ON f-DERIVATIONS OF BCC-ALGEBRAS

ALEV FIRAT

ABSTRACT. In this paper, the notion of left-right and right-left f-derivation of a BCC-algebra is introduced, and some related properties are investigated. Also, we consider regular f-derivation and d-invariant on f-ideals in BCC-algebras.

1. Introduction

In the theory of rings and near rings, the properties of derivations are important. Several authors [5], [6], [8], [9], [11], [12] have studied BCIalgebras, BCK-algebras and BCC-algebras and lattices. In [10], Jun and Xin applied the notion of derivations in rings and near-rings theory to BCIalgebras, and also introduced a regular derivation in BCI-algebras and in [7], [16], [17], Ferrari, Szasz, Xin, Li and Lu applied the notion of derivations to lattices. They investigated some of its properties, defined a d-invariant ideal and gave some conditions for an ideal to be d-invariant. In [1], Abujabal and Al-Shehri continued studying derivations in BCI-algebras. In [6], Dudek and Zhang introduced the notion of f-derivations of BCI-algebras and they gave a characterizations of a p-semisimple BCI-algebra using regular f-derivations. Later, symmetric bi-derivations, f-derivations, permuting tri-derivations, symmetric f bi-derivations on a lattice and some properties related with these derivations were discussed by [3], [4], [13], [15], respectively. In [14], Prabpayak and Leerawat applied the notion of a regular derivation in BCI-algebras to BCC-algebras and also investigated some of its related properties.

In this paper the notion of left-right and right-left f-derivation of a BCC-algebra is introduced, and some related properties are investigated.

2. Preliminaries

By an algebra G = (G, ., 0) we mean a non-empty set G together with a binary operation multiplication and a constant 0. In the sequel, a multiplication will be denoted by juxtaposition.

Key words and phrases. f-derivation, BCC-algebra, BCI-algebra, regular, d-invariant.

Definition 2.1. An algebra G = (G, ., 0) is called BCC-algebra if for all $x, y, z \in G$ it satisfies the following axioms,

- (1) ((xy)(zy))(xz) = 0
- (2) 0x = 0
- (3) x0 = x
- (4) xy = yx = 0 implies x = y.

A non-empty subset S of a BCC-algebra G is called BCC-subalgebra of G if $xy \in S$ for all $x, y \in S$.

By (1) we get: (xy)x = 0 and xx = 0 for all $x, y \in G$.

In any BCC-algebra G, one can define a partial order " \leq " by putting $x \leq y$ if and only if xy = 0.

A non-empty subset A of a BCC-algebra G is called a BCC- ideal, if

- $(5) 0 \in A$
- (6) $(xy)z \in A$ and $y \in A$ imply $xz \in A$.

Putting z = 0 in (6) we obtain: $xy \in A$ and $y \in A$ implies $x \in A$. In a BCC-algebra G, for elements x, y of G we denote $x \land y = y(yx)$.

Definition 2.2. [14] Let G be a BCC-algebra. A map $d: G \to G$ is said to be a left-right derivation (briefly, (l, r)- derivation) of G if it satisfies the identity $d(xy) = d(x)y \wedge xd(y)$ for all $x, y \in G$.

If d satisfies the identity $d(xy) = x d(y) \wedge d(x)y$ for all $x, y \in G$, then d is said to be a right-left derivation (briefly, (r, l)- derivation) of G. Moreover, if d is both (l, r) and (r, l)- derivation, then it is said to that d is a derivation.

3. THE f-DERIVATIONS OF BCC-ALGEBRAS

In what follows, let f be an endomorphism of G unless otherwise specified.

Definition 3.1. Let G be a BCC-algebra and f be an endomorphism of G. A map $d: G \to G$ is said to be left-right f-derivation (briefly, (l,r)-f-derivation) of G, if it satisfies the identity $d(xy) = (d(x)f(y)) \wedge (f(x)d(y))$ for all $x, y \in G$.

If d satisfies the identity $d(xy) = (f(x) d(y)) \wedge (d(x) f(y))$ for all $x, y \in G$, then d is said to be right-left f-derivation (briefly, (r, l)- f- derivation) of G. Moreover, if d is both (l,r) and (r, l)-f-derivation, then it is said to that d is an f-derivation.

Example 3.1. Let $G = \{ 0, 1, 2, 3 \}$ be a BCC-algebra with Cayley table as follows.

By [14] we know that a map $d:G\to G$ for all x in G defined by

$$\mathcal{S} \quad \mathcal{S} \quad$$

 $((t)p (z)f) \vee ((t)f (z)p \neq (t z)p)$ suft bins, $(0 = 0 \land 2 = (0 \ 0) \land (0 \ 2) = ((1)b \ (2)t) \land ((1)t \ (2)b)$ such all $x \in G$. Then d is not an f-derivation of G since d(2.1) = d(2) = 2, is a derivation of G. Define an endomorphism f of G by f(x) = 0 for

Remark 3.1. Every derivation of G could be made an f-derivation of G

.D to meindromobns ytitnsbi yd

Example 3.2. Let G be a BCC-algebra as in Example 3.1. Define a map

 $d:G\to G$ for all x in G by

$$\begin{bmatrix} 1 & 0 = x & 0 \\ 0 & x = 0 \end{bmatrix} = (x)p$$

an endomorphism f of G for all x in G by = $(2 1) \land (3 0) = 2 \land 3 = 3$, and thus $d(3 1) \neq (d(3) 1) \land (3 d(1))$. Define Then d is not a derivation of G since $d(3 \mid 1) = d(3) = 2$, but $(d(3) \mid 1) \land (3 \mid d(1))$

$$\begin{cases} 1,0=x\\ 2,&x=3 \end{cases} = (x)$$

Then it is easily checked that d is an f-derivation of G.

Example 3.3. Let G be a BCC-algebra as in Example 3.1. Define a map

$$\mathcal{Z}_{i}$$
, $i = x$, $0 = x$

$$\begin{cases} \mathcal{S} & \mathcal{I} & 0=x \\ \mathcal{E}=x & \mathcal{E} \end{cases} = (x)p$$

thus $d(3 \ 2) \neq (3 \ d(2)) \land (d(3) \ 2)$. pup, l = 0, l = (5, 1), $l = 1 \land 5 = (2, 5) \land (0, 5) = (2, (5)b) \land ((5)b) \land ((5)b)$ Then d is not a derivation of G since d(3 2) = d(1) = 0 but

Define an endomorphism f of G for all x in G by

 $g: G \to G$ for all x in G by

$$\begin{bmatrix} I & 0 = x & 0 \\ 0 & 0 = x \end{bmatrix} = (x)f$$

Then it is easily checked that d is an f-derivation of G.

Remark 3.2. From Example 3.2 and 3.3, we have seen that there is an f-derivation of G which is not a derivation of G.

Definition 3.2. An f-derivation of a BCC-algebra G is said to be regular if d(0) = 0.

Theorem 3.3. If d is a (r, l)-f-derivation of a BCC-algebra G, d(0) = 0.

Proof: Since d is (r, l)-f-derivation of G,

$$d(0) = d(0 \ x) = (f(0) \ d(x)) \land (d(0) \ f(x))$$

$$= (0 \ d(x)) \land (d(0) \ f(x)) = 0 \land (d(0) \ f(x))$$

$$= (d(0) \ f(x)) \ ((d(0)f(x)) \ (0))$$

$$= (d(0) \ f(x)) \ (d(0)f(x)) = 0.$$

Corollary 3.4. An f-derivation d of a BCC-algebra G is regular.

Proposition 3.5. Let d be a self map of BCC-algebra G. Then the following hold.

- (1) If d is an (l, r)-f-derivation of G, then $d(x) = d(x) \wedge f(x)$ for all $x \in G$.
- (2) If d is an (r, l)-f-derivation of G, then $d(x) = f(x) \wedge d(x)$ for all $x \in G$.

Proof: 1) Let d be an (l, r)-f-derivation of G. Then,

$$d(x) = d(x \ 0) = (d(x) \ f(0)) \land (f(x) \ d(0)) = (d(x) \ 0) \land (f(x) \ 0) = d(x) \land f(x).$$

2) Let d be an (r, l)-f-derivation of G. Then,

$$d(x) = d(x \ 0) = (f(x) \ d(0)) \land (d(x) \ f(0)) = (f(x) \ 0) \land (d(x) \ 0) = f(x) \land d(x).$$

Definition 3.6. Let G be a BCC-algebra and d be a f-derivation of G. $d^{-1}(0) = \{ x \in G \mid d(x) = 0 \}.$

Proposition 3.7. Let G be a BCC-algebra with a partial order \leq , and let d be an f-derivation of G. Then the following hold:

- (1) $d(x) \leq f(x)$ for all $x \in G$.
- (2) $d(x y) \leq d(x) f(y)$ for all $x, y \in G$.
- (3) $d(x y) \leq f(x) d(y)$ for all $x, y \in G$.
- (4) If $d \circ f = f \circ d$, then d(f(x)) d(x) = 0 for all $x \in G$.
- (5) If $d \circ f = f \circ d$, then $d(d(x)) \leq f(f(x))$ for all $x \in G$.
- (6) $d^{-1}(0)$ is a subalgebra of \hat{G} .

Proof:

- (1) Let x be an element of G.
- By Proposition 3.5, $d(x) = d(x) \land f(x) = f(x)$ (f(x)d(x)). Then d(x)f(x) = (f(x)(f(x)d(x))) f(x) = 0. Thus $d(x) \le f(x)$ for all $x \in G$.
- (2) For any $x, y \in G$, we have

```
A \supseteq (A)b if the invariant if A(A) \subseteq A.
  Definition 3.9. Let a be a self map of a BCC-algebra G. An J-ideal A of
                                                                A \supseteq (A) if feabi
  Definition 3.8. A BCC-ideal A of a BCC-algebra G is said to be f-BCC-
                                         and 2 \in d^{-1}(0), but 3 \ 1 = 3 \notin d^{-1}(0).
ple 3.3. d^{-1}(0) = \{0, 1, 2\} is not a BCC-ideal of G since (32)I = 0 \in d^{-1}(0)
  Remark 3.3. In general d-1(0) is not a BCC-ideal of G, as seen in Exam-
                                    Hence d^{-1}(0) is a BCC-subalgebra of G.
                            (0)^{1} - b \ni y \ x \text{ si that } (0) \land (x) = 0 \land (x) = 0
                                              ((h)f 0) \vee (0 (x)f) =
                                          ((\hbar)f(x)p)\vee((\hbar)p(x)f)=(\hbar x)p
                           Let x, y \in d^{-1}(0), then d(x) = 0 = d(y), and so
                     (6) Since d is regular, 0 \in d^{-1}(0), that is, d^{-1}(0) \neq \emptyset.
       Then d(d(x)) (f(f(x)) = 0. Thus d(d(x)) \le f(f(x)) for all x \in G.
                (((((x)p(x)f)f)((x)f)p)(((x)f)f))(((x)f)f) =
                           (((x)f)f) \vee (((x)p(x)f)f)((x)f)p) =
                          (0 ((x)f)f) \vee (((x)p (x)f)f ((x)f)p) =
               (((x)p(x)f)p((x)f)f) \vee (((x)p(x)f)f((x)f)p) =
                                               (((x)p(x)f)(x)f)p =
                                                     ((x)f \vee (x)p)p = ((x)p)p
                  (5) If d \circ f = f \circ d, then for any x \in G, we have by (4)
                                         0 \vee ((x)p ((x)f)f) =
                    (((x)p)f((x)p)f) \vee (((x)p)p((x)f)f) =
                     (((x)p)f ((x)f)p) \vee (((x)p)p ((x)f)f) = ((x)p (x)f)p
                             (4) Let d \circ f = f \circ d, for any x \in G, we have
                                   Thus d(x y) \ge f(x) d(y) for all x, y \in G.
                                                0 = ((y) p(x) f) (y x) p  may f
                            (((h)f(x)p)((h)p(x)f))((h)p(x)f) =
                                          ((\hbar)p\ (x)f) \lor ((\hbar)f\ (x)p) = (\hbar\ x)p
                                               (3) For any x, y \in G, we have
                                  Thus d(x y) \ge d(x) f(y) for all x, y \in G.
                                                Then d(x, y) = (y) = 0.
                         (((h)p(x)f)((h)f(x)p))((h)f(x)p) =
                                          ((\hbar)f(x)p) \vee ((\hbar)p(x)f) = (\hbar x)p
```

Example 3.4. Let G be a BCC-algebra as in Example 3.1. Then $A = \{0, 1\}$ is a BCC-ideal of G.

Let d be an f-derivation of G as in Example 3.2. $f(A) = \{0\} \subseteq A$. Thus A is an f-BCC-ideal. Also $d(A) = \{0\} \subseteq A$. Hence A is d-invariant.

Theorem 3.10. Let d be a f-derivation of BCC-algebra G. Then every f-ideal A of G is d-invariant.

Proof: Let A be an f-ideal of BCC-algebra G. Let $y \in d(A)$. Then y = d(x) for some $x \in A$. It follows that by Proposition 3.7.(1) we have $y f(x) = d(x) f(x) = 0 \in A$, since A is f-ideal we have $y \in A$. Thus $d(A) \subseteq A$. Hence A is d-invariant.

REFERENCES

- Abujabal, H. A. S. A. and Al-Shehri, N. O. 2006. Some results on derivations of BCI-algebras. Coden Jnsmac 46:13-19.
- [2] Abujabal, H. A. S. A. and Al-Shehri, N. O. . 2007. On left derivations of BCI-algebras. Soochow Journal of Mathematics 33 (3): 435-444.
- [3] Çeven, Y., 2009 Symmetric bi-derivations of lattices, Quaestiones Mathematicae 32, 241-245.
- [4] Çeven, Y. and Öztürk, M.A. 2008. On f-Derivations of lattices, Bull. Korean Math. Soc. 45, No.4, pp. 701-707.
- [5] Dudek, W. A. 1992. On constructions of BCC-algebras. Selected Papers on BCKand BCC-algebras 1:93-96.
- [6] Dudek, W. A. and Zhang, X. 1998. On ideals and congruences in BCC-algebras. Czechoslovak Math. Journal. 48 (123): 21-29.
- [7] Ferrari, L., 2001. On Derivations of Lattices, Pure Math. Appl. 12, no.4, 365-382.
- [8] Iseki, K. and S. Tanaka. 1976. Ideal theory of BCK-algebras. Math. Japonica. 21: 351-336.
- [9] Iseki, K. and Tanaka, S. 1978. An introduction to the theory of BCK-algebras. Math. Japonica. 23: 1-26.
- [10] Jun, Y. B. and Xin, L. 2004. On derivations of BCI-algebras. Information Sciences 159: 167-176.
- [11] Meng, D. J. 1987. BCI-algebras and abelian gorups. Math. Japonica. 47 (1): 693-696.
- [12] Meng, J. and Xin, X. L. 1992. Commutative BCI-algebras. Math. Japonica. 37 (3): 569-572.
- [13] Öztürk, M.A., Yazarli, H. and Kyung, H. K. 2009 Permuting Tri-Derivations in Lattices, Quaestiones Mathematicae 3,415-425.
- [14] Prabpayak C. and Leerawat U. 2009. On derivations of BCC-algebras. Kasetsart J. (Nat. Sci.) 43: 398-401.
- [15] Özbal, S. A. and Firat A., 2010 Symmetric f bi-derivations on lattices, Submitted to A Canadian Journal of Combinatorics.
- [16] Szasz, G. 1975. Derivations of Lattices, Acta Sci. Math. (Szeged) 37, 149-154.
- [17] Xin, X. L., Li, T.Y. and Lu, J. H. 2008 On derivations of Lattices, Information Sciences 178, 307-316.

EGE UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, 35100-IZMIR, TURKEY

E-mail address: alev.firat@ege.edu.tr