ON f-DERIVATIONS OF BCC-ALGEBRAS

ALEV FIRAT

ABSTRACT. In this paper, the notion of left-right and right- left f-
derivation of a BCC-algebra is introduced, and some related prop-
erties are investigated. Also, we consider regular f-derivation and
d-invariant on f-ideals in BCC-algebras.

1. INTRODUCTION

In the theory of rings and near rings, the properties of derivations are
important. Several authors [5], (6], [8], [9], [11],[12] have studied BCI-
algebras, BCK-algebras and BCC-algebras and lattices. In [10], Jun and
Xin applied the notion of derivations in rings and near-rings theory to BCI-
algebras, and also introduced a regular derivation in BCI-algebras and in
(7], [16),[17], Ferrari, Szasz, Xin, Li and Lu applied the notion of derivations
to lattices. They investigated some of its properties, defined a d-invariant
ideal and gave some conditions for an ideal to be d-invariant. In (1], Abu-
jabal and Al-Shehri continued studying derivations in BCI-algebras. In [6],
Dudek and Zhang introduced the notion of f-derivations of BCI-algebras
and they gave a characterizations of a p-semisimple BClI-algebra using reg-
ular f-derivations. Later, symmetric bi-derivations, f-derivations, permut-
ing tri-derivations, symmetric f bi-derivations on a lattice and some prop-
erties related with these derivations were discussed by [3], [4], [13], [15],
respectively. In [14], Prabpayak and Leerawat applied the notion of a regu-
lar derivation in BCl-algebras to BCC-algebras and also investigated some
of its related properties.

In this paper the notion of left-right and right-left f-derivation of a
BCC-algebra is introduced, and some related properties are investigated.

2. PRELIMINARIES

By an algebra G = (G, ., 0) we mean a non-empty set G together
with a binary operation multiplication and a constant 0. In the sequel, a
multiplication will be denoted by juxtaposition.
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Definition 2.1. An algebra G = (G, ., 0) is called BCC-algebra if for all
z, ¥, z € G it satisfies the following axioms,

(1) ((zy)(zy))(zz) = O

(2)0z=0

B)z0 ==

(4) zy = yz = 0 implies z = y.

A non-empty subset S of a BCC-algebra G is called BCC-subalgebra of
Gifzye Sforallz,y € 8S.

By (1) we get: (zy)z =0and zz =0 for all z, y € G.

In any BCC-algebra G, one can define a partial order ”<” by putting
z < y if and only if zy = 0.

A non-empty subset A of a BCC-algebra G is called a BCC- ideal, if

(5)0e A

(6) (zy)z € Aand y € A imply zz € A.

Putting z = 0 in (6) we obtain : zy € A and y € A implies z € A. In
a BCC-algebra G, for elements z, y of G we denote z A y = y(yz).

Definition 2.2. [14] Let G be a BCC-algebra. A map d: G — G is said
to be a left-right derivation (briefly, (1, r)- derivation) of G if it satisfies the
identity d(zy) = d(z)y A zd(y) for all z, y € G.

If d satisfies the identity d(zy) = z d(y) A d(z)y for all z, y € G, then d is
said to be a right-left derivation (briefly, (r, 1)- derivation) of G. Moreover,
if d is both (1, r) and (r, 1)- derivation, then it is said to that d is a derivation.

3. THE f-DERIVATIONS OF BCC-ALGEBRAS

In what follows, let f be an endomorphism of G unless otherwise speci-
fied.

Definition 3.1. Let G be a BCC-algebra and f be an endomorphism of
G. Amap d: G — G is said to be left-right f-derivation (briefly, (1,r)- f-
derivation) of G, if it satisfies the identity d(zy) = (d(z)f(y)) A (f(z)d(¥))
forall z, y € G.

If d satisfies the identity d(zy) = (f(z) d(¥)) A (d(z) f(y)) forall z,y € G,
then d is said to be right-left f-derivation (briefly, (r, 1)- f- derivation) of
G. Moreover, if d is both (l,r) and (r, 1)- f-derivation, then it is said to that
d is an f-derivation.

Example 3.1. Let G = { 0, 1, 2, 8 } be a BCC-algebra with Cayley table
as follows.
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Then it is easily checked that d is an f-derivation of G.

Remark 3.2. From Ezample 3.2 and 3.3, we have seen that there is an

f- derivation of G which is not a derivation of G.

Definition 3.2. An f-derivation of a BCC-algebra G is said to be regular

if d(0) = 0.

Theorem 3.3. Ifd is a (r, |)-f-derivation of ¢ BCC-algebra G, d(0) = 0.
Proof: Since d is (r, 1)- f-derivation of G,

d(0) = d(0 ) = (f(0) d(z)) A (d(0) f(z))

(0 d(z)) A (d(0) f(z)) = 0 A (d(0) f(z))

(d(0) £(=)) ((d(0)5(=)) (0))

(d(0) f(=)) (d(0)f(z)) = 0.

Corollary 3.4. An f-derivation d of a BCC-algebra G is regular.

Proposition 3.5. Let d be a self map of BCC-algebra G. Then the fol-
lowing hold.

(1) If d is an (I, r)-f-derivation of G, then d(z) = d(z) A f(z) for all
z€G.

(2) If d is an (7, |)-f-derivation of G, then d(z) = f(x) A d(z) for all
z€G.

Proof: 1) Let d be an (], r)-f-derivation of G. Then,

d(z) = d(z 0) = (d(z) £(0)) A (f(2) d(0)) = (d(x) 0) A (f(=) 0) = d(z) A f(z).

2) Let d be an (r, 1)- f-derivation of G. Then,

d(z) = d(z 0) = (f(z) d(0)) A (d(z) £(0)) = (f(=) 0) A (d(z) 0) = f(z) A d(z).

Definition 3.6. Let G be a BCC-algebra and d be a f-derivation of G.
d1(0)={z€G|d(z)=0}.

Proposition 3.7. Let G be a BCC-algebra with a partial order <, and let
d be an f-derivation of G. Then the following hold:

(1) d(z) < f(z) for allz € G.

(2) d(z y) < d(z) f(y) for allz, y € G.

(3)d(z y) < f(z) d(y) for allz, y € G.

(4)Ifdo f=fod, thend(f(zx)d(z)) =0 forallz € G.

(5) Ifdo f = fod, thend(d(z)) < f(f(z)) for allz € G.

(6) d~1(0) is a subalgebra of G.

Proof:

(1) Let = be an element of G.

By Proposition 3.5, d(z) = d(z) A f(z) = f(z) (f(z)d(z)). Then

d(z)f(z) = (f(z) (f(z)d(z))) f(z) =0. Thus d(z) < f(z) forallz € G.

(2) For any z, y € G, we have
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Example 3.4. Let G be a BCC-algebra as in Ezample 8.1. Then A={0,1}
is a BCC-ideal of G.

Let d be an f-derivation of G as in Ezample 8.2. f(A)={0} C A.
Thus A is an f-BCC-ideal. Alsod(A)={0} C A. Hence A is d-invariant.

Theorem 8.10. Let d be a f-derivation of BCC-algebra G. Then every
f-ideal A of G is d-invariant.

Proof: Let A be an f-ideal of BCC-algebra G. Let y € d (A). Then
y = d (z) for some =z € A. It follows that by Proposition 3.7.(1) we have
y f(z) = d(z) f(z) = 0 € A, since A is f-ideal we have y € A. Thus
d(A) C A. Hence A is d-invariant.
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