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Abstract

Let 8 be a finite family of sets in R?, each a finite union of poly-
hedral sets at the origin and each having the origin as an extreme
point. Fix d and k,0 < k < d £ 3. If every d + 1 (not necessarily
distinct) members of § intersect in a starshaped set whose kernel is
at least k-dimensional, then N{S; : S;in8} also is a starshaped set
whose kernel is at least k-dimensional. For k # 0, the number d + 1
is best possible.
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1 Introduction.

We begin with some familiar definitions: Let S be a set in R%. A point s
of S is called an extreme point of S if and only if s is not on any segment
(a,b) contained in set S. For points z,y in S, we say s sees y (z is visible
from y) via S if and only if the corresponding segment [z,y] lies in S. A
set S is called starshaped if and only if for some point p in S, p sees each
point of § via S, and the set of all such points p is the (convex) kernel of
S, denoted ker S. A set S is called a cone if and only if for some point v in
§ and for every point s in S,s # v, the associated ray R(v,s) emanating
from v through s lies in S. The point v is called a vertez of S. Clearly v
belongs to ker S, so every cone will be starshaped.

Recent work by Bobylev [1] provides a starshaped set analogue of Helly’s
familiar theorem on intersections of convex sets. Since there are some well
known Helly-type theorems that concern the dimension of an intersection of
convex sets (see Griinbaum [6] and Katchalski [8]), it is reasonable to expect
analogous results to hold for the dimension of the kernel in an intersection of
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starshaped sets. Some theorems in (2] and [3] offer these kinds of analogues
for the planar case but establish few answers for higher dimensions. In this
paper, we present a small result concerning the dimension of the kernel for
intersections of certain starshaped sets in R® and a Helly-type result for
intersections of cones in R¢.

Throughout the paper, bdry S and conv S will denote the boundary and
convex hull, respectively, for set S. The reader may refer to Valentine [10]
to Lay [9], to Danzer, Griinbaum, Klee [4], and to Eckhoff [5] for discussions
on Helly-type theorem and starshaped sets.

2 Preliminary comments.

In this section we present some terminology and results from [2] and (3]
that will be useful in subsequent arguments.

Fix d and k,0 < k < d, and let $ be a finite family of closed sets in R9.
Assume that every d + 1 (not necessarily distinct) members of 8 intersect
in a starshaped set whose kernel is at least k-dimensional. Define set S =N
{S; : S: in 8}. By Bobylev’s results [1], set S is nonempty and starshaped.
Adapting Bobylev’s proof, for each set S; we define an associated set M; =
{z : = in S;,z sees each point of S via S;}. Every set M; is closed, and
we let M denote the family of all the sets M;. Observe that ker S; C ker
M; for each i. Similarly, for any d + 1 (not necessarily distinct) members
S1y...,8a+1 of 8, ker(S1N...NSy41) € ker(My N...N Mg41). Therefore,
every d+ 1 members of M have a starshaped intersection, and by a version
of Helly’s topological theorem [7], N{M; : M;inM} # ¢.

Select any point w in N{M; : M;inM}. It is not hard to show that
weker M; for every 1. Similarly, w is in the kernel of every intersection
of sets M;. The point w belongs to ker S as well, and it is easy to ver-
ify that N{M; : M;inM} = ker S. For each i, since ker S; C ker M; and
w eker M;, ker M; contains a k-dimensional set at w. Likewise, every d + 1
(not necessarily distinct) members of 8 meet in a starshaped set having
at least a k-dimensional kernel, so every d + 1 members of M meet in a
starshaped set having at least a k-dimensional kernel at w.

3 The results.

The first lemma and theorem concern the dimension of the kernel for in-
tersections of certain starshaped sets.

Lemma 1. Let 8 = {S; : 1 < i < n} be a finite family of sets in R¢, each
a finite union of polyhedral sets at the origin and each having the origin
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as an extreme point. If every d + 1 (not necessarily distinct) members of
8 meet in a starshaped set whose kernel is at least one-dimensional, then
S = N{S; : S;in8} also is a starshaped set whose kernel is at least one-
dimensional. The number d + 1 is best possible.

Proof. As in our preliminary remarks, for each set S; in 8, define the associ-
ated set M; = {z : zin S, z sees each point of S via S;}. By our preliminary
comments, every d + 1 of the M; sets meet in a starshaped set having at
least a one-dimensional kernel. Clearly this kernel contains the origin 8.
Let B denote a d-dimensionsal ball centered at . For each 4, define B; =
U{R(6, m)Nbdry B : m e M;, m # 6}. Since S; is a finite union of polyhedral
sets, 8o is M;, and B; is closed. We assert that B; is starshaped relative
to bdry B in the following sense: There is a point p in B; such that, for
each b in B;, B; contains the smaller great circle arc from p to b. Also,
b cannot be antipodal to p. To verify this, let [6, s,] be & nondegenerate
segment in ker S; C ker M;, and let {p} = R(0, s,)Nbdry B. For b in B;, say
{b} = R(8, mp) Nbdry B for my in M;. Clearly b and p cannot be antipodal
since 0 is an extreme point of S;. Segment [0, sp] sees m; via M;, and the
family of rays from 6 through [s,, m;] meets bdry B in the required arc.
Similarly, every d+1 of the B; sets have an intersection which is starshaped
relative to bdry B. By the topological version of Helly’s theorem, N{B; :
1 <i < n} # ¢. Select 2 in this intersection. For every i,1 < i < n, there is
a corresponding nondegenerate segment [6, z;] in R(6, z) N M;. The shortest
of these segments lies in N{M; : 1 < i < n} = kerS and satisfies the
lemma.

Example 1 will show that the number d + 1 in the lemma is best possible.

Theorem 1. Let 8§ = {S; : 1 < i < n} be a finite family of sets in R9, each
a finite union of polyhedral sets at the origin and each having the origin as
an extreme point. Fix d and k,0 < k < d < 3. If every d+1 (not necessarily
distinct) members of 8 intersect in a starshaped set whose kernel is at least
k-dimensional, then N{S; : S;in 8} also is a starshaped set whose kernel is
at least k-dimensional. For k # 0, the number d + 1 is best possible.

Proof. If k = 0, the result is trivial, and if k = d, the result follows from [2,
Corollary 1.2]. When k = 1, Lemma 1 above establishes the result. Thus
we may restrict our attention to the case for k = 2,d = 3. We adapt an
argument by Katchalski [8], also employed in [3]. Using the notation from
the proof of Lemma 1, for each 4,1 < ¢ < n, define set M;, and select a
nondegenerate segment [0,2] in N{M; : 1 < i < n} = kerS. Let H be
a plane orthogonal to [0, 2] at a point 2’ on (4, z). Using our preliminary
remarks, since every d + 1 = 4 of the S; sets intersect in a starshaped set
whose kernel is at least two-dimensional, every four of the M; sets intersect
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in such a set as well. Furthermore, [6, 2] is a subset of these kernels. That is,
for any four of the M; sets, say My, Mo, M3, My, ker(M; N Mz N M3 N M,)
is at least two-dimensional and contains [6, z]. Since 6 and z are in opposite
open halfplanes determined by H,H N ker(M; N Mz N M3 N M,) is at
least one-dimensional. Furthermore, since H Nker(M; N Mo N M3 N M,) C
ker((Myn H)Nn(Mp N H)N (M3 N H)N (M4 N H)), every four of the sets
M; N H intersect in a starshaped set in H whose kernel is at least one-
dimensional. By [2, Theorem 2], "{M; N H : 1 < i < n} is a starshaped set
whose kernel is at least one-dimensional. Hence N{M; : 1 < i < n} = ker S
contains a one-dimensional convex set C in H as well as the segment [6, z],
and conv(CU[8, 2]) is a two-dimensional subset of ker S, the desired result.

Example 1 will demonstrate that the number d + 1 is best for & # 0.

The second theorem is a Helly-type result for intersections of cones.
Theorem 2. Let 8 = {S; : 1 < i < n} be a finite family of closed cones
in RY. If every d + 1 (not necessarily distinct) members of 8 intersect in a
cone, then S = N{S; : S; in 8} also is a cone. The number d + 1 is best
possible.

Proof. Again we use a technique from Bobylev [1]. By the topological version
of Helly’s theorem [7], observe that S =nN{S; : 1 <i<n} # ¢. If S'is
degenerate, there is nothing to prove, so assume that this is not the case.
For each 4,1 < i < n, define an associated set A; = {v : for all s in
S,s # v, R(v,8) C S;}. Clearly A; contains every vertex of S;, so A; # ¢.
Similarly, for any d+ 1 (not necessarily distinct) sets S; and corresponding
sets A;,1 <i<d+1,ifvisavertex of N{S; : 1 £ i < d+ 1}, then
veN{A;:1<i<d+1},soevery d+1 of the A; sets have a nonempty
intersection as well.

We assert that each A; set is starshaped, as are intersections of d + 1 of
these sets: For A;,..., Ag+1 (not necessarily distinct), let v be a vertex of
N{S; : 1 < i < d+ 1}, to prove that veker N {4; : 1 < i < d+ 1}. That
is, foraeN{A4; : 1 <i<d+1} CN{S;:1<i<d+ 1}, we will show
that [v,a] € N{A; : 1 < i < d+1}. If v = a, there is nothing to show,
so assume that v # a. For s in S,s # a,R(a,8) CN{S;: 1 i <d+1},
so for each point ¢ of R(a,s)\{v},R(v,t) C N{S;:1 < ¢ < d+ 1}. This
implies that for each point u of [v,a]\{s}, R(u,s) CN{S;:1<i<d+1}.
If s = a, since R(v,a) C N{S; : 1 < i < d+ 1}, again for each point u of
[v,a]\{s}, R(u,s) € N{S; : 1 < i < d+ 1}. Because this is true for every s
in S,[v,0] CN{A;:1<i<d+1} HencevekerNn{4;:1<i<d+1},
and N{A; : 1 <i < d+ 1} is starshaped.

Finally, since the S; sets are closed, so are the A; sets. Again by the topo-
logical version of Helly’s theorem (7], N{4; : 1 < % < n} # ¢. For w
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inN{4; : 1 <i<n}Cn{Si:1< i< n},Rws) CS; for all s
in S\{w} and for all i,1 < ¢ < n. We conclude that w is a vertex for
N{S;:1<i<n}=2S5, and S is a cone, finishing the proof.

The following easy examples will show that the number d + 1 is best in
Lemma 1, Theorem 1, and Theorem 2.

Example 1. Let S be a d-dimensional simplex in R¢, with the origin 8
interior to S. Let F;,1 < i < d+ 1, denote the facets of S, and consider the
convex (hence starshaped) cones C; = U{R(8,z) : zeF;},1 < i <d+ 1.
Clearly every d of the cones C; meet in a ray, yet N{C; : 1 <i<d+1} =
{6}. If we enlarge each cone slightly but keep the origin as the vertex, every
d of these new cones will meet in a full d-dimensional convex cone while all
d+1 cones will meet in the origin. Thus the number d+1 in Lemma 1 and
Theorem 1 is best possible (for k # 0).

Similarly, let H; denote the hyperplane determined by facet F; above, with
S in the closed halfspace clH;; determined by H;. Every d of the convex
cones clH;;,1 < i < d+ 1, meet in a cone at a vertex of S, but N{c!H;; :
1<i<d+1} = Sis not a cone. Thus the number d + 1 in Theorem 2 is
best, also.
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