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Abstract

A terrace for Z,, is an arrangement (@1, @2, . ..,am) of the m elements
of Zm such that the sets of differences a:41 — a; and a; — ai41 (i =
1,2,...,m ~ 1) between them contain each element of Z., \ {0} ex-
actly twice. For m odd, many procedures are available for construct-
ing power-sequence terraces for Zm; each such terrace may be parti-
tioned into segments one of which contains merely the zero element of
Zm, whereas each other segment is either (a) a sequence of successive
powers of a non-zero element of Zm or (b) such a sequence multi-
plied throughout by a constant. For n an odd prime power satisfying
n =1 or 3 (mod 8), this idea has previously been extended by using
power-sequences in Z, to produce some Z, terraces (a1, az,...,8m)
where m = n + 1 = 2, with a;41 —a; = —(@it14u — @isy) for all
i € 1, — 1]. Each of these “da capo directed terraces” consists of a
sequence of segments, one containing just the element 0 and another
just containing the element n, the remaining segments each being of
type (a) or (b) above with each of its distinct entries z from Z, \ {0}
evaluated so that 1 < z < n—1. Now, for many odd prime powers n
satisfying n = 1 (mod 4), we similarly produce narcissistic terraces
for Zn1; these have aiy1 — @i = @m—i41 = Gm—; forall i € [1, 4 —1].
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1 Introduction

Let a = (a,a2,...,am,) be an arrangement of the elements of Z,,, and
let b = (b1,ba,...,bm—1) be the ordered sequence b; = a4y — a; for i =
1,2,...,m — 1. The arrangement a is a terrace for Z,,, with b as the

corresponding 2-sequencing or quasi-sequencing for Z,, if the sequences b
and —b between them contain exactly two occurrences of each element z
from Z,, \ {0}. Clearly, if a is a terrace for Z, (in short, a Z,, terrace),
then so is any of its translates (a1 +y,22+9,...,am +¥), all entries being
calculated modulo m, where y € Z,,.

A Z,, terrace is directed [9] if all the elements in its 2-sequencing
(b1,ba,...,bm—1) are distinct. For m even, a Z,, directed terrace is a
da capo directed terrace [7) if b; = —b(m/2)4+: (mod m) for all i satisfying
1 <4< (m-2)/2 and by, = m/2 (mod m). For m odd or even,
a Z., terrace is narcissistic [2, 6] if its 2-sequencing has b; = by _; for
all i = 1,2,...,(m — 1); for m even, we clearly must then again have
bm/2 = m/2 (mod m).

Some expositions include the zero element of Z., in b, as an extra ele-
ment at the start, but we find this practice inconvenient; we follow various
precedents by not adopting it.

Terraces were originally defined by Bailey [9] for a general finite group G,
but the general case does not concern us here. They have been used in the
construction of solutions to the Lucas round-dance problem (10] and the
generalised Oberwolfach problem [15], and of combinatorial designs used
in statistical applications involving carry-over effects [9, 1] and neighbour
effects, but the present paper is not concerned with applications.

Anderson and Preece {2, 3, 4, 5] gave general constructions for “power-
sequence” terraces for Z,, where m is odd. Each of these terraces can be
partitioned into segments one of which contains merely the zero element of
Z,», whereas each other segment is either (a) a sequence of successive powers
of an element of Z,,, or (b) such a sequence multiplied throughout by a
constant. Many of the sequences z°, z!, ... , z®! of distinct elements are
“full-cycle” sequences such that z° = z°, but partial cycles are used too.

The techniques used in (2, 3, 4, 5] are not adaptable to produce terraces
from power-sequences in Z,, where m is even. However, for n odd, se-
quences of powers of non-zero elements of Z,, (mod n) can be used (perhaps
counter-intuitively) to construct terraces for Zn_2, Zn—1, Zn4+1 and Zn42
(7, §1). In [7] we used this approach to produce da capo directed terraces
for Z,+1 where n is an odd prime power satisfying n = 1 or 3 (mod 8).
We now similarly produce narcissistic terraces for Z,; where n is an odd
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prime power satisfying n =1 (mod 4).

Lemma 1.1 Suppose that a narcissistic terrace exists for Z,,, where n is
an odd positive integer. Then n =1 (mod 4).

Proof: Suppose that a narcissistic terrace exists for Z,,; where n = 3
(mod 4), and write n + 1 = 4q for some integer g. The middle entry in
the 2-sequencing for a narcissistic terrace for Z,,,; must be 2g, so we need
consider only the terrace’s translate a such that az, = g and agq4+1 = 3q.
Then, by the narcissistic property, we must have as_; + a2¢+14; = 4g
(mod 4q) for j = 0,1,...,2¢ — 1, and so Z:‘:ll a; = 0 (mod 4q). But

e =0+1+2+...4 (49— 1) = (4 — 1)4g/2 # 0 (mod 4q), which
gives us a contradiction. 0

To construct each of our narcissistic terraces, we use power-sequences
in Z,, to give us all elements of Zy, \ {0}, each such element = always being
written so as to satisfy 0 < z < n. Then, as in [7], we introduce two further
elements 0 and n to produce a sequence where each element y of Z,
occurs exactly once, written with 0 < y < n+ 1. These two extra elements
are, of course, both congruent to 0 (mod n), so our final sequence has two
zeros when viewed modulo n. To avoid confusion when the construction of
a Zn41 terrace is specified in terms of operations in Z,,, we represent the
two zeros as Op and 0, the subscript in each denoting the value to be taken
when the terrace-sequence is interpreted modulo n + 1. As in [7], we write
Z® = (Zn\{0})U{0o}U {0,} where each element z from Z, \ {0} is
written with 0 < z < n. When we consider our terrace-sequences modulo n,
we regard 0,, as being the negative of 0p.

Each narcissistic Zn1 terrace a that we obtain has a; = —ap42_,
modulo n (not modulo n + 1), so the second half of the terrace is the
negative (mod n) of the reverse of the first half; in short, we refer to the
second half as the negative image of the first half. Thus the narcissistic
power-sequence Z;4 terrace

13 1:8421710:]:36121195:|0
can be written more briefly as
13 [:8421710: | neg image.

Here, the double fence || indicates the middle of the terrace, and any other
fence | separates segments. The use of a single colon : at the start and end
of a segment indicates a segment containing a sequence based on a half-
cycle of successive powers (mod n) of some element from Z, \ {0}; the above
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example employs successive decreasing powers of 2 (mod 13), for which a
full cycle is
84217105911 126 3.

Some of our constructions have segments containing a quarter-cycle of
elements (mod n), indicated by a double colon :: at the start and end of
each such segment. For example, taking n = 29 in our Theorem 2.2 yields
the narcissistic power-sequence Zsg terrace

2361224199 18 2| 29| :: 16 84 21 15 22 :: || neg. image.

In the more succint notation used in [8], this Z3p terrace can be written

: 3 4o | 20 | = 16 & | neg. image .

Here and in similar circumstances, the first element of a segment is followed

by 3o & according as successive elements in the segment are obtained
by multiplying, modulo n, by 2 or 2~! respectively.

In all our present constructions, as in our constructions [7] of da capo
terraces for Zp4.1, each successive element in a power-sequence segment is
obtained from the previous element by multiplying by 2 or by 2~! (mod n).
Thus, if two successive elements in a segment are a; and a;41, one or other
of the differences a1 — a; or a; — a;41 is congruent to d; (mod n) where
0 < d; < n/2, and that same difference is also congruent to d; (mod n+1).
Consequently, the within-segment differences between successive elements
can be said to be undisturbed by the change from construction modulo n
to interpretation modulo n + 1. Once again, of course, the difference
(mod n + 1) at the double fence must be (n + 1)/2, and the differences at
the other fences must compensate for the “missing” differences lost by the
breaking of cycles of powers of 2. In discussing differences, we again take a
difference in whichever direction (right-minus-left or left-minus-right) yields
a positive value less than or equal to (n + 1)/2. Sometimes, in compensat-
ing for a lost difference d, where 0 < d < n/2, a construction provides a
fence-difference that is indeed d modulo n+ 1 but is d — 1 modulo n; we call
such a compensating difference a raised difference. Such raised differences
arise from the constructions in Theorems 2.12 to 2.14 below.

If a fence separates the element 0,, from an element z that lies in (0, ),

" then the fence difference is undisturbed in the above sense if and only if
z > n/2, i.e. if and only if 2z is odd when evaluated, modulo 7, so as to
lie in (0,n).

2 Zny terraces for primes n

As our terraces must have n = 1 (mod 4), we have either n = 1 (mod 8), in
which case 2 is a square in Z,, or n =5 (mod 8), in which case 2 is not a
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square in Z,,. We start with two theorems where 2 is a primitive root of =,
so that n = 5 (mod 8). The statements of these and all subsequent theorems
contain sequences each of which is an arrangement of the elements of Z&
and each of which becomes a narcissistic terrace for Z,,; when evaluated
as follows. First, each element from Z, \ {0} is evaluated, modulo n, in the
interval (0,n). Then the entire sequence is interpreted modulo n + 1, with
0p interpreted as 0, and 0, interpreted as n.

Theorem 2.1 Let n be a prime, n = 5 (mod 8), that has 2 as a primitive
root. A narcissistic terrace for Zpy is obtainable from the sequence

Op | : =273 —=27% ... 4272 . || neg. image.
Proof: The sequence is
n| ((n-1)/8 ... 3n+1)/4 || (n-1)/4 ... 3n+1)/8 | O.

The fence differences are (3n + 1)/8 (twice) and (n + 1)/2 (at the double
fence). The missing differences are 2~3 = (3n+1)/8 (twice), so each is com-
pensated for by a fence difference, and the difference (n + 1)/2 is achieved.

O

Example 2.1: For n = 13, Theorem 2.1 gives the narcissistic Z4 terrace
13 |:8421710:(:36121195:]|0.

Theorem 2.2 Let n be a prime, n =5 (mod 8), that has 2 as a primitive
root. Write n =8v + 5. A narcissistic terrace for Z,, is obtainable from
the sequence

2%l 9 otv-l g, |
n 2272q 2%=3q ... 272a :| neg. image
where a =+1ifn/2< 2?2 <nanda=-1if0< 2% 2 <n/2.

Proof: Consider the case & = +1. We have 24~! = —2-3 = (5 - 1)/8.
The sequence is

221 .. 5n—1)/8 | n | 2%72 ... Bn+1)/4 || (n—-1)/4 ...

where /2 < 22~2 < n. So the fence differences (3n + 1)/8 and n — 22v—2
compensate for the missing differences, and the required extra difference
(n+1)/2 is achieved at the double fence.

The case o = —1 is dealt with similarly. a
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Example 2.2: For (n,a) = (13,—1), Theorem 2.2 gives the narcissistic
Z4 terrace

x 248 |13 ] : 12 6 3 :: || neg. image.
We now present two theorems where ord,(2) = (n—1)/2,sothat n =1

(mod 8). We use (2) to denote the set of elements of Z,, that are generated
by the element 2.

Theorem 2.3 Let n be a prime, n = 1 (mod 8), such that ord,(2) =
(n —1)/2. A narcissistic terrace for Zn) s obtainable from the sequence

: =2l =2%¢ ... 4+2% : |0, : +27% +27% ... =272 : | neg. image
where c is any element satisfying (n+1)/2<c<n—1andc g (2).

Proof: Asn =1 (mod 4), the element —1 is a square in Z,. The squares in
Z.,, are precisely the powers of 2, and 2(*~1)/4 = —1 (mod n). The sequence
can be written as

2% ...c|n| (Tn+1)/8 ... (n=1)/4 | Br+1)/4 ..

Again, the fence differences compensate for the missing differences and give
(n+ 1)/2 as the middle difference. a

Example 2.3: For (n,c) = (17,11), Theorem 2.3 yields the narcissistic
Z,g terrace

:1271411:|17|:151684:]}:13912:|0|:63105:.

Theorem 2.4 Let n be a prime, n = 17 (mod 24), such that ord,(2) =
(n—1)/2. A narcissistic terrace for Zn4 is obtainable from the sequence

Op| : -3-27% —-3.27% ... +3.27%2 : |
: 4271 420 ... —27% : || neg. image.

Proof: As n =5 (mod 12), the element 3 is not a square in Z, and hence
3 ¢ (2). Again, —1 = 2("=1/4, The sequence is

0] (3n—3)/8 ... (n+3)/4 | (n+1)/2 ... (n—1)/4 || (3n+1)/4 ..
The fence differences are (3n—3)/8 (twice), (n—1)/4 (twice) and (n+1)/2.

The missing differences are —3 - 2=2 = (3n — 3)/8 (twice), and —272 =
(n— 1)/4 (twice). O
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Example 2.4: For n = 17, Theorem 2.4 yields the narcissistic Z;g terrace
0]:63105:|:9124:]:1315168:|:1271411:]17.

We now give a theorem where ord,(2) = (n — 1)/3. We use {2,3) to
denote the set of elements of Z, that are generated by the elements 2
and 3. We here need n = 1 (mod 3), so that, by Lemma 1.1, we have n = 1
(mod 12). If we were to take n = 1 (mod 24), then the elements 2 and 3
would be squares in Z,, and so (2, 3) could not be Z, \ {0}. So we restrict
ourselves to n = 13 (mod 24).

Theorem 2.5 Let n be a prime, n = 13 (mod 24), such that ord,(2) =
(n—1)/3 and Z,\ {0} = (2,3). Narcissistic terraces for Z,, are obtainable
from the sequences

(@)
D +3272 43278 . —3.271 .| . 82272 32271 || 432.27% ;|
Op | : +27% +427% ... =272 : || neg. image
(i)
0 +32.272 432.271 . —32.273 .| 0, |
: =3.27% _3.27% | 43.272: |
: #2710 42° .. —27% ;|| neg. image
(iii)
Op |: +3%2.27% 432.27¢ |, _—32.272 ;|
: —=8.271 -3.20 ... 43.27% ;|
: 4270 429 .. —27% . || neg. image.

Proof: As (n — 1)/3 is even, we have 2("~1)/6 = 1 and so —1 € (2).
(i) The sequence is

:(n+8)/4 ... m=-3)/2:]|:(n-9)/4 ... 3n+9)/8 :| 0 |

:Bn+1)/8 ... (n—=-1)/4: | : Bn+1)/4 ...

The missing differences are 3-272 = (n + 3)/4 and 32.2-3 = (3n + 9)/8
and 273 = (3n + 1)/8 (each twice); the fence differences are precisely these
numbers, as well as (n + 1)/2 once.
(if) Here the sequence is

: (Bn+9)/4 ... 5n~-9)/8 : | n | : (Tn-3)/8 ... (n+3)/4 : |
t(n+1)/2 ... (n-1)/4: || : Bn+1)/4 ...
and the differences are easily checked.
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(iii) Here the sequence is

0]: (Bn+9)/8 ... n—9)/4:|:(n=-3)/2 ... (n+3)/4 : |
t(m+1)/2 ... (n=1)/4: | : 3n+1)/4 ..
and again the differences are easily checked. O

Examples 2.5: For n = 109, Theorem 2.5 gives the following narcissistic
terraces for Zjjo:

)
:2814 ... 53 :|:2550 ... 42:|0|:4175 ... 27 : | neg. image
(i)
: 8459 ... 67 :|109]:95102 ... 28 : | : 551 ... 27 : || neg. image
(i)

0]:4221 ...25:|:53106 ... 28 :]:551 ... 27 : || neg. image

Next we have a theorem where ord,(2) = (n — 1)/4. For (n —1)/4 to
be even, so that —1 € (2), we need n = 1 (mod 8). Then 2 is a square
in Z, and so, if we wish to have Z, \ {0} = (2,3), the element 3 must
be a non-square in Z, and so n = 5 (mod 12). Thus we consider n = 17
(mod 24).

Theorem 2.8 Let n be a prime, n = 17 (mod 24), such that ord,(2) =
(n—1)/4 and Z,\ {0} = (2,3). Narcissistic terraces for Zn1 are obtainable
from the sequences

(@)
: —8.272 _—3.27% | 43271 ;| 43%.27% 432273 | 32271 .|
: —33.272 _3%.271 . 43%.27%3 . 0, |
c 4273 427% ... =272 : | neg. image
(ii)
: —32.972 _32.27% | 432.271 .
; +3%.272 43%.27 . —33.273 |
O | : —3-27%3 —3.27% ... +3.272 . |
: 4270 420 ... -27%2 : || neg. image
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(iif)

: —8%.272 _33.271 . 43%.273 .| 0, |
: +32.27% 432.274 | _32.9-2 .
: —3-271 -3.20 ... 43.272 .|
: 4271 42° ... =272 : || neg. image
(iv)
Op | : —3%.273 —g%.27% | 433.272 .
: +3%.271 +3%2.20 . —3%2.27% .
: -3.271 -3.20 ... 43.27%
: 4270 42° .. =272 : || neg. image.
Proof: Similar to that for Theorem 2.5. 0

Example 2.6: For n = 113, sequence (i) of Theorem 2.6 yields the narcis-
sistic Z114 terrace

:84 42 ...58 : | : 87 100 ...52:|:78 43 ... 74 : |
113 | : 99 106 ... 28 : || neg. image .

Theorem 2.7 Let n be a prime, n = 17 (mod 24), such that ord,(2) is
odd and equal to (n ~ 1)/2h where h > 1, and such that Z,, \ {0} = (2, 3).
Suppose that the integers 3°-272, 31.2-2, . | 3%=1.9-2 gre 4ll 0dd when
evaluated, modulo n, to lie in the interval (0,n). Narcissistic terraces for
Zp+1 are obtainable from the sequences

(i)

gl.g—2 2 | 32. 272 &2 | - |3h—2_2—2 2 |

gh-1.9-2 2, | 0, | 3°- 273 & || neg. image
(i)

0, | 3*-1.2-3 2 |
3h-2.9-1 2, | 33 .21 %, | ... | 30.271 2 || neg. image
(iii) , with1<i<h-1,
gh—i g-2 2 | gh—i+l.g-2 2 | vee |3h—2_2—2 2 '
gh-1.9-2 2, | On | gh—i-1 9-3 2 |

ghmi=2.9-1 2, | gh=i=3.9-1 2, | .. | 3021 %, || neg. image.
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Proof: The requirement that ord,(2) is odd forces 2 to be a square in Z,,
son =1 (mod 8). Then 3 must not be a square in Z, son =5 (mod 12).
This explains the condition » = 17 (mod 24). Also, the given conditions
imply that —1 € 37(2).

(i) The fence differences around 0, are undisturbed as 3'2~3 € (n/2,n)
since 3'2~2 is odd, and 273 = (7Tn+1)/8 > n/2. All the segments before 0,,
contain the pattern = ... 2z | 3z .... If z <n/3, then both missing
and fence differences z are undisturbed. If n/ 3<e< 2n/3, the value taken
by the element 3z is 3z —n, which is even, so this possibility does not arise.

If 2n/3 <z < n,then we have z ... 2z—n | 3z —-2n ..., and the
differences are n — z < n/2.
(ii) and (iii) have similar proofs. o

Note 2.7(a): Theorem 2.7 is the ﬁrst of several where we have found the
use of the arrow notations 2» and <> to be helpful. In this set of theorems
there is a simple rule for determining the direction of each arrow: In each
half of a terrace, the arrows in the two segments on either side of the zero
0p or 0, should point towards the zero; the other arrows should point away
from the zero. The same rule applies throughout all our previous theorems,
if these are rewritten using the arrow notation.

Note 2.7(b): The requirement in Theorem 2.7, and in many of the sub-
sequent theorems, that each member of a sequence

3%, 3¢, ..., 37 1¢

is odd when evaluated as described, is to ensure that the fence differences
are undisturbed and hence compensate for the missing differences. (See the
proof of Theorem 2.7.) This requirement is equivalent to the requirement

c € (20n/3771, (26 + 1)n/37"1)

where ¢ is any integer 3°8; + 3!8; + - - - + 37~28,_2 such that each of the
v —1values 8; (:=0,1,...,v— 2) is separately either 0 or 1. Thus

y=2: ce (0,n/3)U(2n/3,n) ;
y=3: ce€(0,n/9)U(2n/9,n/3) U (2n/3,7n/9) U (8n/9,n);
and so on.

So, for successive values of +, the successively smaller disconnected regions
within which ¢ must lie are, apart trivially from the end-points of the inter-
vals, successive approximations to the Cantor set [13, 16), to which they
converge as v — oo (see discussions of “triadic Cantor dust” in, for example,
[14, §1.1]). We judge the above requirement on a value ¢ to be more useful
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for checking correctness of c-values than for finding them in the first place.

Note 2.7(c): If a prime n satisfies the conditions in the first sentence
of Theorem 2.7, and h < 4, then consideration of Note 2.7(b) shows that
the supposition in the second sentence of the statement of Theorem 2.7 is
invariably true. For example, 3272 = (n + 3)/4 lies in (2n/9, n/3).

Note 2.7(d): In the range 3 < n < 1000, Theorem 2.7 covers (n,h) =
(89,4), (233,4) and (881, 8).

Example 2.7: With (n,h,i) = (89,4,2), sequence (iii) in Theorem 2.7
yields the narcissistic Zgg terrace

69 79 ... 49 | 29 58 ... 59 | 89 |
56 28 ... 23 | 45 1 ... 67 || neg. image.

The next two constructions apply where 2 and 3 generate the set of non-
zero squares in Z,. For 2 and 3 to be squares we require n = 1 (mod 24).

Theorem 2.8 Letn be a prime, n =1 (mod 24), such that ord,(2) is odd
and equal to (n — 1)/4g where g > 1, and such that (2,3) is the set of non-
zero squares in Z,,. Suppose that the integers 30.2-2, 31.2~2 39-1.9-2
are all odd when evaluated, modulo n, to lie in the interval (0,n). Suppose
further that there ezists a non-square ¢ in Z,, such that the integers 3%c,
3le, ..., 397 1c are all odd when evaluated, modulo n, to lie in the interval
(0,m). A narcissistic terrace for Zy41 is obtainable from the sequence

8% & |3lc & ... |39% 2 |39l B o, |39 l23 2

39-2.2-1 2, | g9-3.9-1 2, | ... | 3°.2-1 % || neg image.
Proof: As —1 is a square in Z,, we have —1 € (2,3) and so —1 € 39(2).
Thus the negatives of the elements of f;(,l 3¢(2) are precisely the elements .
of Ufi'g'l 3%(2). So the given sequence contains all the elements of Z,, \ {0}.
The fence differences around 0,, are undisturbed as 39~1¢ and 39-1.2-2
are both odd. To the left of 0,,, the pattern z ... 2z | 3z occurs, and
to the right the patternis 3y | 2y ... y. The argument now follows
that of the previous theorem. ]

Note 2.8(a): The supposition in the second sentence of the statement of
Theorem 2.8 is invariably true if g < 4.
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Note 2.8(b): In the range 3 < n < 1000, Theorem 2.8 covers (n,g) =
(73,2) and (337, 4).

Example 2.8: For n = 73 we have g = 2 in Theorem 2.8, so the odd
integer ¢ must satisfy ¢ € (0,n/3) or (2n/3,n) as well as ¢ ¢ (2,3). Thus
the admissible values of ¢ are 5, 7, 11, 13, 15, 17, 21, and 51, 53, 59, 63.
With ¢ = 5 we obtain the narcissistic Z4 terrace

539 ... 10 | 15 30 ... 44 | 73 |

46 23 ... 19 | 37 1 ... 55 || neg. image.

Theorem 2.9 Let n be a prime, n = 1 (mod 24), such that ord,(2) s
even and equal to (n — 1)/2h where h > 1, and such that (2,3) is the set
of non-zero squares in Z,. Suppose that the integers +3° .22, 43! . 272
veo, +381.2-2 gre all odd when evaluated, modulo n, to lie in the interval
(0,n). Suppose further that there ezists a non-square c in Zy, such that the
integers 3%, 3l¢c, ..., 3" ¢ are all odd when evaluated, modulo n, to lie
in the interval (0,n). A narcissistic terrace for Zy41 is obtainable from the
sequence

: (-1)1-3% & | : (-1)%.3lc 2. | -oo |2 (1) 1.3 2% <. |
c(-)h3hle B | a |z (-8 L.278 2y
2 o-1 2 -3 o-1 2
D (=3)h2.271 L | (=382t S| e
: (-3)°-271 2, || neg. image

where o is again O, or Og according as h is odd or even.

Proof: Similar to that of Theorem 2.8. Here the patternis —z ... 2z | 3z
to the left of a. O

Note 2.9: In the range 3 < n < 1000, Theorem 2.9 covers (n,h) =
(241, 5), (433,3) and (457, 3). It fails for (n,h) = (673,7), as then we have
3h-1.92-2 = 36.92-2 — 14, which is even; here we have a “very near miss”,
which we circumvent by Theorem 2.14 below.

Examples 2.9 For (n,h) = (241,5), Theorem 2.9 provides narcissistic
Zoso terraces with ¢ = 7, 19, 55, 73, 163, 167, 179, 185 or 215. For each of
(n,h) = (433, 3) and (457, 3) the possible c-values include 5.



Theorem 2.10 Let n be a prime, n = 5 (mod 8), such that ord,(2) =
(n —1)/k where k is odd, k > 3, and such that Z, \ {0} = (2,3). Suppose
that, for some integer i satisfying 1 < ¢ < k — 1, the integers —3° . 2-2,
—31.272, ..., —8%=i-1.2-2 gre qll odd when evaluated, modulo n, to lie in
the interval (0,n). Suppose further that there exists an integer c, satisfying
¢ € 37%(2), such that the integers 3%, 3l¢c, ..., 3¢ are all odd when
evaluated, modulo n, to lie in the interval (0,n). A narcissistic terrace for
Zinyy s obtainable from the sequence

:=3% E: |48l B o | (-1l 2
s (=187 L) o | s (<3¢t 2
. (__3)k—i-—2.2—1 2. | : (=8)k=i=3.9-1 2,. | ooe |
: 4+3°.271 2, || neg. image

where a = 0, or Op according as i is odd or even.

Proof: As ord,(2) is even, we have —1 € (2). If ¢ is odd, then the term
to the left of  is 3""1c- 27! = (3'"1c + n)/2 > n/2, so the difference is
undisturbed if & = 0,,. Also, if i is odd then, as k is odd, the term to the
right of a is —3%¥—*-1.2-3  which is greater than n/2 since —3%=i-1.2-2
is odd. A similar anlaysis holds when ¢ is even.

To the left of & the patternis z ... —2z | —3z and to the right it
is =3y | —2y ... vy ; again the proof is as for Theorem 2.7. (]

Note 2.10: In the range 3 < n < 1000, Theorem 2.10 covers only one
n-value satisfying n = 13 (mod 24), namely n = 397, for which k = 9. The
smallest n-value satisfying n = 5 (mod 24) that is covered is n = 1181, for
which k = 5. (The value n = 1013, for which k = 11, fails.)

Example 2.10: For n = 397, Theorem 2.10 yields one narcissistic terrace
or more for each of the values i = 2,3,...,7. For example, for i = 3 we can
take ¢ =15, 17, 95, 103, 123, 125, 267, 277, 363, 367.

Theorem 2.11 Let n be a prime, n = 17 (mod 24), such that ord,(2) =
(n—1)/k where ord,(2) and k are both even, k > 4, and such that Z,\ {0} =
(2,3). Suppose that, for some integer i satisfying 1 < i < k— 1, the integers
+30.2-2, 43122 . | +3%=1-1.2-2 gre all odd when evaluated, modulo n,
to lie in the interval (0,n). Suppose further that there exists an integer c,
satisfying ¢ € 37%(2), such that the integers 3%, 3¢, ... , 3" 1¢c are all
odd when evaluated, modulo n, to lie in the interval (0,n). A narcissistic
terrace for Zny is obtainable from the sequence given in Theorem 2.10,
where a i3 again O, or Oy according as i is odd or even.
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Proof: As n =17 (mod 24), the element 2 is a square in Z,, and 3 is not.
As ord,(2) is even, —1 € (2). The proof is similar to the previous one. 0O

Note 2.11: In the range 3 < n < 1000, Theorem 2.11 with & > 4 covers
only (n,k) = (257,16), (641,10) and (953,14). With & = 4 (which is what
we have for n = 113, 281, 353, 593 and 617), the terraces (ii) of Theorem 2.6
are obtainable from Theorem 2.11 with i = 2 and ¢ = 32 . 2~2, but other
c-values can be used too.

Examples 2.11: For (n,k) = (257, 16), the only possible solution from
Theorem 2.11 has (%,¢) = (10,79). For (n.k) = (641,10) various solutions
exist, including (¢,¢) = (6,7), (5,67) and (4,11). Likewise for (n,k) =
(953,14) various solutions exist, including (i,c¢) = (8,871), (7,707) and
(6,73).

Within the range 3 < » < 1000, our theorems so far have failed to
cover n = 577, 601, 673, 937 and 997. Indeed, we have no construction for
n = 601. However, using constructions that depend on raised differences,
we can cover the other four of the n-values. We now present Theorems
2.12 and 2.13 which, between them, cover n = 577, 937 and 997. Like
Theorem 2.10 in [7], these next two theorems employ a sequence of odd
integers ¢; with ¢iy; = 3¢; + 2. (As illustrated by Theorem 5.4 of [8], the
equation c;+1 = 3¢; +2 would be replaced by ¢;+1 = 3¢; +4 if we were using
Z,, power-sequences to construct terraces for Z, instead of Zn41.)

Theorem 2.12 Let n be a prime, n = 1 (mod 4), such that ord,(2) =
(n — 1)/k where ord,(2) is even and k > 2. Suppose that Zy \ {0} =
(2)Uc1(2) Uca2) U-- - Uck_1(2) where the integersc; (i =1,2,...,k—1),
satisfying ciy1 = 3c; +2 (1 =1,2,...,k—2), with1 < c; and ck—1 <n—2,
are all odd. Suppose further that ¢; = 3 (mod 4). A narcissistic terrace for
Zyp41 is obtainable from the sequence

C (=127l 2 ()27l ) e ]
: (—l)k—3-2—lck_2 2. |

: (=1)F2. 271y 3, | o |+ +278 i | neg. image

where a = 0g if n = 5 (mod 8) (and hence k is odd), ora =0, ifn=1
(mod 8) (and hence k is even). If c; = 1 (mod 4), instead of c; = 3,
" a narcissistic terrace for Zp4.1 is obtained from the above sequence by re-
placing each term to the left of o by its negative.
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Proof: If § is a primitive root of p, and 2 = 6%, then k = ged(n - 1, ).
When n = 1 (mod 8), 2 is a square modulo n and hence k is even; and
when n = 5 (mod 8), 2 is not a square and hence k is odd.

If k is odd, the term to the left of a is 27%cx_; = (ck—1 +n)/4 < n/2 if
k-1 = 3 (mod 4), so the choice a = 0p is appropriate; if cxk—; = 1 (mod 4),
the term is —2~2¢,_; = (n — cx~1)/4 < n/2. The term to the right of a is
273 = (3n +1)/8 < n/2. A similar analysis holds when k is even.

The general pattern is —271¢; ... ¢ | 27 l¢41 or its negative.
The missing difference here is (n — ¢;)/2 and the (raised) fence difference is
ci+(n+1—(cit1+n)/2) =(n—c)/2 O

Note 2.12: In the range 3 < n < 1000, the coverage of Theorem 2.12 is as
follows:

k=3 k=4

n =5 (mod 8) n =1 (mod 8)
n  Specimen (¢, ¢2) n  Specimen (¢, 2, c3)
100 (31, 95) 113 (3,11, 35)
157 (17,53) 281 (13,41, 125)
229 (7,23) 353 (13,41,125)
277 (11,35) 577 (25,77, 233)
733 (13, 41) 593 (57,173,521)
997 (7,23) 617 (3,11, 35)

The smallest n-value covered with n = 5 (mod 8) and k = 5 is n = 1181,
for which we can take (ci, ¢z, c3,¢4) = (7,23,71,215).

Example 2.12(a): For n = 109, with (c;,¢2) = (31,95), and thus with
¢1 = 3 (mod 4), Theorem 2.12 yields the following narcissistic Z,;¢ terrace:

:70 85 ... 47 78 : | : 7 14 ... 80 51 : | O |

: 41 75 ... 54 27 : || neg. image.

Example 2.12(b): For n = 113, with (c;,¢s,¢3) = (3,11,35), and thus
with ¢; = 3 (mod 4), Theorem 2.12 yields the following narcissistic Z;;4
terrace:

:5820 ... 107110 : | : 51 82 ... 2211 :|:7435 ... 3876 : |

113 | : 99 106 ... 56 28 : || neg. image .
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Example 2.12(c): For n = 281, with (c;, c2, ¢3) = (13,41, 125), and thus
with ¢; = 1 (mod 4), Theorem 2.12 yields the following narcissistic Zag2
terrace:

: 134 67 ... 26 13 : | : 161 221 ... 199 240 : |

: 78 156 ... 121 242 : |
281 | :246 123 ... 140 70 : || neg. image .

In our next theorem we must take n = 1 (mod 8), as taking n = 5
(mod 8) would make 2 a non-square in Z, so that ord,(2) would be even.

Theorem 2.13 Letn be an odd prime, n = 1 (mod 8), such that ord,(2) =
(n — 1)/2h where ord,(2) is odd and h > 2. Suppose that

2.\ {0} = @ v U a@ v -@ U - e

where the integers ¢; (i =1,2,...,h—1) satisfyc; =1 (mod 4) and ¢;y =
3¢;+2(¢=1,2,...,h—2), with1 < ¢; and ch_) < n — 2. A narcissistic
terrace for Zy,, is obtainable from the sequence

27l & | 2% E | - | 270 & |
271 3 10, ] 2% & || neg image.
Proof: Similar to the proof of Theorem 2.12. O

Note 2.13: In the range 3 < n < 1000, Theorem 2.13 yields Z,,4, terraces
as follows:

n h Specimen (c1,¢2,...,Ch-1)
73 4 -
89 3 -
233 4 (13,41,125)
937 4 (37,113,341)

Example 2.13: For n = 937, with the ¢;-values given in the table above,
Theorem 2.13 yields the narcissistic Zgas terrace

487 712 ... 74 37 | 525 731 ... 226 113 | 639 341 ... 394 788 |

937 | 820 410 ... 469 703 || neg. image .
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Table 1
The coverage of theorems from §2, for 3 < n < 1000

n  Theorem n Theorem n  Theorem

5 21, 2.2 281 2.6, 2.11, 2.12 641 2.11

13 21, 2.2 293 2.1, 2.2 653 2.1, 2.2
17 2.3, 24 313 2.3 661 2.1, 2.2
29 2.1, 2.2 317 2.1, 2.2 673 2.14

37 2.1, 2.2 337 2.8 677 2.1, 2.2
41 23, 24 349 2.1, 2.2 701 2.1, 2.2
53 2.1, 2.2 353 2.6, 2.11, 2.12 709 2.1, 2.2
61 2.1, 2.2 373 21, 2.2 733 2.5, 2.12
73 2.8 389 2.1, 2.2 757 2.1, 2.2
89 2.7 397 2.10 761 2.3, 2.4
97 23 401 2.3, 24 769 2.3
101 2.1, 2.2 409 2.3 773 2.1, 2.2
109 2.5, 2.12 421 2.1, 2.2 797 2.1, 2.2
113 2.6, 2.11, 2.12 433 2.9 809 2.3, 24
137 2.3, 24 449 2.3, 24 821 2.1, 2.2
149 21, 2.2 457 2.9 829 2.1, 2.2
157 2.5, 2.12 461 2.1, 2.2 853 2.1, 2.2
173 2.1, 2.2 509 2.1, 2.2 857 2.3, 24
181 2.1, 2.2 521 2.3, 24 877 2.1, 2.2
193 23 541 2.1, 2.2 881 2.7
197 2.1, 2.2 557 2.1, 2.2 920 2.3, 24
229 25, 2.12 569 2.3, 24 937 2.13
233 2.7, 2.13 577 2.12 941 2.1, 2.2
241 2.9 593 2.6, 2.11, 2.12 953 2.11
257 2.11 601 — 977 2.3, 24
269 2.1, 2.2 613 2.1, 2.2 997 2.12
277 2.5, 2.12 617 2.6, 2.11, 2,12
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Our last theorem in this section provides an ad hoc construction for
n = 673 (a value for which we failed (7] to find a da capo directed terrace).
The construction is achieved with a single raised difference. Generalisation
of this construction to cover other n-values would be too cumbersome to
be justified here.

Theorem 2.14 Take the prime n = 673, and write c = 521. A narcissistic
terrace for Zn4, s obtainable from the sequence

: (=3)0% Z:]: (-3)k Sl s (-3)8e <1
co—3tiot 248500 Z s —35.2¢ 40, |
433,278 2o 3227t Ao
. 43t.271 4. —30.271 2. || neg. image.

Proof: For n = 673 we have ord,(2) = 48. However, |(2,3)| = 336 and
c ¢ (2,3), so that Z, \ {0} = (2,3) Uc(2,3). The values 3°.272, 3! .272,
32.2-2 33.2-2 gre 505, 169, 507, 175 respectively, and thus are all odd.
The values 34-2¢, 35.24, 35.24 are 37, 111, 333 respectively, and thus are all
odd. The values 3%, 3!c, ..., 35¢ are also all odd. Accordingly, the proof
proceeds similarly to the proofs of Theorems 2.9, 2.10 and 2.11, save that we
must additionally check that the raised difference at the anomalous seventh
fence compensates for the difference missing from the seventh segment; this
check is easily made. Numerically the terrace is as follows:

521 ... 304 :|:456 ... 434 : | : 651 ... 44 :|: 66 ... 541 : |

: 475 ... 306 : | :594 ... 158 : | : 237 ... 199 : | : 636 ... T4 : |

: 111 ... 451 : | : 340 ... 503 : | 673 | : 424 ... 498 : |

:332 ... 507 :]:338 ... 504 :|:33 ... 505 : | neg. image.
0O

For the range 3 < n < 1000, Table 1 shows which primes n satisfying
n =1 (mod 4) are covered by Theorems 2.1 to 2.14 inclusive.

3 Zn.1 terraces for n = p? (p an odd prime)
We start this Section with two theorems where 2 is a primitive root of both

p and p?; for these theorems we have p = 3 or 5 (mod 8). No prime p is
known such that 2 is a primitive root of p but not of p? (see [12]).
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Theorem 3.1 Letn = p? where p is a prime such that p and p? both have 2
as a primitive root. Let d be any even integer, 0 < d < p. A narcissistic
terrace for Zp+1 s obtainable from the sequence

: dp 24dp ... 20-3/%gp . | 0n |
: 273 274 .. —27% . | neg. image.

Proof: Here 2(P-3/2dp = n — (d/2)p > n/2, so the first fence difference
compensates for the missing difference from the first segment. Likewise, as

= 1 (mod 8), we have 23 = (7n+1)/8 > n/2; the second fence difference
compensates for the missing difference from the third segment. 0

Note 3.1: If we take d = 2 in Theorem 3.1, the first segment of the terrace
becomes 2p 4p ... (p—1)p.

Example 3.1: With (n,p,d) = (25,5,4), Theorem 3.1 yields the narcis-
sistic Zog terrace

:20 15 : | 256 | : 22 11 18 9 17 21 23 24 12 6 : || neg. image.

Our second theorem in this Section yields terraces where some segments
contain partial cycles of “irregular length”. As in [8], we mean by this that,
if s is the number of elements in a full cycle, and 7 is the number of terms
in any one of the corresponding partial cycles, then, in general, s % 277
for any integer 1. We again indicate a partial cycle of irregular length by a
scream ! at the start and the end of a segment containing a partial cycle.

Theorem 3.2 Let n = p? where p is a prime, p > 3, such that both
p and p? have 2 as a primitive root. Write s = (p — 5)/2. Define
(¢=0,1,...,(p— 3)/2) to be the value taken by 2°+P~1) yhen evaluated,
modulo n, to lie in the interval (0,n). Suppose that, for some particular
value j of i, we have m; > (n—1)/4. Then m; — (n—1)/4 is a multiple z;p
of p. A narcissistic terrace for Z,41 is obtainable from the sequence

1 _9-1 _20 _21 _28+J'(P"1)"1 ! | o |
: 2(1’_3)/2ij 2(?"5)/2$jp e 20$jp : |
| 42o+i(P=1)  postite=D+1 | _9-2 ||| peg image

where o is Op or 0, according as m; is odd or even respectively.

Proof: As each m; = —4~! (mod p), the values m; are equally spaced
throughout the interval [0,n], so there must exist values of i for which
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7; > (n —1)/4. Also, z; is even if and only if m; is even whenever
7; > (n— 1)/4. The first missing difference is —2~n;, so to avoid raised
differences we must take a = n if 7; is even, and a = 0 if 7; is odd. On the
right of @, the missing difference is —21z; p, so we need a = n if z; and =;
are even, as on the left. The third missing difference is (n — 1)/4, and the
third fence difference is m; — z;p = (n — 1)/4. ]

Example 3.2(a): For n = 25, Theorem 3.2 has p = 5, whence s = 0. Thus
m; = 16, whence z;p = 10. Accordingly we have the following narcissistic
Zqe terrace, the quarter-cycle segments being specific to n = 25:

$1224232117 ::|25|:2010:|:: 167 14 3 6 :: || neg. image.

Examples 8.2(b): For n = 121, Theorem 3.2 has p = 11, whence s = 3.
Thus (g, 71, 72,73, 74) = (8,85,41,118,74). We discard mp = 8, as it is
less than (n — 1)/4. But m, = 85, whence z1p = 55; these values yield the
narcissistic Zj2; terrace

! 60 120 ... 9 18 1] 0 | : 33 77 99 110 55 : |

14 terms

1 8 49 ... 15 30 !| neg. image.
41 t;rms
Likewise w3 = 118 and z3p = 88; these values yield the terrace

| 60 120 ... 31 62 1| 121 | : 77 99 110 55 88 : |

v

34 terms

! 118 115 ... 15 30 ! || neg. image.
21 terms

Our next two theorems are analogues of the previous two. Instead of
having 2 a primitive root of both p and p?, we now have ord,(2) = (p—1)/2
and ord,,(2) = p(p — 1)/2. The theorems thus do not cover the Wieferich
prime p = 3511, which [11] is the only prime known to have ord,(2) =

ordy(2) = (p — 1)/2.

Theorem 3.3 Let n = p? where p is a prime, p = 7 (mod 8), such that
ordy(2) = (p — 1)/2 and orda(2) = p(p — 1)/2. Let d be any odd integer,
0 < d < p. A narcissistic terrace for Z,, i3 obtainable from the sequence

Pdp 2'dp ... 27%dp | 0, | 273 2% ... 2-2 || neg. image .
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Proof: For 2 to be a square in Z,,, we require p = 1 or 7 (mod 8). For
—1 not to be in (2) we require ordp(2) to be odd, i.e. (p—1)/2 to be odd,
so we need p = 7 (mod 8). The rest of the proof is similar to the proof of
Theorem 3.1. O

Theorem 3.4 Let n = p? where p is a prime, p = 7 (mod 8), such that
ordy(2) = (p—1)/2 andord,(2) = p(p—1)/2. Writes = (p—5)/2. Define¢;
(6=0,1,...,p—2) to be the value taken by —25+G(P=1)/2) yhen evaluated,
modulo n, to lie in the interval (0,n). Suppose that, for some particular
value j of i, we have §; > (n—1)/4. Then §; — (n—1)/4 is a multiple z;p
of p. A narcissistic terrace for Z,+1 s obtainable from the sequence

1 —9=1 _90 _ot —93+(i(p-1)/2)-1 ! I o I
27'z;p 27%z;p ... 2%p |
1 —geti(p-1/2  _gs+(ilp-1/D+1 | | _9-2 ||| pneg. image

where a is Og or 0, according as §; is even or odd respectively.

Proof: Similar to the proof of Theorem 3.2. ]
Example 3.4: For (n,p,s) = (49,7,1), Theorem 3.4 has
(501 §11 seey 55) = (471 331 29, 5, 40, 26)’

from which we must discard £3 = 5, as it is less than (n — 1)/4. But we
can, for example, use &; = 33 to obtain the narcissistic Zso terrace

124 48 47 45 41|49 | 354221 |! 33 17 ... 6 12!| neg. image.

5 terms 16 terms

Finally in this Section, we provide a theorem that covers, for example,
P = 17, which has been missed so far. We now need terraces with more
segments than have been present hitherto.

Theorem 3.5 Let n = p? where p is a prime, p = 17 (mod 24), such that
ordp(2) = (p — 1)/2 and ord,(2) = p(p — 1)/2. A narcissistic terrace for
Zp41 is obtainable from the sequence

: =2% —271p ... +2+1p 1 | 42°.3p +421.3p ... -271.3p : |
0o | : —3-273 —-3.27% ... 43.272 . |
: 4271 +2° ... =272 : || neg. image.
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Proof: As p =17 (mod 24), the element 3 is not a square in Z, and hence
3¢ (2). Also —1 € (2). When we note that —3-2~3 = 3(n — 1)/8, the rest
of the proof follows easily. O

Example 3.5: With (n,p) = (289,17) Theorem 3.5 yields the narcissistic
Zago terrace

: 272 136 68 34 : | : 51 102 204 119 : | O |
: 108 54 ... 146 73 : | : 145 1 ... 36 72 : || neg. image.
68 terms 68 terms

4 Z,.1 terraces for n = 3%

Theorem 4.1 Let n = 32 where t is a positive integer. Narcissistic ter-
races for Zyp+y are obtainable from the sequences

(i)
Op | : 3%°1.272 . |
(=327 L (=323t L)
: (—3)0.27! %, : | neg. image
(i)
=321 .| 0, | (-3)%2.27% 2.
D (-3)%-3.971 L | (=)ot Lo

: (-3)0.27! 2, || neg. image .

Proof: As n is an even power of 3, we have n = 1 (mod 8). If i is odd,
i < 2t — 1, then 3°2~2 takes the value (n + 3!)/4 < (n + n/3)/4 = n/3,
whereas if i is even, —3'2~2 takes the value (n — 3¢)/4 < n/3. Thus in
(i) the general form of the sequence after the first two short segments is

. n—=3y) | (n-2y) ... y | where0 <y < n/3. So the missing dif-
ference y is compensated for by the fence difference y. A similar argument
holds for (ii). O

Example 4.1(a): With ¢ = 1, Theorem 4.1 yields the following type (ii)
narcissistic Z,¢ terrace, which is also obtainable from Theorem 3.1:

6 :|9]: 842 :]]:751:]0]:3

54



Example 4.1(b): With ¢t = 2, Theorem 4.1 yields the following type (i)
narcissistic terrace for Zgs:

0|:27:]:459 18 :|:39 78 ... 51 21 : |
:41 1 ... 10 20 : | neg. image.

Theorem 4.2 Let n = 3% where the integer t satisfies t > 1. Narcissistic
terraces for Zp41 are obtainable from the sequences

(@)
- - 2
: 4271 2. | @ +2 e, < | oo |2 427 egg = |
: =321 . | 0, | : 27% Z: || neg image

(ii)

p =2l Zi =27l B e | =27, 2|

D 4321 0y |2 -3-272 2270 2 .|| neg image
where

(a) cpp—3 = 2-3%2 or 5.32-2 gnd

(b) the values c;—y (i =2t —2,2t—3,...,2) are then obtained successively
Jrom :
Ci-1=2:3%"1—¢;/3 or 3% — ¢, /3 if ¢; is even,

or from
Ci1=2-3%"1 —¢;/3 or 3%-1 — ¢;/3 if ¢; is odd,
each successive value ¢; (i = 2t—2,2t—3,...,1) being evaluated, modulo n,

to lie in the interval (0,n).

Proof: Modulo n, we have 5-3%-2 = —4.3%-2 ¢ 32-2(9) 50 ¢y €
32-2(2). It is straightforward to show inductively that ¢; € 3i(2), Vi =
1,2,...,2t - 2.

Consider (i). Here ~3%~! = 2n/3 > n/2and 2-3 = (Tn+1)/8 > n/2, so
the differences at 0, match the missing differences in the adjacent segments.
Before 0, the pattern is 27!¢;i.; ... —ci—; | 27'¢ . Consider for
example the case where ¢; is odd and ¢;—; = 2-3%~1 — ¢;/3. We then have
—¢ij—1 = 3%~ 4 ¢;/3. The missing difference is

27l = (n+6i-1)/2 = (n+2n/3-c/3)/2 = (5n—c;) /6 = —(n + ;) /6,
and the fence difference is

27 - (3 /) =(n+a)/2- (n+c)/3=(n+c)/6 .

55



So the unraised fence difference compensates for the missing difference.
The proofs are similar in all the other cases for (i) and (ii). O

Examples 4.2: With ¢ = 2, Theorem 4.2 yields narcissistic Zgp terraces
that include
(i) with cp =18, ¢ =75:

7839 ... 126 :|:94563:|:54:| 81|
: 71 76 ... 40 20 : || neg. image

and
(i) with c; = 18:

: 72 36 18 : | : 27 : | O |
:30 15 ... 4221 :|:41 1 ... 10 20 : || neg. image.
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