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Abstract

We call the digraph D an m-coloured digraph if the arcs of D
are coloured with m colours. A subdigraph H of D is called mono-
chromatic if all of its arcs are coloured alike.

A set N C V(D) is said to be a kernel by monochromatic paths
if it satisfies the following two conditions:

(i) For every pair of different vertices u,v € N there is no mono-
chromatic directed path between them.

(ii) For every vertex £ € V(D) — N, there is a vertex y € N such
that there is an zy-monochromatic directed path.

In this paper it is proved that if D is an m-coloured k-partite
tournament such that every directed cycle of length 3 and every
directed cycle of length 4 is monochromatic, then D has a kernel by
monochromatic paths.

Some previous results are generalized.
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1 Introduction

In 1982 Sands, Sauer and Woodrow, have proved that any 2-coloured di-
graph has a kernel by monochromatic paths [24]. In particular any 2-
coloured tournament has a kernel by monochromatic paths.

The known sufficient conditions for the existence of a kernel by mono-
chromatic paths in m-coloured digraphs (m > 3) tournaments (or nearly
tournaments), ask for the monochromaticity or quasj-monochromaticity of
small subdigraphs as directed cycles of length at most 4 or transitive tour-
naments of order 3 (a subdigraph H of an m-coloured digraph D is quasi-
monochromatic if with at most one exception all of its arcs are coloured
alike).

In 1988 [23] Shen Minggang proved that if T is an m-coloured tour-
nament such that every directed cycle of length 3 and every transitive
tournament of order 3 is quasi-monochromatic, then T has a kernel by
monochromatic paths; he also proved that the result is best possible for
m 2 5 (In [13] it was proved that the result is best possible for m > 4).
In [9] it was proved that if T' is an m-coloured tournament such that every
directed cycle of length at most 4 is quasi-monochromatic then T has a
kernel by monochromatic paths. Results similar to those of [23] and [9]
were proved for the digraph obtained from a tournament by the deletion of
a single arc in [11] and [12] respectively.

In [10] it was proved that if T' is an m-coloured tournament such that
every directed cycle of length 3 is monochromatic, then T has a kernel
by monochromatic paths. And in [14] it was proved that if T is an m-
coloured bipartite tournament such that every directed cycle of length 4
is monochromatic, then T has a kernel by monochromatic paths. Another
interesting result in kernels by monochromatic paths can be found in [15].

In this paper is proved that if D is an m-coloured k-partite tournament
such that every directed cycle of length 3 and every directed cycle of length
4 is monochromatic, then D has a kernel by monochromatic paths. Clearly
this result generalizes the named result of [14].

2 Preliminaries

For general concepts we refer the reader to [1] and [2]. The topic of dom-
ination in graphs has been widely studied by several authors, a complete
study can be found in [16] and [17].

A special class of domination is the domination in digraphs. Let D be
a digraph, a set of vertices S C V(D) is dominating whenever for every
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w € V(D) — S there exists a wS-arc in D. A kernel of a digraph D is a
dominating independent set of vertices. Interesting surveys of kernels in
digraphs can be found in [6], [7] and [8].

The concept of kernel has found many applications, see for example
[4],[5],[22].

Clearly the concept of kernel by monochromatic paths is a generalization
of that of kernel, another interesting generalization is the concept of (k,!)-
kernel introduced by Kwasnik in [20]. Other results about (k, !)-kernels can
be found in (18],(19], and [21].

The topic of k-partite tournaments also has been widely studied, a
survey in this topic can be found in {25).

Let D be a digraph, V(D) and A(D) will denote the sets of vertices
and arcs of D respectively. All the paths, cycles and walks considered in
this paper will be directed paths, cycles or walks. Let S, Se C V(D), the
path (zo,Z1,...,Tn) Will be called an S;Ss-path whenever o5 € S; and
Z, € S2. An arc (z;,z;) is asymmetrical (resp. symmetrical) whenever
(z2,21) ¢ A(D) (resp. (z2,21) € A(D)).

Let D be an m-coloured digraph, the closure of D denoted by €(D) is
the digraph defined as follows: V(€(D)) = V(D) and (u,v) € A(C(D)) if
and only if there exists an uv-monochromatic path in D. Clearly N is a
kernel by monochromatic paths of D if and only if N is a kernel of €(D).

A digraph D is said to be kernel-perfect digraph whenever each one of
its induced subdigraphs has kernel.

Definition 2.1. A digraph D is called a k-partite tournament whenever
there exists a partition of V(D) into k subsets {V}, V2, ..., Vi} such that:
1. For each i € {1,2,...,k}, A(D[Vi]) = @ (where D[V}] is the subdi-
graph of D induced by V;).
2. If {i,5} €{ 1,2,...,k}, then for each u € V; and each w € Vj there
exists exactly one arc between v and w in D.

In what follows we will denote by I'"(u) = {z € V(D) |(z,u) € A(D)}
and I't(u) = {z € V(D) | (u, 2) € A(D)}.

The following Lemma will be used along the paper without more expla-
nations. The proof is very easy and it is let to the reader.

Lemma 2.1. Let D be a k-partite tournament, k > 2, and z,y € V(D).
If (z,y) ¢ A(D) and (y,z) ¢ A(D) then (z,u) € A(D) or (u,z) € A(D)
for each u € T~ (y) UT*(y).

The following result will be very useful to prove the main result of this
paper:
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Theorem 2.2 ([3]). Let D be a digraph. If every cycle of D has a sym-
metrical arc then D is a kernel-perfect digraph.

3 The main result

- Along the proof we will need the following two Lemmas:

Lemma 3.1. Let D be an m-coloured k-partite tournament such that every
Cs (cycle of length 3) and every Cy (cycle of length 4) contained in D is
monochromatic; u,v € V(D), T = (ug,u1,...,%n) @ wv-monochromatic
path with I(T) > 3. If for each i € {0,1,...,n — 2} and each j € {i +
2,...,n}, (ui,u;) ¢ A(D), then for each i € {1,...,n} there ezists a u;u-
monochromatic path coloured as T.

Proof: Let u,v € V(D) and T = (v = wup,u1,...,%, = v) & mono-
chromatic path (coloured say 1) as in the hypothesis. We proceed by induc-
tion to prove that for each ¢ € {1,...,n} there exists a u;u-monochromatic

path coloured 1. For i = 1 we have: If (ug,up) € A(D) then C3 =
(20, u1,u2,up) is a cycle of length 3 and from the hypothesis it is mon-
ochromatic. Since (ug,u;) is coloured 1 it follows that (u1,ug,ug = u) is
a monochromatic path coloured 1. If (ug,uo) ¢ A(D) then from Lemma
2.1 there exists an arc between up and us (notice that from the hypoth-
esis we have (ug,u2) ¢ A(D)). So (us,ug) € A(D) (from the hypothesis
(uo,us) ¢ A(D)). Thus Cy= (uo,u1,ug,us, ug) is 2 monochromatic cycle;
moreover since (ug, %)) is coloured 1 we have that (uy,ug,u3,up = u) is a
monochromatic path coloured 1.

Assume that for ¢ € {1,...,n — 1} there exists a u;u-monochromatic
path coloured 1 in D, let T} be such a path.

Now we will prove that there exists a %;4+;u-m.p. (monochromatic path)
coloured 1 in D. .

If (¥iy1,ui—1) € A(D) then C§ = (ui—1, ui, Ui+1, %i—1) is monochromatic
(by the hypothesis). Since (u;—1,u;) is coloured 1, we conclude that C-"{, is
coloured 1. Thus (u;4+1,u%i—1,u;) UT, contains a u;4 u-m.p. coloured 1.

If (wip1,ui-1) ¢ A(D) then we consider the two following cases:

Case (a) ¢ £ n—2. Since (ui+1, u;—1) ¢ A(D) and from the hypothesis
(wi-1,ui+1) € A(D) and (ui—1,uiy2) ¢ A(D); it follows from Lemma 2.1
that (ui4o,ui-1) € A(D). Thus C_"j = (Uit1, Yit2, Ui—1, Ui, Uit1) IS mon-
ochromatic (by hypothesis) and since (u;+1,u;+2) is coloured 1, it follows
that this cycle is coloured 1 and then (ui41,uito,ui-1,
u;) U T contains a u;4+ u-m.p. coloured 1.
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Case (b) i =n — 1. Since {(T) > 3 we have i > 2. Now (uj4+1,ui—2) €
A(D) (Notice that (uit1,ui-1) ¢ A(D), by hypothesis (u;—1,u;i+1) € A(D)
and (ui—2,ui+1) € A(D), so the assertion follows from Lemma 2.1). Thus
C'"; = (Uij—2,Ui—1, Ui, Ui4+1, Ui—2) is coloured 1 (it is monochromatic by hy-
pothesis and the arc (u;—g, u;—1) is coloured 1). Hence (uit1,%i—2, %i—1,u;)
UT! contains a ;4 u-m.p. coloured 1. [ ]

Lemma 3.2. Let D be an m-coloured k-partite tournament such that each
cycle of length 3 and each cycle of length 4 is monochromatic. If u,v €
V(D) are such that there is a uv-m.p. and there is no vu-m.p., then (u,v) €
A(D) or there etists a uv-m.p. of length 2.

Proof: Let u,v € V(D) as in the hypothesis, and T a uv-m.p. of minimum
length; assume it is coloured 1 and T = (u = ug, u1,...,u, = v). When
¢(T) € {1,2}, the assertion in the Lemma holds. So we will suppose ¢(T") >
3.

Case (a) There exists ¢ € {0,1,...,n — 2} such that (u;,u;) € A(D)
for some j > i + 2. Let 40 = min{z € {0,1,...,n — 2} | (u;, u;) € A(D) for
some j > ¢ + 2}, and jo = max{j € {io +2,...,n} | (uiy,u;) € A(D)}.

Subcase (a.1) jo <n-2.

o (uiy, Ujo+1) ¢ A(D). This follows directly from the choice of jo.

o (Ujor1,Uip) € A(D). When (ujo41,us,) € A(D) we have that C =
(%igy Wjo» Ujo+1, Uig) iS & monochromatic cycle coloured 1 (from the
hypothesis and the fact that (ujq,%jo+1) is coloured 1). Thus TV =
(u = uo, T, uip) U (%ig) Ujo) U (%50, T, un = v) (Where (z,T,y) means
the zy-path contained in T, for z,y € V(T)) is a uv-m.p. coloured 1
with £(T") < ¢(T'), a contradiction.

o (ujo42,Uiy) € A(D). It follows the two previous assertions and from
Lemma 2.1 that there exists an arc between u;, and u;,42; and from
the definition of jo, we have (u;,, ujo+2) ¢ A(D).

Thus C' = (wig, Ujo, Ujo+1, Ujo+2, Ui ) IS & monochromatic cycle coloured
1 (this follows from the hypothesis and the fact (u;,,uj,+1) is coloured 1).

Hence TV = (u = uo, T, uiy) U (Uig, %jo) U (ujo, T\ un = v) is & uv-
m.p. coloured 1, with £(T") < 4(T), a contradiction. So, this subcase is
impossible.

Subcase (a.2) jo=n—-1.

Clearly when ip = 0 we have (4 = ug, ¥n—1, un = v) a uv-path of length
2 and the assertion of Lemma 3.2 holds. So, we will assume ip > 1.
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o (uiy,un) ¢ A(D). This follows directly from the choice of jo.

o (un,ui,) € A(D). Assume, for a contradiction that (un,u;,) € A(D),
then C = (uiy, Un—1,Un,Ui,) is coloured 1 (it is monochromatic by
the hypothesis, and (un-1,us) is coloured 1}). Thus TV = (u =
ug, T, uig ) U (Uig, Un—1,Un = v) is a uv-m.p. coloured 1, with £(T") <
¢(T), a contradiction.

o (Up,ui;—1) € A(D). It follows the two previous assertions and Lemma
2.1 that there exists an arc between u;,—; and u,. Now from the
definition of iy we have (u;y—1,u,) ¢ A(D).

Thus C' = (Ujp—1,Uig, Un—1, Un, Uip—1) iS & monochromatic cycle col-
oured 1 (As C' is monochromatic from the hypothesis and (un_1,up) is
coloured 1).

Hence TV = (u, T, uiy) U (Uig, Un—1,U%n = v) is & uv-m.p. coloured 1,
with £(T") < (T, a contradiction. So, when jo = n — 1 we have i3 = 0
and we are done.

Subcase (a.3) jo = n.

e ip # 0. Because we are assuming 4(T) > 3 and T has minimum
length. Clearly when #p = 1, we have (u = ug, T, ui;) U (uig, Un = v)
is a uv-path of length 1 or 2 and in this case the assertion of Lemma
3.2 holds. Thus we will assume 3o > 2.

o (uig—1,un) ¢ A(D). From the definition of .

® (Un,uip—1) ¢ A(D). Assume for a contradiction that (un,uiy—1) €
A(D). Hence C = (uig—1,Uigs Un,Uig—1) iS & monochromatic cycle
coloured 1 (As it is monochromatic by hypothesis and (u;;—1,u;,) is
coloured 1). Thus (ug, T, us,) U (455, n = v) is & uv-m.p. coloured 1
whose length is lesser than ¢(T'), a contradiction.

® (Up,Ujs—2) € A(D). From the two previous assertions and Lemma
2.1 we have that there exists an arc between u, and u;,_o, and from
the definition of 4o we have (uj,_2,v = u,) ¢ A(D).

Hence C' = (uig—2, Uig—1, ig, Un, Uis—2) i8 & monochromatic cycle col-
oured 1 (the hypothesis and the fact (u;,—1,ui,) is coloured 1). Thus T =
(v = uo, T, uiy) U (¥ig, un = v) is a uv-m.p. coloured 1, with £(T") < ¢(T),
a contradiction. We conclude that when jo = n we have ig = 1, and we are
done.
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Case (b) For each i € {0,1,...,n— 2} and for each j € { +2,...,n},
(uiyu;) ¢ A(D). From Lemma 3.1 we have that for each ¢ € {1,...,n}
there exists a u;u-m.p. coloured 1. Particularly there exists a vu-m.p.
coloured 1, a contradiction. Thus this case is impossible. [ ]

The following remark is a directed consequence of the Definition of k-
partite tournament and will be useful to prove the main result.

Remark 3.1. Let D be an m-coloured k-partite tournament. If C is a closed
walk of length at most 5, then C is a cycle.

The next theorem is the main result of this paper.

Theorem 3.3. Let D be an m-coloured k-partite tournament. If each cycle
of length 3 and each cycle of length 4 is monochromatic, then the closure
of D, C(D), is a kernel-perfect digraph.

Proof: We will prove that each cycle in the closure of D, (D), possesses
at least one symmetrical arc. Thus the assertion in Theorem 3.3 will follow
directly from Theorem 2.2.

" We proceed by contradiction. Assume (for a contradiction) that there
exists a cycle C = (ug,u1,...,un = tp) in €(D) which has no symmetrical
arc. Thus, for each ¢ € {0,1,...,n—1} we have that the following assertions
hold:

Claim 1. There exists a u;ui+1-m.p. in D. Since (u;, ui+1) € A(C(D)),
the definition of C(D) implies that there exists a u;u;41-m.p. in D.

Claim 2. There is no uj4+ju;-m.p. in D. Since C has no symmetrical
arc, then (u;+1,%;) ¢ A(C(D)) and from the definition of €(D) we conclude
that there is no u;4yu;-m.p. in D.

Claim 3. (u;,ui+1) € A(D) or there exists a u;u;4+;-path of length 2
in D. It follows from the Claims 1 and 2 and Lemma 3.2.

Claim 4. If P is a closed monochromatic walk in D then for each
j€{0,1,...,n =1} {u;,u; + 1} € V(P). This follows directly from Claim
2.

For each i € {0,1,...,n— 1} let

T = (4i, uit1) whenever (u;, uiy1) € A(D),
: a u;ui41-path of length 2 whenever (u;,u;41) € A(D).

n—-1
and C' = 'Uo T;, C! is a closed walk in D. Let C* = (29,21,...,2k-1,2k =
=

29) and define the function ¢: {0,1,...,k — 1} — V(C!) as follows: If
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T = (u; = Zigy ZigHly- -y Zig+r = Uig1) With 7 € {1,2} (as1< {T:) £2),
then ¢(j) = z;, for each j € {ip,i0+1,...,%0+7r—1}. We will say that the
index i of the vertex z; € V(C?) is a principal index whenever z; = ¢(3);
and we will denote by I, the set of principal indices. The sums of indices
will be taken modulo k. Now we have the following assertions:

Claim 5. There is no monochromatic closed walk C* such that for some
i €{0,1,...,k -1}, {2i, zi4+1, zi+2, zi+3} € V(C"). We proceed by contra-
diction. Assume (for a contradiction) that there exists a monochromatic
closed walk C” as in Claim 5. From the definition of principal index we
have that there exists » € {%,7 + 1} such that r is a principal index. Thus
2, = u; for some j € {0,1,...,n}; again, the definition of principal index
implies uj41 € {zit1,2i42,2i43}. Since {2, zit1, 2i42, 2i43} € V(C") it
follows that C” contains a u;;ju;-m.p. which contradicts Claim 2.

Claim 6. For each i € {0,1,...,k — 1} (zi43,2:) € A(D). We proceed
by contradiction. Suppose that for some ¢ € {0,1,...,k — 1} we have
(zi+3,2:) € A(D). Then (zi, zi41, Zi+2, 2i+3, 2i) i8 a cycle of length 4 and
hencefort it is monochromatic, contradicting Claim 5.

Let ¢ € {0,1,...,k — 1} be such that ¢ € I, say 2, = u; for some
j €{0,1,...,n}, then we have the Claims 7-10:

Claim 7. (zi42,2;) € A(D). We proceed by contradiction. Suppose
that (zi42,2;) € A(D). Then (2, 2i41,2i+2, 2;) is & monochromatic cycle
(Remark 3.1 and the hypothesis). From the construction of C! we have
uj+1 € {zi41, zi+2}. Hence there exists a u;41uj-m.p. in D, which contra-
dicts Claim 2.

Claim 8. (2;,2i-2) ¢ A(D). Assume, for a contradiction that (z;, z;—2)
€ A(D). Then (2;,2i—2,2i-1,2) is a monochromatic cycle (Remark 3.1
and the hypothesis). Now, it follows from the definition of C? that u;_; €
{zi-1,2zi—2}. Clearly this implies that there exists a ujuj_;-m.p. in D,
which contradicts Claim 2.

Claim 9. (z;, zi+2) € A(D) or (z;,2i+3) € A(D). If (2, 2i42) € A(D)
then Claim 9 holds. So, Assume (z;, zi12) ¢ A(D); from Claim 7 we have
(zi+2,2:) ¢ A(D). Thus from Lemma 2.1 we have (z;,zi+3) € A(D) or
(#i+3, 2z:) € A(D). Now, from Claim 6 (2;43, z;) € A(D). We conclude that
(21, 2i+3) € A(D).

Claim 10. (2;_2,2;) € A(D) or (2;_3,2;) € A(D). When (2;_2,%) €
A(D) Claim 10 holds and we are done. Suppose (zi—2,2;) ¢ A(D). From
Claim 8 we have (2;,2;—3) ¢ A(D). Now from Lemma 2.1 there exists an
arc between z;_3 and 2;. From Claim 6 we have (2;,2;_3) ¢ A(D). So,
(25_3,21') S A(D)

Claim 11. (z2,20) ¢ A(D), (z3,20) ¢ A(D), (20, 2k-2) € A(D) and
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(20, 2x-3) ¢ A(D). Since 0 € I, Claim 11 follows directly from Claims 6,
7 and 8.

Claim 12. (z,z2) € A(D) or (20, 23) € A(D). Since 0 € I,,, Claim 12
follows directly from Claim 9.

Claim 13. (2x_2,20) € A(D) or (2x-3,20) € A(D). Since 0 € I,, this
assertion follows from Claim 10.

Now let 49 = min{i € {3,4,...,k — 2}|(2i+1,20) € A(D)}. Thus
(zig+1, 20) € A(D) and we have the following assertion:

Claim 14 (zp,2;,) € A(D) or (20,2i,-1) € A(D). When (zp,2;,) €
A(D) the assertion in Claim 14 holds. Thus, suppose (zo,z;,) ¢ A(D)
(we will prove that (29,2i,—1) € A(D)). It follows from the definition of
ip that (24, 20) ¢ A(D). Since 2z;,—1 € I'"(z;,) then from Lemma 2.1 we
have (zp, zip—1) € A(D) or (ziy—1,20) € A(D). Again, it follows from the
definition of g that (zi,~1, 20) ¢ A(D). We conclude (zg, 2;y—1) € A(D).

Thus (29, 2i,) € A(D) or (20,2i5—1) € A(D). We continue the proof of
Theorem 3.3 by considering this two possible cases.

Case (a) (z0,2i,) € A(D). Since (2;,+1,20) € A(D) then C" =
(20, 2igs Zig+15 20) is & cycle and from the hypothesis it is monochromatic
coloured say 1.

Subcase (a.1) iy ¢ I,. In this subcase we have the Claims 15-18:

Claim 15 ip — 1 € I, and ig + 1 € I, .This follows from the definition
of I.
Let j € {1,2,...,n} be such that z;,—1 = u; and 2441 = uj41.

Claim 18 (2, 2;,-1) ¢ A(D). We proceed by contradiction. Suppose
that
(20,2zip—1) € A(D). Then ¢ = (20, Zig=1 = Uj, Zigs Zig+1 = Uj+1,20) I8
a cycle of length 4 and from the hypothesis it is monochromatic. Thus
there exists a u;j4.1u;-m.p., a contradiction to Claim 2.

Claim 17 (29, z;,-2) € A(D). It follows from Claim 16 that (zo, 2i—1) ¢
A(D) and from the definition of ip we have (z;,—1,20) ¢ A(D). Since
Zig—2 € I'"(2iy—1), we have from Lemma 2.1 that (2o, 2;,-2) € A(D) or
(#ig—2, 20) € A(D). Now, the definition of iy implies (2z;,—2,20) ¢ A(D).
Thus (zO,Zio_z) € A(D)

Claim 18 (z;,-1,2ip+1) € A(D). In the proof of Claim 17 we have
observed that (29,2i,—1) € A(D) and (2i,-1,20) € A(D). Since zj41 €
I’ (20) it follows from Lemma 2.1 that (2i,—1, Zig+1) € A(D) or (zig+1, Zig—1)
€ A(D). From Claim 7 we have (2,41, 2igp—1) ¢ A(D). Thus (zi,—1, 2ig+1) €
A(D).

Now (ziy—1, Zig4+1, 20y Zig—2, z,—o_l) is a cycle of length 4 and so, from the
hypothesis it is monochromatic coloured 1 (because C” is coloured 1 and
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(zig+1, 20) € C"); and this contradicts Claim 4. We conclude that Subcase
(a.1) is impossible.

Subcase (a.2) ip € I,. Let j € {1,2,...,n} be such that z, = u;.

In this subcase we will consider the two possibilities: (29, 2i,—1) € A(D)
or (2o, zip—1) ¢ A(D).

Subcase (a.2.1) (29, zi—1) € A(D).

Then (20, 2i5—1, 2ig), Zig+1, 20) is & cycle of length 4 and from the hypoth-
esis it is monochromatic, moreover it is coloured 1 (as (zi,+1,20) € A(C")
and C” is coloured 1). Now, we have Claims 19-22.

Claim 19 ip — 2 € I, and 2,2 = u;_1. Since 4p € I, it follows from
the definition of C? that 49 —2 € I, or ip — 1 € I. Ifip — 1 € I, then
Zig—1 = Uj—1 and (zi, = Uj, Zig+1, 20, Zip—1 = %;—1) is & uju;_1-m.p. which
contradicts Claim 2. Hence, ig — 2 € I, moreover z;j,—2 = uj—1.

Claim 20 (zj,—2,zig+1) ¢ A(D). We proceed by contradiction.
Suppose that (zi,—2, 2ig+1) € A(D). If (20, 2ip-2) € A(D) then (2, zi5-2,
2,41, 20) is a cycle of length 3 and from the hypothesis it is monochromatic,
moreover it is coloured 1 (as (z;j,4+1,20) € A(C”) and C” is coloured 1).
So, (2i, = uj, Zig4+1, 20, Zip—2 = Uj—1) is & ujuj—1-m.p. which contradicts
Claim 2. Then we may assume that (29, 2;y—2) ¢ A(D), this implies g > 2,
so ip = 4. From the definition of ip we have (2;,—2,20) ¢ A(D). Since
2ip—3 € I'"(2i5—2), it follows from Lemma 2.1 that (29, 2i,—3) € A(D) or
(%ig—3,20) € A(D). Again the definition of ip implies that (z;-3,20) ¢
A(D) so (ZO! zt'o—3) € A(D)° NOW, (zﬂ)zio—3’zio—2t Zig+1s 20) isa cycle of
length 4 which is monochromatic (from the hypothesis) and coloured 1 (as
(Zig+1, 20) € A(C") and C” is coloured 1). Hence, (2i, = wj, Zig+1 20, Zip—3,
Zjg-2 = Uj-1) is & uju;_)-m.p. contradicting Claim 2. We conclude
(Zio—2 2ig+1) € A(D).

Claim 21 (2;,—2, 2i;) € A(D). Claim 6 implies that (zig+1, zip—2) &
A(D) and from Claim 20 we have (2j,—2, 2zig+1) ¢ A(D). Since 2, €
I~ (zig+1), it follows from the Lemma 2.1 that (zi,—2,2;,) € A(D) or
(2ig, zig—2) € A(D). From Claim 8 we have (zi,,zi;—2) ¢ A(D) then
(zio—2a zio) € A(D)

Claim 22 (z;,, zi,—2) € A(D). We have proved (see proof of Claim 21)
that (2ig41, zio—2) ¢ A(D) and (2i,-2, 2ig+1) € A(D). Since z;, €T (2ip41),
it follows from the Lemma 2.1 that (2;,—2, 20) € A(D) or (29, ziy-2) € A(D).
From the definition of iy we have (2i,—2,20) ¢ A(D) hence (2o, 2i,-2) €
A(D).

Now (20, zig—2 = Uj—1, 2y = Uj, Zig+1,20) is a cycle of length 4 and so,
from the hypothesis it is monochromatic coloured 1 (because C" is coloured
1 and (2i,+1,20) € C”); and this contradicts Claim 4. We conclude that
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Subcase (2.2.1) is impossible.

Subcase (a.2.2) (2o, 2i—1) € A(D).

In this subcase we have Claims 23-30.

Claim 23 (zp,zi,—2) € A(D). From the definition of iy we have
(%-1,20) ¢ A(D). We are assuming (zg,2i,—1) ¢ A(D). Thus from
Lemma 2.1 we have (zo, zi,—2) € A(D) or (2iy—2,20) € A(D). The def-
inition of 4y implies (2;,—2, 20) ¢ A(D). We conclude (2, z;,—2) € A(D).

Claim 24 (zi,-1,2i,+1) ¢ A(D). We proceed by contradiction. Sup-
pose that (zi,-1, 2ig+1) € A(D). Then (20, 2iy-2, Zio—1, Zio+1, 20) is & cycle -
of length 4 and from the hypothesis it is monochromatic, moreover it is
coloured 1 (as (2ig+1,20) € A(C") and C” is coloured 1). Since iy € I,, we
have from the definition of C? that io — 1 € I, or ig — 2 € I, this implies
uj_1 € {Zig—2,2ip—1}. In any case we obtain a u;ju;_;-m.p. coloured 1
which contradicts Claim 2. We conclude (2;,—1, zi,+1) € A(D).

Claim 25 (zi°+1, z,-o_l) € A(D) We have (z,-o_l,zo) ¢ A(D) (by
the definition of 4g), (20,2i,—1) ¢ A(D) (assumption in this case) and
Zig+1 € I'"(20) (by the definition of ip). Thus from Lemma 2.1 we have
(Zig+1, Zig-1) € A(D) or (2iy-1,%io+1) € A(D). Now from Claim 24 we
have (zi,—1, zig+1) € A(D). We conclude that (2;41, 2i,-1) € A(D).

Claim 26 (zi,—1, 2;, = u;) and (2i,+1, 2i,—1) are coloured 1. We have
that (Zip-1, Zig)
Zig+1y Zig—1) i8 & monochromatic cycle coloured 1 (by hypothesis and the
fact that (2, 2i0+1) € A(C") and C” is coloured 1). Thus (zi,—1, 2i, = ;)
and (2j,41, 2ip—1) are coloured 1.

Claim 27 ip — 2 € I,. Since i € I, it follows from the construction of
C! that i9 — 1 € I, or 49 — 2 € I, which implies u;_; € {252, zi-1}. We
have proved (see proof of Claim 26) that C = (245—1, Zip = Uj, Zig+1, Zig—1)
is a monochromatic cycle coloured 1. From Claim 4 u;_; ¢ V(C). So, we
conclude u;_) = zj,_1, and then ip — 2 € I,.

Claim 28 (zi,—2, 2ig+1) ¢ A(D). We proceed by contradiction. Sup-
pose that (zi-2,2i0+1) € A(D). Then (20, 2i-2, zig+1,20) is a mono-
chromatic cycle coloured 1 (by hypothesis and the fact (z;+1, 20) € A(C”)
and C” is coloured 1). Hence (2i, = uj, Zig+1, 20, Zig—2 = Uj—1) iS 8 uju;j_1-
m.p. coloured 1 which contradicts Claim 2. We conclude (2i,-2, 2ip+1) €
A(D).

Claim 29 (2,41, zig—2) € A(D). We proceed by contradiction. Sup-
pose that (zi+1,2i5—2) € A(D). Then (2,'04.1,2,'0_2 = Uj—1y Zig—1,Zipg =
Uj, 2ip+1) 18 & monochromatic cycle (by the hypothesis) which contains
u;—1 and u;, contradicting Claim 4. Hence (24,41, 2;5—2) ¢ A(D).

Claim 30 (2;,—2,2i,) € A(D). We have (2i5—2, zig+1) € A(D) (Claim
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28) and (zig+1, 2ig-2) ¢ A(D) (Claim 29), clearly (ziy, 2io+1) € A(D). Thus
from Lemma 2.1 we have that (2i,—2,zi,) € A(D) or (zi,, zi;—2) € A(D).
Since 49 — 2 € I, (see Claim 27), it follows from Claim 7 that (2i,, zi,~2) ¢
A(D). Hence (zi,-2,2i,) € A(D).

Finally, we have that (29, zi;-2 = 4j-1,2i, = uj, Zig+1, 20) is & mono-
chromatic cycle (by hypothesis), but this contradicts Claim 4. We conclude
that this subcase is impossible.

Case (b) (z0,2i,) ¢ A(D).

We have Claims 31-38.

Claim 31 (zp,2i,-1) € A(D). From the definition of i{9 we have
(2i) 20) ¢ A(D) and from the assumption on this case we have (zg, 2;,) ¢
A(D). Since zi, € I'"(2;,), it follows from Lemma 2.1 that (29,2;,-1) €
A(D) or (2iy~1,20) € A(D). Now from the definition of io we have z;,_1, zo)
¢ A(D). Thus (2o, 2ip—1) € A(D).

Claim 32 C? = (2, 2iy—1, Zig, Zig+1, 20) is & monochromatic cycle. This
follows directly from the previous assertion and the hypothesis. Say C? is
coloured 1.

Claim 33 ip—1 ¢ I,. We proceed by contradiction. Suppose ig—1 € I,
from the construction of C! we have ig € I, or ig + 1 € I, so there are
two elements of I, in the monochromatic cycle C? (Claim 32) and this
contradicts Claim 4. Thus ip — 1 ¢ I,,.

Claim 34 ig € I, and 49 — 2 € I,. This follows from Claim 33 and the
definition of C.

Let j € {0,1,...,n — 1} be such that z;,_; = u;_; and 2z;, = u;.

Claim 35 ip + 1 ¢ I,. Proceeding by contradiction suppose that
ip+ 1 € Ip, then 2,41 = uj41. Thus {uj,uj41} € V(C?), and C? is a
monochromatic cycle (see Claim 32). This is a contradiction to Claim 4.
Hence ip + 1 ¢ I,,.

Claim 36 (29, 2i,—2) ¢ A(D). Proceeding by contradiction, suppose
that (29, 2zi;—2) € A(D). From the definition of 45 we have (z;,, 20) € A(D)
and from our assumption on this case (2g,2;,) ¢ (AD). Since 24,—2 €
I'* (), it follows from Lemma 2.1 that (z;,, zi;—2) € A(D) or (2ig-2, 2i,) €
A(D). When (z;,, zi,—2) € A(D) we have that (u; = 24, 2ip—2 = uj—1) is
a u;juj—1-m.p. which contradicts Claim 2. When 2;,_2,zi,) € A(D) we
have that C3 = (29, 2iy—2 = uj—1, 2iy = Uj, Zig+1, 20) is a cycle of length 4,
and then from the hypothesis it is monochromatic. Clearly this contradicts
Claim 4. Thus (29, 2;,—2) € A(D).

Claim 37 (zo, zi,-3) € A(D). From Claim 36 we have that (29, 2;,—2) ¢
A(D). From the definition of iy we have that (2i,—2,20) ¢ A(D). Thus
ip — 2 = 2 and ig = 4. Since 2;,—3 € ' (24,—2), it follows from Lemma 2.1
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that (20, 2;,—3) € A(D) or (24,-3,20) € A(D). Again from the definition of
ip we have (2j,-3, 20) ¢ A(D). We conclude (2o, z;y—3) € A(D).

Claim 38 (zi,-2,2ip+1) € A(D). Notice that: (29,zi,—2) ¢ A(D)
(Claim 36) and (zi,-2,20) ¢ A(D) (definition of ip). Since z;,4+1 € I'"(2),
it follows from Lemma 2.1 that (ziy—2, zig+1) € A(D) or (2ig4+1, Zig—2) €
A(D). When (zig41,2i,-2) € A(D) we have that (ziy—2, Zig—1, Zig) Zig+1,
2j,-2) is a monochromatic cycle which contradicts Claim 5. Thus (2;,_2,
2i5+1) € A(D).

Now (20, 2iy—3, 2ig—2, Zig+1, 20) iS a monochromatic cycle coloured 1
(from the hypothesis and the fact that (z,+1,20) is coloured 1). Thus
(uj = Zig3 Zig+1y 20y 2ig—3y 2ip—-2 = uj_l) isa UjUj-1-M.P. coloured 1 (recall
Claim 32) which contradicts Claim 2. Thus Case (b) is impossible. '

We conclude that each cycle in €(D) possesses at least one symmetrical
arc; and from Theorem 2.2 €(D), is a kernel-perfect digraph. [ ]

Remark 3.2. The bipartite tournament D; in figure 1 shows that we can
not remove the condition about C4 from the Theorem 3.3. D; is a 3-
coloured bipartite tournament which contains (u,z,w, 2,u), a Cy4 that is
not monochromatic, and D; has no kernel by monochromatic paths.

Figure 1: D,

Remark 3.3. The 3-coloured Cj3 is an example of a 3-partite tournament
which shows that the condition over C3 can not be removed from the The-

orem 3.3.
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