones will meet in the origin. Thus the number d+1 in Lemma 1 and Theorem 1 is best possible (for d in d in d is defined as d in d in

Similarly, let H_i denote the hyperplane determined by facet F_i above, with S in the closed halfspace clH_{i1} determined by H_i . Every d of the convex cones clH_{i1} , $1 \le i \le d+1$, meet in a cone at a vertex of S, but $\cap \{clH_{i1}: 1 \le i \le d+1\} = S$ is not a cone. Thus the number d+1 in Theorem 2 is best, also.

References

- [1] N. A. Bobylev, The Helly theorem for starshaped sets, Journal of Mathematical Sciences 105 (2001), 1819-1825.
- [2] Marilyn Breen, The dimension of the kernel in an intersection of starshaped sets, Archiv der Mathematik 81 (2003), 485-490.
- [3] , The dimension of the kernel in finite and infinite intersections of starshaped sets, Aequationes Math. 67 (2004), 263-275.
- [4] Ludwig Danzer, Branko Grünbaum, Victor Klee, Helly's theorem and its relatives, Convexity, Proc. Sympos. Pure Math. 7 (1962), Amer. Math. Soc., Providence, RI, 101-180.
- [5] Jürgen Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of Convex Geometry vol. A, ed. P. M. Gruber and J. M. Wills, North Holland, New York (1993) 389-448.
- [6] Branko Grünbaum, The dimension of intersections of convex sets, Pacific J. Math. 12 (1962), 197-202.
- [7] E Helly, Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten, Monatsh. Math. Phys. 37 (1930), 281-302.
- [8] Meir Katchalski, The dimension of intersections of convex sets, Israel J. Math. 10 (1971), 465-470.
- [9] Steven R. Lay, Convex Sets and Their Applications, John Wiley, New York, (1982).
- [10] F. A. Valentine, Convex Sets, McGraw-Hill, New York, (1964).

The University of Oklahoma Department of Mathematics Norman, Oklahoma 73019 U.S.A.

Email: mbreen@ou.edu