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Abstract

Let G be a planar graph with maximum degree A. It’s proved
that if A > 5 and G does not contain 5-cycles and 6-cycles, then
la(G) = [2Q].
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1 Introduction

In this paper, all graphs are finite, simple and undirected. For a real number
z, [z] is the least integer not less than z and [z] is the largest integer not
larger than z. Let G be a graph. We use A(G) and 6(G) to denote the
maximum(vertex) degree and the minimum (vertex) degree, respectively.
A k-, k*- or k~- vertex is a vertex of degree k, at least k, or at most k,
respectively.

A linear forest is a graph in which each component is a path. A map
¢ from E(G) to {1,2,...,t} is called a t-linear coloring if the induced
subgraph of edges having the same color « is a linear forest for 1 < o <
t. The linear arboricity la(G) of a graph G defined by Harary [5] is the
minimum number ¢ for which G has a ¢-linear coloring.
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Akiyama, Exoo, and Harary [1] conjectured that la(G) = [2(*1] for

any regular graph G. It is obvious that la(G) > [ﬁggl'l. So the conjecture
is equivalent to the following conjecture.

Conjecture A. For any graph G, [5(29] <G <L éﬁz&].

The linear arboricity has been determined for complete bipartite graphs
[1] and regular graphs with A = 3,4 [1] and [2], 5, 6, 8 [3], and 10 [4].

Conjecture A has already been proved to be true for all planar graphs,
see [7] and [9]. Wu also proved in [7] that for a planar graph G with girth
g and maximum degree A, la(G) = [%C—"l] if A(G) > 13, or A(G) > 7 and
g24,0r A(G)>5and g 25, or A(G) > 3 and g > 6. In this paper, we
obtain that if G is a planar graph with A(G) > 5 and without 5-cycles and
6-cycles, then la(G) = [%—Gl] .

2 Main results and their proofs

In this section, all graphs are planar graphs which have been embedded in
the plane. For a planar graph G, the degree of a face f, denoted by d(f),
is the number of edges incident with it, where each cut-edge is counted
twice. A k-, k- or k- face is a face of degree k, at least k, or at most
k, respectively. F(v) = {f € F(G) : the face is incident with v}. For
v € G, we use n;(v) to denote the number of i-vertices which are adjacent
to v, fi(v) to denote the number of i-faces incident with v. A k-face with
consecutive vertices v, v, ..., Ux along its boundary in some direction is
often said to be a (d(v),d(v2),...,d(vk))-face.

Given a t-linear coloring ¢ and a vertex v of G, we denote C,,(v) the
set of colors that appear 7 times at v, where i = 0,1,2. Let C,(u,v) =
CZ(u) UCZ(v) U (Cy(u) NCy(v)), that is , Cy(u,v) is the set of colors that
appear at least two times at » and v. A monochromatic path is a path
whose edges receive the same color. For two different edges e; and ez of
G, they are said to be in the same color component, denoted by e; + ez
if there is a monochromatic path of G connecting them. Furthermore, if
the ends of e; and ep are known, say that, e; = z;y; (i = 1,2), then
Ty + ZToys denotes more accurately that there is a monochromatic path
from z; to ys passing through the edges z,y1 and zoy2 in G, that is, i1
and z, are internal vertices in the path. Otherwise, we use z,y; ¥ Z2y2
(or e; ¢ e3) to denote that such monochromatic path does not exist. Note
that z,y; « Zoys and z,y; « Y2z, are different.

Let v be a vertex with d(v) = d, denote fi, f2,..., fa be the faces
incident with v in a clockwise order, and vy, vs,...,v4 be the neighbors of
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v, where v; is incident with f;, fi+1, ¢ =1,2,...,d. Note that eventually
f1 and f44+1 denote the same face.

Theorem 1. Let G be a planar graph with A(G) > 5. If G does not
contain 5-cycles and 6-cycles, then la(G) = [é-(zgl]

Proof. According to [6], if G is a planar graph with A(G) > 7 and
without 5-cycles, then la(G) = [5(29-]. According to [7] and [9], Conjecture
A is true for all planar graphs. Henceforth, to prove Theorem 1, we only
need to prove that every planar graph with A(G) = 6 and without 5-
cycles and 6-cycles has a 3-linear coloring. Let G = (V, E, F) be a minimal
counterexample to the theorem. First, we prove some lemmas for G.

Lemma 1. For any uwv € E(G), dg(u) + dg(v) > 8.
The proof of Lemma 1 is similar to that of Lemma 1 in [6].

By Lemma 1, we have

(a) 8(G) > 2, and

(b) any two 3~ -vertices are not adjacent, and

(c) any 3-face is incident with three 4%*-vertices, or at least two 5%-
vertices.

Lemma 2. Every vertex is adjacent to at most two 2-vertices. More;
over, suppose that a vertex v is adjacent to two 2,-vertlices z, y, letz, y
be another neighbor of z, y, respectively. Then z v, y v & E(G).

The proof of Lemma 2 can be found in [8].

In the proofs of the following Lemmas, the notation (u,1) denotes the
edge incident with » and colored with 1.

Lemma 3. If a vertex u is adjacent to two 2-vertices v, w and incident
with a 3-face uzyu. Then min{d(z),d(y)} > 4.

Proof. Since u is adjacent to two 2-vertices v, w, then neither v nor
w is incident with 3-faces by Lemma 2, so v, w,z,y are distinct vertices. .
Suppose that min{d(z),d(y)} < 3. Without loss of generality, assume
that d(z) > d(y). By Lemma 2, d(z) > d(y) > 3 and so d(y) = 3. By
Lemma 1, d(z) > 5 and d(u) = 6. Let v ,w’ be another neighbors of v, w,
respectively. Since G is minimal, G’ = G’ — uv has a 3-linear coloring .
Without loss of generality, assume @(vv') = 1. If there is a color ¢ € C? o (4)s
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orc € CL(u)\{1}, orc =1 € C}(u) but v’ ¥ (u,1), then color directly uv
with c. So Co(u) =0, Cp(u) = {1} and w & (u,1). If p(uw) # 1, then
ww # (u,1), and it follows that we can recolor uw with 1 and color uv
with p(uw). So we have p(uw) = p(ww') = 1, p(uz) # 1 and p(uy) # 1.
Now let’s come back to discuss y and z. If 1 & CZ(y), then we can recolor
uy with 1, and color uv with ¢(uy). Otherwise, we have p(zy) = 1 and
then recolor uz with 1, zy with ¢(uz) and color uv with p(uz). Thus ¢
is extended to a 3-linear coloring of G, a contradiction. It completes the
proof of Lemma 3.

Lemma 4. G has no subgraph isomorphic to the configuration in
Figure 1 where d(u) = 5,d(w) = d(v) = 3.

Figure 1

Proof. Suppose G has a conﬁguratlon as depicted in Figure 1. By
the minimality of G, led — uw has a 3-linear coloring ¢. If there
is a color ¢ such that c ¢ C¢(u, w), then color directly uw with ¢, so
Clurw) = {1,2,3}.

Suppose o(wz') = (wy’). Without loss of generality, let p(wz') =
p(wy’) = 1. Since dg/(u) = 4, we have CO(u) = {1}. If 1 & C2(v),
then recolor uv with 1 and color uw with go(uv) Otherwise, we have
p(vz) = p(vy) = 1. Thus we can recolor uz with 1, vz with p(uz) and
color uw with <p(u:c) It follows that G is 3-linear colorable, a contradiction.

Suppose o(wz') ;é @(wy’). Without loss of generality, let plwz) =
1, o(wy’) = 2, then C L(w) ={1,2}. If wz ¢ (u,1), then color directly uw
with 1. Similarly, if 'wy' ¢ (u,2), then color directly uw with 2. Otherwise,
if (uv) = 3, since |C2(v)| < 1, we can assume 1 € CJ(v) U C(v), and
then we can recolor uv with 1 and color uw with 3. Otherwise, assume
o(uwv) = 1. Since wz' « (u,1), we have p(vy) = 1 or p(vr) = 1. We
recolor uv with 2, and color uw with 1. So ¢ is extended to a 3-linear
coloring of G, a contradiction. We complete the proof of Lemma 4.

Lemma 5. G has no subgraph isomorphic to the configuration in
Figure 2 where d(u) = 6,d(w) = 2,d(v) =
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X

Figure 2

Proof. Suppose G has a configuration as depicted in Figure 2. By the
minimality of G, @' = G — uw has a 3-linear coloring ¢. Without loss of
generality, assume p(wz) = 1. Similarly, we can assume that C3(u) = 0,
Cy(u) = {1} and wz & (u,1). If p(uv) # 1 and 1 & C2(v), then we can
recolor wv with 1 and color uw with ¢(uv).

Suppose ¢(uv) # 1 and 1 € Cz(v) Then ¢(vy) = p(vz) = 1. Since
Cj(u) = {1}, we have p(uz) # 1 or p(uy) # 1. Assume p(uy) # 1. If
(u, 1) < yv, then p(uz) # 1, and we can recolor uz with 1, vz with p(uz),
and color uw with ¢(uz). Otherwise, we can recolor uy with 1, vy with
¢(uy), and color uw with ¢(uy).

Finally, we assume @(uv) = 1. Then ¢(vz) = 1 or p(vy) = 1 (since
wz + (u,1)). Without loss of generality, assume p(vy) = 1 and ¢(vz) =
If p(uy) = 2 and vz « yu, then p(ux) = 3 and we can recolor uy with 1, vy
and uz with 2, vz with 3, and color uw with 3. Otherwise, we can recolor
uy with 1, vy with ¢(uy) and color uw with ¢(uy). Thus v is extended
to a 3-linear coloring of G, a contradiction. So we complete the proof of
Lemma 5.

Lemma 6. G has no subgraph isomorphic to the configuration depicted
in Figure 3 where d(v) = 2,d(2) =3

u
v 2 X
w
Figure 3

Proof. On the contrary, suppose, G has a configuration as depicted in
Figure 3. By the minimality of G, G’ = G - uv has a 3-linear coloring .
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Without loss of generality, assume ¢{vw) = 1. Similarly, we can assume
that CO(u) =0, Cl(u) = {1} and vw & (u,1).

Suppose p(uz) # 1 and p(wz) # 1, then we can recolor uz with 1 and
color uv with p(uz).

Suppose ¢(uz) = 1, then p(uw) # 1 and 1 € C%(z), assume p(uw) = 2.
If p(zz) =1, or p(wz) = 1 and 2z < wu, then we can recolor vw, uz with
2, uw with 1, and color wv with 1. Otherwise, we can recolor wz with 2,
uw with 1, and color uv with 2.

Suppose p(uz) # 1 and p(wz) = 1. Similarly p(uw) #1land 1 € Cg,(z)
and we can assume @(uw) = 2. Then we can recolor wz with 2, uw with
1, and color wv with 2.

Thus, we can obtain a 3-linear coloring of G, a contradiction. It com-
pletes the proof of Lemma 6.

Lemma 7. Since G contains no 5-cycles and 6-cycles and §(G) > 2,
the following results hold:

(a) Any 4%-vertex is incident with at most [u‘{.&l’lj 3-faces.

(b) A 4—-face f is adjacent to a 4-face f  if and only if the two faces
are incident with a common 2-vertex.

(c) If a face is adjacent to two nonadjacent 3-faces, then the face must
be 7+-face.

(d) If d(v) > 5, then v is incident with at most d — 2 4~ -faces.

Proof. (a), (b), (c) is similar to Lemma 4 in [6, 8]. Next we will show
(d).

(d) If fa(v) =0, then (d) is obvious by (a). So we assume that fs(v) > 0,
let f, be a 4-face incident with v. If both fo and f; are 4~ -faces, then f3
and fy_, must be 7*-faces by (b) and Lemma 2. Now suppose that f; is a
T+-face. If f; is a 4~ -face, then one of f3 and f4 must be a 7+-face. Thus
we prove (d).

By Euler’s formula |V| — |E| + |F| = 2, we have

> (2d(v) - 6) + Y _(d(f) - 6) = -12 < 0. (1)

veV fer

We define the initial charge ch(z) of ¢ € V(G) U F(G) to be ch(v) =
2d(v)—-6ifv € V(G) and ch(f) = d(f)- -6iff e F(G). In the following, we
will reassign a new charge denoted by ch'(z) to each z € V(G)U F(G) ac-
cording to the discharging rules. Since our rules only move charges around,
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and do not affect the sum, we have

Yo k@)= ) chlz)=-12. (2)

2€V(G)UF(G) 2EV(G)UF(G)

In the following, we will show that ch’ (z) > 0 for each z € V(G)UF(G),
a contradiction to (2), completing the proof.

The discharging rules are defined as follows.

R1. The 6-vertices give 1 to each of their adjacent 2-vertices.

R2. For a 3-face f.

R2.1. f receives % from each of its incident 5*-vertices if f is incident
with a 37 -vertex.

R2.2. f receives 1 from each of its incident vertices if f is incident with
no 3~ -vertex.

R3. For a 4-face f.

R3.1. f receives 1 from each of its incident 5 -vertices if f is incident
with two 3~ -vertices .

R3.2. f receives % from each of its incident 4t-vertices if f is incident
with only one 3~-vertex.

R3.3. f receives % from each of its incident 4*-vertices if f is incident
with no 3~ -vertex.

R4. Each 6-vertex v, if v is incident with a 7*-face f, then v receives
ﬂL from f.(n denotes the number of 6-vertices incident with f)

"Let f bea face of G. If d(f) = 3, then ch(f) =3—-6 = -3, and it
follows that ck’(f) > ch(f) +min{3 x 2,1 x 3} =0 by Lemma 1 a.nd R2.

If d(f) = 4, then ch(f) = 4 -6 = -2, and ch'(f) > ch(f) + min{l x

2,2x3,1 x4} 0 by Lemma 1 and R3.

If d(f) > 7, then ch'(f) = ch(f) — L x n = 0 by R4.

Let v be a vertex of G. If d(v) = 2, then ch’/(v) = ch(v) +2 = 0 by
Lemma 1 and R1.

If d(v) = 3, ch'(v) = ch(v) =

If d(v) = 4, then v is incident with at most two 4~ -faces, it follows that
ch'(v) > ch(v) —max{2 x 1,2 +1,% x 2} = 0 by R2 and R3.

If d(v) = 5, then f3(v) <3 by lemma 7. If f3(v) = 3, then n3(v) < 1 by
Lemma 4. Hence ch'(v) > ch(v) 2 x2—1=0by R2. If f3(v) < 3, then
ch,'('u)>ch(v)—ma.x{2 x2+2,8+1x2,1x3}=2>0byR2andR3.

If d(v) = 6, then v is adjacent to at most two 2-vertices by Lemma 2,
and f3(v) + f4(v) < 4 by Lemma 7.
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If v is adjacent to two 2-vertices, then the 3-face incident with v must
be a (6, 4%, 4*)-face by Lemma 3. Hence ch'(v) > ch(v) — (24+4x 1) =
by Lemma 7, R1, R2 and R3.

If v is adjacent to one 2-vertex.

Case 1. f3(v) = 4, then n3(v) < 2 by Lemma 5 and Lemma 6. It’s easy
to verify that v is incident with a (6, 2, 6)-face, a 7*-face and a 8*-face,
and the 3-face adjacent to the (6, 2, 6)-face must be a (6, 6, 4+) face by
Lemma, 6. If ng(v) = 2thench’(v)>6 1———1—35 x2+3+Z%=0by
R1, R2 and R4. Otherwise ch’'(v) > 6 — 1-—5—1-—5—1—0

Case 2. f3(v) =3, then fy(v) < 1. If fy(v) = 1, then fy-(v) > 3, the
4-face must be adjacent to a 3-face, then the two fa.ces are incident with a
common 2-vertex by Lemma 7. Without loss of generality, we assume that
f1 is the (6, 2, 6)-face, fs is the 4-face, then fs must be a (6, 4%, 6, 2)-face
by Lemma 6. Similarly if f2 isa 3-face, then f2 must be a (6, 6, 41)-face,
hence ch/(v) >6-1-3-2-1- § = g > 0. Otherw13e, f2 and fs must
be 7*-faces, then ch'(v) >6-— 1— 3-2-3x 2+2=25 >0 If fa(v) =
then ch/(v) > 6 — —— x3=1 >ObyR1 and R2.

Case 3. f3(v) <2, thench’(v)>6—1-§x2 1x2=0DbyR1, R2
and R3.

If v is adjacent to no 2-vertex, then ch’/(v) > 6 — 3 x 4 = 0 by R2 and
R3.

Hence we complete the proof of the Theorem 1. ]}

Acknowledgements. We would like to thank the referees for providing
some very helpful suggestions for revising this paper.

References

[1] J.Akiyama, G.Exoo, F.Harary, Covering and packing in graphs III:
cyclic and acyclic invariants Math. Slovaca, 30(1980), 405-417.

[2] J.Akiyama, G.Exoo, F.Harary, Covering and packing in graphs IV:
Linear arboricity Networks, 11(1981), 69-72.

[3] H. Enomoto and B. Péroche, The linear arboricity of some regular
graphs J. Graph Theory, 8(1984), 309-324.

[4] F.Guldan, The linear arboricity of 10 regular graphs, Math. Slovaca,
36(1986), 225-228.

[5] F.Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci.,
175(1970), 198-205.

374



(6] J.L. Wu, J.F. Hou and G.Z. Liu, The linear arboricity of planar graphs
with no short cycles, Theor. Comp. Sci., 381(2007), 230-233.

[7] J.L. Wu, On the linear arboricity of planar graphs, J. Graph theory,
31(1999), 129-134.

[8] J.L. Wy, J.F. Hou and X.Y. Sun, A note on the linear arboricity of pla-
nar graphs without 4-cycles, ISORA’09, Lecture Notes in Operations
Research ,10 (2009), 174-178.

[9] J.L. Wu and Y.W. Wu, The linear arboricity of planar graphs of max-
imum degree seven are four, J. Graph Theory, 58(2008),210-220.

375



