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Abstract

We provide the specifics of how affine planes of orders three, four
and five can be used to partition the full design comprising all triples
on 9, 16 and 25 elements respectively. Key results of the approach for
order five are generalised to reveal when there is potential for using
suitable affine planes of order n to partition the complete sets of n?
triples into sets of mutually disjoint triples covering either all n?, or
else precisely n? — 1, elements.
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1. Preliminaries

A block design is a pair, D = (V,B), where V is a set of v elements
(or a v-set) and B is a set of B k-subsets (called blocks) chosen from V so
that every element of V occurs in exactly r blocks, If evéry t-subset of V'
belongs to exactly A blocks, the design is said to be t-balanced, and is called
a t-design, with parameters t-(v,k, ). Since we deal only with designs
having t = 2, we refer to them as balanced and write their parameters as
(v,k,A). A design is simple if it contains no repeated blocks. The simple
design comprising all k-subsets of V is called the full design on v elements
and written as (%), or simply (}) when the set V involved is apparent.

An affine plane of order n is an (n2,n,1) balanced design, known to
exist when n is a prime or prime power: no affine planes are known to
exist for other values of n. Throughout this paper we assume n > 3. For
n < 8, affine planes are known to be unique up to isomorphism, whereas
non-isomorphic affine planes are known to exist for some larger values; for
example, precisely seven non-isomorphic affine planes of order nine exist.
Any affine plane contains (n? + n) blocks of size n, and these blocks can
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be uniquely arranged into (n + 1) resolution classes. We label these reso-
lution classes Ry, Ry, ..., Ry, Ray1. It follows that every element occurs in
precisely (n + 1) blocks. Blocks in different resolution classes intersect in
precisely one element.

Any affine plane of order n can be derived from (n2 +n +1,n+ 1,1)
designs, known as projective planes of order n and denoted here by P,. This
is done by deleting any block of P, and then also deleting all occurrences of
elements of that block in the other blocks of P,. Conversely, all projective
planes can be constructed from affine planes. Each resolution class of the
resultant affine plane comprises the blocks from which the same element of
P, has been deleted. (For these and other results relating to affine planes,
see, for example, [2] and [11]).

Example 1 The collection, Dy say, of the 20 blocks in Table 1 constitutes
a 2-(16,4,1) design, that is an affine plane of order four, on the 16-element
setV ={0,1,2,...,9,A,B,C,D,E,00}. This particular design, arranged into
resolution classes, has been obtained by developing, modulo 15, the starter
blocks 1248 and 05Ac0 (short). (See [4] for one way such starter blocks can
be obtained and [11] for an explanation of short starter blocks).

Ry R, R3 Ry Ry
1248 5: 2359 9: 346A 13: 457B 17: 568C
679D 6: 78AE 10: 89BO 14: 94AC1 18: ABD2
BCE3 7: CDO4 11: DE15 15: EO026 19: 0137
NBAco 8: 16Boo 12: 27Coo 16: 38Doo 20: 49Eoco

Table 1: blocks of a 2-(16,4,1) design, D4, by resolution class

2. Motivation for studying partitions

For certain values of n, the triples contained in the blocks of a suitable
affine plane of order n can be used to partition the full design comprising
all triples on n? elements, with most components of this partition being
sets of mutually exclusive triples. Similarly, larger blocks than triples may
occur in a partition.

But why are we doing this?

Many important combinatorial problems are based on partitions. We
refer first to the resolution classes of Example 1, which form a partition of
the affine plane 2-(16, 4, 1). Further examples follow.

384



Example 2 Taking all (}) triples from the set {1,2,3,4,5,6,7} gives us
a (7,3,5) design, that is, a full design. We can partition this design into
three separate subdesigns, as shown in Table 2.

The (7,3,3) design S = §; US;US; is irreducible [8], that is, it contains
no (7,3,1) design and thus no (7,3,2) design either. Each of S; and Ss
is a (7,3,1) design. We cannot partition S into subdesigns, but we can
partition it into minimal defining sets, in two different ways. To see this,
we apply the function f(z) = 3z 4+ 1 to the set {1,2,3,4,5,6, 7}, inducing
the permutation (146527)(3). Here we have two non-isomorphic minimal
defining sets of the (7, 3, 3) design S.

The first of these can be considered as S;, Ss, or S3, thus S can be par-
titioned into these three minimal defining sets. Similarly, minimal defining
sets 11,75, and T3 also partition S, where blocks of T},T%, and T3 are
labelled by *,+, and — respectively, in Table 2; see [3].

Sy Sy S3 Sq S5
123%* 136% 147+ 124 134
234+ 246+ 251* 235 245
345% 357- 362+ 346 356

456* 461- 473+ 457 467
567- 572- 514x 561 571
671- 613~ 625+ 672 612
T712% 724+ 736- 713 723

Table 2: a full design partitioned into three subdesigns in two different ways

Further examples of such partitions include the 55 disjoint projective
planes of order 3 found by Chouinard [1] as a partition of the collection
of all 4-subsets of a 13-set into these planes, and the 91 disjoint AG(2,4)s
found by Mathon [6] as a partition of the collection of all 4-sets of a 16-set.

Example 3 A cycle decomposition of a graph G is a collection of cycles
whose edges partition the set of edges of G; see for instance [5]. If G has
eleven vertices, which we label 0,1,2,3,4,5,6,7,8,9,X, and if G is the
complete graph K7;, then another example of a partition is that of the set
of edges of G into 11 5-cycles, as follows: 01427, 12538, 23649, 3475X,
45860, 56971, 67X82, 78093, 891X4, 9X205, X0316.
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Example 4 Two copies of all (}) triples from the set {1,2,3,4,5,6,7} can
be partitioned into seven 2 — (6,3,2) designs as shown in Table 3. This
partition has an automorphism group of order 5, generated by (12357). For
details of this construction, see [10].

"Dy | 234 235 246 257 267 347 356 367 456 457
D, | 136 137 145 147 156 345 346 357 467 567
D3 | 124 125 146 157 167 247 266 267 456 457
Dy | 126 126 135 137 157 236 237 257 356 567
Ds ' 126 127 134 136 147 234 237 246 367 467
Dg | 123 127 134 145 157 236 245 247 347 357
Dy | 123 124 136 146 1566 236 246 256 345 346

Table 3: partition of 2 x (3) into seven 2-(6,3,2) designs

3. Definitions and results fundamental for this paper

We now show how, for certain values of n, those triples not contained
in the blocks of a suitable affine plane of order n can be used to partition
the full design comprising all triples on n? elements, with most components
of this partition being sets of mutually exclusive triples. The first stage of
our approach is to construct a ’pick-out’ function. This is based on taking
each triple {i,j,k}, or simply ijk, not contained in a block of the affine
plane, and then identifying the three, necessarily distinct, blocks of the
affine plane that contain the pairs {i,j}, {i,k} and {j,k}. The following
fundamental preliminary definitions and results pertain to the particular
values of n considered in this paper, but can also apply to other, larger,
values of n not specifically dealt with here (see Section 7 for their possible
parameters). From now on, a specific affine plane of order n, on a set
V ={0,1,2,...,(n — 1)?} or some other set as needed, is denoted by D,,
and the set of all triples contained in the blocks of D,, is denoted by Di,;
thus the set of all triples on V not contained in the blocks of D,, is (';:) \D.,.

Lemma 5 If D!, is the set of all triples contained in the blocks of an affine
plane D,, of order n, then:

(i) 1D4] = (3) x (n® +n);
(i) 1(3\Dal = (%) — (5) x (n? 4 n) = Za=iflet1);
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(iii) for any three given resolution classes of D,,, there are n?(n—1) triples
2
ijk € ("3 )\D4, such that the pairs {i,j}, {i,k} and {j,k} each appear
in (precisely) one of those three resolution classes.

Proof:
e Results (i) and (ii) are both obtained by elementary counting.

o We first illustrate (iii) by an example based on the affine plane Dy,

with the 20 blocks in Table 1. We aim to show that, for any three given
resolution classes, R, Rz, R3 say, there are precisely n%(n — 1) = 48
triples ijk of (!%)\D} such that each pair {i, 3}, {i, k}, {4, k} appears
in (precisely) one of those three classes.
Take any two blocks of R; and Rz, 1248 and 2359 say, which must
have an element in common, in this case element 2. Now the three
blocks of D, containing pairs {1,3},{1,5}, and {1,9} cannot be in
class R; or Ry, and no more than one of the three can occur in any
resolution class. Hence one of the three blocks is in R3, one in R4 and
one in Rs. Suppose the block containing pair {1,3} is in R3. Then
triple 123, elicited from 1248 and 2369, has its three pairs in R;, Ry
and R3; we would obtain one suitable triple no matter which pair
were chosen. Similarly we consider the blocks containing the three
pairs {4,3}, {4,5}, and {4,9} and then the three pairs {8, 3}, {8,5},
and {8,9}, in each case eliciting another required triple from each,
giving three triples in all. Each of the n? = 16 choices of one block
from each of R; and R similarly gives rise to three more triples, thus
accounting for all 48 triples as required. The argument applies no
matter which set of three resolution classes is under discussion.

In general, starting with an affine plane of order n, we can choose one
block from each of any two resolution classes in n? ways, and there
are n — 1 choices of the element from the first block which is to pair
with each of the relevant elements of the second, thus giving in total
n?(n—1) triples whose pairs cover any three chosen resolution classes.

The number of triples in (’g) \D., that is, n3(n —1)?(n +1)/6, di-
vided by the number of choices of three resolution classes, ("'3"1) , gives
n?(n — 1) as required. This provides a rough check.
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The following definitions allow blocks and resolution classes to have
multiple labels.

Definition 6 For a given affine plane D, of order n on V and a given
triple ijk € (';:) \D.,, define:

(i) bij to be the (unique) block of D,, containing pair {i,j} € V;
(ii) Ri; to be the resolution class holding block b;;;

(#ii) byj(k) to be the (unigue) block of Ri; containing any other element
k € V, provided triple ijk ¢ D) ; such a block must exist, and contains
no element of b;;;

(i1) £(i7K) to be the set {bi5(k) N bu(3), big (k) N bsu(d), ban() N bse(3)}.
Theorem 7 For a given affine plane D, of order n on V, a given triple
ijk € (%)\D%,, and the function f as defined in Definition 6 (iv):

(i) 1{bs; (k) Db () H = {bij (k) N bjie (D)} = [{bar(4) N b ()} = 1;

(4) if bij(k), bix(§) and bji(3) have a common element, |f(ijk)| = 1;

(i) (a) ifb;;(k), bi(j) and bjx (i) have no common element, |f(ijk)| = 3,
(b) when |f(ijk)| = 3 for all triples ijk € (")\D%, we have the
induced mapping f : (';:)\D:, — (';:)\D:,, with no triple of

(':‘:) \D!, mapping to itself.

Proof:

(i) Since the pairs of elements of ijk belong to different resolution classes,
and any two blocks from different resolution classes of an affine plane
have precisely one element in common, each of the intersections yields
a single element.

(ii) This is self-evident.

(iii) (a), (b) The only non-trivial results to check are that, under function
f, no triple maps onto itself and no triple is mapped to a block of D).
No triple can map on to itself, since this would require two blocks
in the same resolution class to have an element in common, which
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is impossible. Now f(ijk) = {bi;(k) N bi(j) = =, bi;(k) N bjx(3) =
¥, bik () N bjx(i) = z}, where elements z,y, 2 are all different. So
{z,y} € bij(k) € Rij, {z, 2} € bir(4) € Rix and {y, 2} € bji(i) € Ry,
where resolution classes R;j, Rix and Rj; are all different. Since each
pair in zyz is in a different resolution class, zyz ¢ D’'(n).

Conceivably, affine planes exist such that function f, as in Definition 6
(iv), maps some triples onto triples but other triples onto single elements.
Note also, from Theorem 8 which follows, that there exists an affine plane
such that function f maps two triples to the same triple. In such a case,
no inverse function for f can exist.

Theorem 8 There erists an affine plane for which function f of Defini-
2

tion 6 (iv) maps at least two triples of (’;)\D; onto the same triple of .
nz /

(3)\Dx.

Proof: We take the affine plane obtained from Hughes(9) [7] by delet-
ing the elements of the first listed block {0,1,2,3,4,5,6,7,8,9}. Start-
ing with triple {55,57,62}, our approach gives the chain of length three:
{55,57, 62}; {75, 25, 78}; {21, 60,20}. However, we see that

£({21,60,20}) = {55,57, 62} = £({34,35,42});

that is, two triples can give rise to the same triple under function f, hence
sequences can contain repeated blocks. Table 4 gives the three blocks con-
taining the three pairs from each of two different triples. Here the subscript
refers to the element deleted from {0,1,2,3,4,5,6,7,8,9}.

block in Ry b34,35(42) = 2027 42555657585960 = 621‘51 (20)
block in R; b34,42(35) = 1228 855561 62636465 = b21,2o(61)
block in Ry 635,42(34) = 1321 34576270717273 = b20,61(21)

Table 4: blocks, derived from Hughes(9) showing f is not always 1 — 1

From:. now on we are concerned only with those functions f (as defined in
Definition 6(iv)) which have the additional property that the function maps
every triple to a triple, that is, that no triple maps to a single element.
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Definition 9 Suppose that (’?;)\D;‘ is the set of all triples not contained
in the blocks of an affine plane D,, of order n on V and that function f is
as defined in Definition 6(iv). Suppose further that function f maps every
triple to a triple, not to a single element. Then, forb € (";)\D{,, we define:

(i) a sequence of blocks starting with triple b, denoted by S(f(b)), to be
the set of all triples f*(b) (that is, S(f(b)) is the set of all triples
obtained under successive applications of f, starting with b;

(i) a chain of blocks that includes triple b, denoted by Ch,, to be a series
S(f(b)) that both uniquely contains triple b and consists of blocks
thut are mutually disjoint;

(iii) the length of chain Cy, denoted by |Cy|, to be the number of distinct
triples comprising Cp. When all chains of blocks in (" )\D!, are of
the same length, we may simply use |C| (see Theorem 11).

Theorem 10 Suppose that sequences are produced, as described in Defi-
nitions 6 and 9 and Theorem 7, by applying function f to the triples of
(’;:) \D.,, where D, is the set of all triples not contained in the blocks of an
affine plane Dy, of order n. Then all the pairs contained in the set of triples
forming a sequence must occur in blocks of precisely three of the resolution
classes, with one pair from each triple occurring in a block of each class.

Proof: This follows from the definition of function f in Definition 6(iv).

We complete this section by giving additional properties of our pick-
out function f of Definition 6 (iv), and of the sequences it induces, when
('?:)\D{1 is transitive on the blocks.

Theorem 11 Suppose that sequences are produced under the assumptions
2

of Theorem 10. Suppose further that ('?;)\D:; is transitive on the blocks.

Then the following hold:

(i) If some sequence is a chain, then all the sequences are chains;

(i) All the sequences are of the same length (written as |C|, when the
sequences are chains);
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(iii) When the sequences are chains, and every block of (';:)\D:z appears
in precisely one chain, then there are n?(n — 1)/|C| chains involving
any three given resolution classes.

Proof:

(i), (ii) Since the blocks are transitive, there exists a mapping p taking a given
triple b in a (unique) chain to any arbitrary triple b* € ('f) \D.,,
where these two triples may or may not ever occur in the same se-
quence. Then applying p to all the triples of the chain containing b
produces a (unique) chain containing triple b*. Clearly, mapping p
preserves mutual disjointness of the triples and chain length.

(iii) By Lemma 5 (iii), there are n?(n—1) triples ijk of (';:) \D/, such that
the pairs {3, j}, {4, k} and {j, k} each appear in (precisely) one of any
three given resolution classes. By parts (i) and (ii), under function f
these triples each appear uniquely in a chain of |C| triples involving
those three resolution classes. The result follows.

4. Using the affine plane of order three to partition (3)
We now exemplify our approach by using a representative affine plane
of order three, D3, to partition (3).

Theorem 12 Let D3 be an affine plane of order three, known to be tran-
sitive on the blocks. Then:

(i) the 72 blocks of (3)\D} (here identical to (3)\Ds) can be partitioned
into 24 l-factors, that is, into sets of three triples such that each of
the nine elements occurs in precisely one triple;

(i) the partition from (i) above gives rise to a partition of (g) into 28
1-factors.
R, Ry Rj Ry
1: 123 4: 147 7: 267 10: 168
2: 456 5: 268 8: 159 11: 249
3: 789 6: 369 9: 348 12: 357

Table 5: blocks of a representative 2-(9, 3, 1) design, Dj, by resolution class
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Proof: Without loss of generality, we take D3 to be the representative
affine plane of order three with blocks given in Table 5.

(i) We follow the process outlined in the previous definitions and theo-
rems. For each triple ijk not contained in any block of D}, 124 say,
we locate the three blocks of Dj that each contain a pair of elements
in ijk, in this case finding 123, 147 and 249.

— For 123, we locate 4656, the block containing element 4 and in
the same resolution class as 123, R;.

— For 147, we locate 268, the block containing element 2 and in
the same resolution class as 123, R,.

— For 249, we locate 168, the block containing element 1 and in
the same resolution class as 123, Ry.

The pairwise intersections of the three found blocks give triple 568;
that is, f(124) = 568. Repeating the process, we obtain f(568) = 379
which returns to f(379) = 124. Thus we have obtained a chain of
length three, which is the 1-factor that comprises the latter three
blocks. Since Dj is transitive on the blocks, generating chains by
each block of (3)\Dj} in turn will give rise to 72/3 = 24 disjoint 1-
factors that are a partition of (3)\Dj.

(i) Simply supplement the partition of (g) \Dj into 24 1-factors given in
part (i) with the four 1-factors that are the resolution classes of Dj.

5. Using the affine plane of order four to partition (%)

When an affine plane of order four is involved, blocks b;j(k), bix(5) and
b;x (i) of Definition 6 have an element in common. For example, if we start
the process using the affine plane of Table 1 and block 123, we obtain
by2(3) = BCE3,bys = 2ABD and by3(1) = 16Boo, which have element B
in common. Hence |f(ijk)] = 1 (see Theorem 7 (ii)). This means that
function f does not map all triples to triples.

We now show in this section how, under a modified version of our ap-
proach, the properties of any affine plane of order four induce a partition
of (136) not into chains, but into 48 sets of ten triples, each with ten of the
16 elements occurring in precisely three triples, together with the design
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comprising all 80 triples contained in the affine plane. This affine plane is
transitive on the blocks; that is, for any two blocks of the design, there is
an automorphism of the design that maps one block to the other. Hence,
without loss of generality, the proofs here of Lemma 13 and Theorem 14
use examples based on the particular affine plane D4 of Example 1.

Lemma 13 For an affine plane of order four, Dy, on V:

(i) every block of D4 belongs to 12 sets of five blocks of D4 containing
precisely ten of the elements of V, with each of these ten elements
occurring precisely twice;

(i) there are precisely 48 sets of five blocks (and 10 elements) as in (3);

(i) there are {8 sets of size 6, the complements in V of the sets of size
10 as in (ii).
Proof: We take design D4 of Example 1 as the representative affine plane
of order four.

(i) It is sufficient here to show that a typical block 1248 of D4 belongs to
12 such sets. Since every element occurs twice, the set of five blocks
must contain another block with element 1, block 16Boo, say. The set
can then be completed with {3464, 38Doo, 2BDA}, {89B0, E026, 49Eco}
or {27Coo, 457B, 568C}. Three other choices of a block containing ele-
ment 1 are possible, and each results in three sets, giving 12 different
sets in all;

(ii) Each of the 20 blocks belongs to 12 such sets of five blocks, so the
number of such sets is 39’5‘—1?- = 48;

(iii) The size and number of these sets is self-evident. Note that these 48
6-sets for affine plane D, can be developed, modulo 15, from starter
blocks C; = 0579CE, C; = 039ADE, C; = 379ABoo and C4 = 0369Co0
(short), and form a (16, 6,6) design.

Theorem 14 For an affine plane of order four, Dy, on V, let D} be the
set of all 80 triples on V contained in a block of Dy. Then:

(i) each of the 480 blocks of (%) \D} can be uniquely associated with one
of the 6-sets of Lemma 13 (ii3);
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(i) each given 6-set of Lemma 13 (iii) can be associated with ten blocks
v ‘.
of (3)\D4I

(iii) the 480 blocks of (4)\D} can be partitioned into 48 isomorphic sets
of ten blocks as in (ii).

Proof: From the 20 blocks of design D4 of Example 1, we have Dj =
{124,128, 148, 248, 135, 239, 259, 359, . .., 49E, 4900, 4Eco, 9Eco}. Since Dy
is obtained by developing, modulo 15, the starter blocks 1248 and 05400,
the 80 blocks of Dj are obtained by developing, modulo 15, starter blocks
124,128, 148, 248 and 0500, and short starter block 05A.

(i) Start with a particular block of (¥ )\Dj, 012 say. We locate the occur-
rences of its three pairs 01, 02 and 12 in (necessarily) precisely three
blocks of D4, namely in 0137, 026E and 1248. The six additional
elements so found, in this case {3,4,6,7,8,E}, can be partitioned,
uniquely, into two triples that occur in blocks of D4, here 3464 and
78EA. These two triples always have an element in common and so
we have associated triple 012 with the 7-set {3,4,6,7,8,A,E}. The
elements of V' that are in neither this 7-set nor the original triple,
here {5,9,B,C,D, 00}, form the 6-set associated with the triple, 012;
this particular 6-set is a block in cycle C3 of Lemma 13.

(ii), (iii) Given alongside each starter 6-set from Lemma 13 (ii) is a set of 10
triples associated with that 6-set.
C, = 0369Coo0; C| = {12D, 451,784, AB7, DEA, 24B, 57E, 842, BD5, E18};
C, =0579CE; Cj = {348, 12B, AB6, 244, 461, BDco, AD3, 3600, D28, 1800};
C3 = 039ADE;  Cj = {458, 56B, 1200, 247,57C, 681, 14B, 8C2, 7Boo, 6Coo};
C, = 379ABoo;  C, = {DEO, CD5, 56E, 12E, 682, 024, D14, C06, 581, 48C}.

To confirm that, when C}, C3, Cj, C}, are developed (modulo 15), each
triple obtained can come from only one of the four starter sets of ten
blocks above, and none is in Dj, it is sufficient to note that:

e the first five of the ten triples associated with C, are from the
same cycle of triples (modulo 15), the last five blocks are all
from another cycle, and together C}, C] + 1, C; + 2 contain all
30 blocks of these two cycles of triples;
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e none of the two representative triples {12D,24B}, the 30 triples
of C3, Cj, C; and the two starter triples of D can be obtained
from another under addition, modulo 15; that is, they all belong
to different cycles of triples.

Hence developing (modulo 15) C§, C5, C; and Cj produces 3+3 x 15 =
48 sets of ten blocks, thus accounting for all (%) — 80 = 480 blocks
of (‘;) \Dj and partitioning this set into 48 sets of 10 blocks.

It can be easily checked that all four derived starter sets of 10 blocks,
and hence all 48 developed sets of ten blocks, are isomorphic. Note: the
remaining 80 blocks of (f), namely those of D, cannot be partitioned into
sets of ten blocks isomorphic to those already obtained.

Thus the first stage of our approach has proven useful for generating
chains of triples of Dj, that is, when n = 4. However, in this case the
additional condition in part (iii) of Theorem 7, namely that the elements
common to the three pairs of blocks are not identical, is not satisfied, thus
necessitating the more complicated algorithm. The application of the pre-
vious theorems to an affine plane of order n = 5, on the other hand, proves
to be straightforward.

6. Using the affine plane of order five to partition (%)

This section provides the details of the partition, under our approach,
of the sets of triples on 25 elements that are not contained in the blocks of
an affine plane of order five.

Theorem 15 Let Dy be an affine plane of order five and let D be the set
of triples contained in the blocks of Ds. Then the 2000 blocks of (‘3’) \Dj
can be partitioned into 250 sets of eight mutually disjoint triples (with each
set containing 24 of the 25 elements).

Proof: Without loss of generality, we take V' to be {0,1,2,..., 9,
A,B,C,...N,c0} and Dj to be the affine plane of order five obtained by
developing, modulo 24, the starter blocks 0149B and 06CIco (short).
Starting with triple 012 ¢ Dy, we locate byy(;) = 28EKo0, bog(y) = LM168
and by,) = DEHMO, thus obtaining, on taking intersections, f(012) = 8EM.
Applying function f successively, we obtain f(8EM) = 37I and f(37I) =
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9FA, finally returning to f(9FA) = 012. Thus, in all, we have a chain com-
prising four mutually disjoint triples of (‘;) \Dg. (Note that the 'middle’
triple 371 comprises the three elements not found in any of 0149B, 125AC,
02FGJ, DEMH, 68LM and 8EKoo.)

To complete the proof, we provide lists of triples in Table 6 and Table 7
which follow. These lists confirm that, as expected, such chains of four
mutually disjoint blocks are obtained no matter which triple from (%¥)\Dj
is used to start. Further, the listing in Table 7 shows that, for every such
chain, there exists another (unique) complementary chain such that the
resultant pair of chains comprises eight mutually disjoint triples. The two
sets of three resolution classes associated with a complementary pair of
chains are themselves disjoint.

To allow easy checking, the 2300 triples of (¥) are treated in these tables
as the development, modulo 24, of (ordered) starter blocks 012, 013,...,
01N, 024, 025,..., O7F, 07G, O1lco, 0200, ..., OBoo, 0Coo (short).

Table 6 gives triples of Df contained in the two starter blocks 0149B and
06CIco for Ds and the starter block (denoted start.), from the list above,
of the cycle of triples to which each belongs. (Starter block 0Coo is short,
generating only 12 blocks, and so only one representative triple contained
in 0Coo is given for each cycle.) Thus these triples of D give rise to the
12 x 24 + 12 = 30 x (3) = 300 triples of Dj.

triples from different cycles contained in 0149B
triple 014 019 O1B 09B 19B 49B 149 14B 049 04B
start. 014 019 O01B O02F 02G 02J 038 03A 049 04B
(representative) triples contained in 06CIco
triple 06C 0600 0Cco
start. 06C 06oco 0Coo

Table 6: triples from different cycles contained in the starter blocks of Ds

Table 7 gives representative pairs of chains (denoted rep.) comprising,
in all, eight mutually disjoint triples of (%)\Dj, again with the respective
starter blocks of the cycles involved. The 250 sets of eight mutually disjoint
triples are obtained by developing, modulo 24, these representative sets. In
Table 7, (n) indicates that the development of particular representatives is
short and of length n. A dash (-) indicates that the block is in the same cycle
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as a previous block in that same set of eight triples. Hence development
of pairs of chains 7.1 & 7.2, 8.1 & 8.2 and 9.1 & 9.2 contributes six, three
and one sets of eight mutually disjoint triples respectively. Thus, the total
number of triples accounted for in Table 7 is 10x8x24+8x64+-8x3+8x1 =
2000 which, since there are 300 triples in Dg, completes the proof.

Notes:

(i) in Table 7, labels identify each chain, with * denoting that the repre-
sentative chain can be obtained by applying the automorphism a(z) = 5z
of D to the representative chain directly above it: lack of such a corre-
sponding chain indicates that the set of eight mutually disjoint triples is
fixed under a(z). This accounts for the labelling of the chains.

(ii) the chains of triples generated in Theorem 12 and Theorem 15 from
affine places of orders three and five, respectively, cannot be the orbits of a
single permutation applied to all the triples not in the blocks of the affine
plane. If they were, every element would always map to the same element,
which is clearly not so. For the affine plane of order three, the triples
012, 0200 and 266, which have element 2 in common, map, respectively, to
triples 347, 746 and 03cc, which have no common element. For the affine
plane of order five, we see from Table 7 that triples SHI (1.2) and CHS (2.1)
map, respectively, to disjoint triples 69A and 70E.

7. Results for affine planes of other orders
We now consider what happens when we apply our approach to affine
planes of other orders.

7.1 Application to small affine planes obtained from PG(2,n)

Affine planes of orders six and ten are known not to exist (see [2]). Affine
planes obtained from PG(2,n) which include all affine planes of order less
than nine and one of the seven planes of order nine (see [2]), are of special
interest in that their blocks are doubly transitive (see [9]). We have already
dealt with the application of our approach to affine planes of orders three,
four and five, and nothing useful results when the order is two, since it is
trivial that the three blocks on which function f of Definition 6 (iv) relies
must have an element in common.

The other three affine planes we mentioned of order less than ten satisfy
both the conditions for which sequences are defined and for which the results
of Theorem 11 hold. Applying our function to them gives the following.
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For order seven, we can obtain a chain of disjoint triples of length six.
Taking PG(2,7) to be the projective plane on V = {0,1,2,...,56} de-
veloped from starter block {0, 5, 6, 8,18, 37, 41,48} (modulo 57), we derive
affine plane D7 by deleting the elements of this starter block from each
block of PG(2,7) Starting with block {1,2,3} of D7, we obtain the chain:
{1,2,3}; {12,27,56}; {17, 40, 50}; {55, 49, 28}; {20, 11, 22}; {53, 34, 13}. Since
the chain is of length six and contains 18 elements, no group of chains of
this length can contain precisely 48 or 49 of the 72 = 49 elements, with
each element occurring precisely once.

For order eight, direct application of our approach is impossible since,
as with orders two and four, three blocks on which function f relies have a
commmon element. For example, take Dg to be the design derived by delet-
ing the elements of starter block V = {1,2,4,8,16,32,37,55,64} (mod-
ulo 72) for projective plane PG(2,8) on V = {0,1,2,...,72} from each
of the blocks of Ps. The blocks of Dg in which pairs of {4,5,6} occur
are the following: {4,5,7,11,19, 35, 40, 58, 67}¢, {4,6, 10,18, 34,39, 57,66}
and {5,6,8,12,20,41,59,68}, giving bss(6) = {6,9,13,21,37,42,60,69},
bas(5) = {2,5,9,17,33,38,56,65}, and bss(4) = {46,47, 49,53, 61,4,9,27},
all of which contain element 9.

For order nine, we take the (unique) affine plane derived from PG(2,9)
by deleting the elements of the first block {0,1,2,3,4,5,6,7,8,9} listed in
(7). Starting with triple {10,11,19}, our approach gives the small chain of
length three: {10,11,19}; {34, 35,42}; {27,20,12}.

7.2 Application to affine planes of orders higher than nine

Our results for orders three to nine, and some preliminary investigation
of order eleven, motivate the following general questions covering all affine
planes currently known to exist.

First, for what values of n, where n is a prime or prime power, might
applying our approach to D,, an affine plane of order n, induce analogous
partitions of the triples of (';:)\D:,?

Secondly, For what affine planes of viable orders does our approach
indeed induce analogous partitions?

More specifically: For what orders of n, and for what specific affine
planes or families of affine planes, can the triples of ('_f:)\D:, be partitioned,
using our approach, into collections of either n2/3 or (n? — 1)/3 mutually
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disjoint triples [thus covering n? or (n? — 1) elements, respectively], such
that each collection of triples comprises chains induced by function f, and
of constant length |C|, with the triples of each such set either:

Case 1: all coming from chains from a single set of three resolution classes, or

Case 2: coming from chains across (n+1)/3 mutually disjoint sets of three res-
olution classes (thus partitioning the (n + 1) resolution classes of D,),
with each resolution class contributing precisely the same number of
chains to each collection?

For convenience, we call such a partition, of either case, an affine-induced
partition. We first determine the orders of those affine planes known to exist
that allow our approach to induce such a partition.

Lemma 16 Suppose that D, is an affine plane of order n, where n is
either prime or a prime power, and that every triple not in a block of Dy,
belongs uniquely to a chain, where the chains have constant length |C|. Then
IC] € n?/3, and |C| is either a power of the same prime as n, but less than
n?, or else |C| divides (n — 1).
Proof: From Lemma 16, |C| divides n?(n—1). Since n is prime or a prime
power, |C| must either be a power of n or n or else it divides n — 1. Since
the triple cannot cover more than n? elements, |C| < n2/3, which rules out
IC| = n?.

Note: Section 4 showed that, when n = 3, the (constant) chain length
|C|- divides n, whereas Section 6 showed that, when n = 5, it divides (n—1).

Theorem 17 The parameters of an affine plane of order n, where n is a
prime or a prime power, allow the possibility of an affine-induced partition
if and only if n is equal to:

e 6m + 1. Case 2; n% — 1 elements covered; |C| divides 4m(3m + 1);
e 3™. Case 1; n? elements covered; |C| = 39, whereq<m —1;

e 2™, For 3|C| dividing n: Case 1; n® — 1 elements covered; |C| divides
n. For m odd: Case 2; n®—1 elements covered; |C| divides, but is not
equal to, n —1;
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e n=6m+5. Case I; n® — 1 elements covered; |C| = n — 1. Case %
n? — 1 elements covered; |C| divides, but is not equal to, n — 1.
Proof: In each case we need three to divide n2 or n2 — 1 and the chain
length |C| to be a factor of n2, with |C] < n?, or else to divide n — 1. Since
each of 6m,6m + 2 and 6m + 4 is always divisible by 2, and 6m + 3 is
divisible by 3, all primes or prime powers are either of the form 6m + 1 or
3™, the two cases we deal with first, or else of the form 2™ or 6m + 5.

Affine plane of orders n = 6m + 1 or n = 3™ have 6m + 2 and 3™ + 1
resolution classes respectively, and thus cannot be partitioned into sets of
three resolution classes as needed. Hence in these cases an affine-induced
partition exists only if all the chains come from a single set of three resolu-
tion classes.

When n = 6m + 1, n? = 12m(3m + 1) + 1 which, divisibilty by three
implies the chains can cover n2 — 1, but not n?, elements. We cannot
have chuins of a length which is a factor of n2, since such a factor cannot
divide n? — 1. If the chain length |C| divides n — 1, then chains clearly have
the potential to cover the n? — 1 elements, provided 3|C| divides n2 — 1 =
12m(3m+1). This final condition is met if and only if |C| divides 4m(3m+1).

When n = 3™, n? —1 is not divisible by three, and hence n2—1 elements
cannot be covered by triples. So we must look to cover n? elements with
chains of length |C| comprising 3™~ triples in all, which can be done if
and only if the chains are of length 37, where g <m — 1.

We now look at the situations where Case 2 appears possible. When
n = 2™, it is impossible to cover n? = 2™ elements with triples. We try to
cover n? — 1 elements. Case 1 is satisfied by chains of length |C|, provided
3|C| divides 2™ —1. If Case 2 applies,then there are 2™ -1 resolution classes,
which can be partitioned into sets of three if and only if mis odd. Then
taking ¢ > 2 chains of length |C| from each set of three resolution classes, we
have 25t ¢ |C|.3 = 25 ¢.|C|3 = 2%™ — 1, which reduces to c = l'l"ﬁ—l >2
and hence to |C| dividing, but not equalling, n — 1.

When n = 6m + 5, n? = 36m? + 60m + 25 is not divisible by three,
but n%2 — 1 allows 4(3m + 2)(m + 1) triples. There are 2m + 2 sets of
three resolution classes, so taking c chains of length |C| from each set gives
(2m +2)c.|C| = 4(3m + 2)(m + 1) and hence ¢.|C| =2(3m +2) =n—1. So
Case 1 is possible with chain length n — 1 and Case 2 is possible for chain
lengths dividing, but not equalling n — 1.



This leaves open the second question, ” Of those affine planes or families
of affine planes of orders allowing an affine-induced partition, which do
indeed induce such partitions?” Finally, we point out that it might be useful
to investigate the number and nature of the sequences generated by the
blocks of affine planes of the same order when determining whether or not
they are isomorphic.

We thank Nicholas Hamilton and Colin Ramsay for helpful discussions.
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Table 7: representative sets of eight mutually disjoint triples in Dg

rep. 1.1 DEF L3B GK7 MN4 1.2 S5HI 69A 018 2Joo

start 012 O06E O04F 016 0iC OiL 018 0700
rep. 1*.1 HM3 OF7 84B EKJ 1*.2 DI 6L2 05G ANoo
start. 05A 028 03K 01J 05C 04J 05G 0Boo
Tep. 2.1 CH5 70E FIG ASco 2.2 3MK 28N DL4 JBi
start. 0O5H 70E 013 O0Ol1oc0 027 039 07G 06G
rep. 2*.1 CD1 BOM 3I8 2Lco 2*.2 FE4 AJG HOK N75
start. 01D 02D OBF 0boo O1E 03I 03G 02I
rep. 3.1 6GI K4H MDF 7900 3.2 05B 2J3 CBE 1LN
start. 02E 03B 029 02x 0SB O01H 02K 024
rep. 3*.1 681 4KD EH3 BLoo 3*.2 017 ANF CGM 59J
start. 02C O7F 03D OAco 017 05D 04A O4E
rep. 4.1 LH9 OBE AN1 4Jco 4.1 M67 3IC DGK F82
start. 04G O0S5E 02B 0900 01G O6F 037 06D
rep. 4*.1 9DL OIM 2J5 KNoo 4*.2 E6B FIC H84 3GA
start. 04C O01M O03H 0300 03J 036 04D O6H
rep. 5.1 01A 7HD IGL 359 5.2 N2B EFJ 208 M6oo
start. 01A 041 025 026 03C 015 048 0800
rep. 6.1 O03F CEM 156 JNoo 6.2 892 BD4 AGL HK7
start. 03F 02A 01K 0400 0iI 02H O05I O3E
rep. 7.1 035 69B CFH ILN 7.2 126 78M DE4 JKA
start. 02L - - - o1F - - -

rep. 8.1 04H 6AN CGI M5B 8.2 37K 9D2  FJL 18E
start. 04H - - - - - - -
rep. 9.1 08G MCE K4C IA2 9.2 i9H NOF LSD JB3
start. o8¢ - - - ® - - - -
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