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Abstract An f-coloring of a graph G is an edge-coloring of G
such that each color appears at each vertex v € V(G) at most
f(v) times. The minimum number of colors needed to f-color
G is called the f-chromatic index of G. A simple graph G is
of f-class 1 if the f-chromatic index of G equals Af(G), where
Af(G) = maxyev(e){[d(v)/f(v)]}. In this article, we find &
new sufficient condition for a simple graph to be of f-class 1,
which is strictly better than a condition presented by Zhang and
Liu in 2008 and is sharp. Combining the previous conclusions
with this new condition, we improve a result of Zhang and Liu
in 2007.
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1 INTRODUCTION

All graphs considered in this paper are finite and undirected. They allow
multiple edges but no loops. If a graph has neither loops nor multiple

*Supported by NSFC(10901097), NSFC(10871119), RFDP(200804220001), Tianyuan
Youth Foundation of Mathematics(10926099) and NSF of Shandong(ZR2009AMO009) of
China.

*Correspouding author. Email: pandarhz@sina.com

ARS COMBINATORIA 97A(2010), pp. 403-412



edges, we will call it a simple graph. The reader is referred to [1] for the
undefined terms.
An edge-coloring of G is an assignment of colors to all the edges of
G. Let Q C E(G) and Q # 0. A partial edge-coloring of G is an edge-
coloring of a subgraph G[Q] of G. When Q = E(G), a partial edge-coloring
of G is exactly an edge-coloring of G. Let G be a graph and let f be a
function which assigns a positive integer f(v) to each vertex v € V(G). An
f-coloring of G is an edge-coloring of G such that each vertex v € V(G)
has at most f(v) edges colored with the same color. The minimum number
of colors needed to f-color G is called the f-chromatic index of G and
denoted by x}(G). If f(v) = 1 for all v € V/(G), the f-coloring is reduced
to the proper edge-coloring, and the f-chromatic index of G is reduced to
the chromatic indez of G and denoted by x/(G).
We define d(w)
AHG) = max {[2Y ,
76) = mex {15531}
where [z] is the smallest integer not smaller than z. It is trivial to show
that x}(G) 2 Af(G).
Hakimi and Kariv [2] generalized proper edge-colorings to f-colorings
and obtained many interesting results, some of which will be used in the
rest of this article as follows.

Lemma 1.1 /2] Let G be a bipartite graph. Then x;(G) = As(G).

Lemma 1.2 [2] Let G be a graph. If f(v) is positive and even for all
v € V(G), then x;(G) = Af(G).

Lemma 1.3 (2] Let G be o simple graph. Then

) d(v) + 1
Ar(6) S x5(C) < max ([~

We say that a simple graph G is of f-class 1 if x}(G) = Af(G), and
of f-class 2 otherwise. The problem of deciding whether a simple graph
G is of f-class 1 or f-class 2 is called the classification problem on f-
colorings. If f(v) =1 for all v € V(G), a well-known theorem of Vizing [5],
ie. A(G) £ X'(G) £ A(G) + 1, can be deduced.

Zhang and Liu [6, 7, 8, 9, 10], Zhang et al. [11] studied the classifi-
cation problem of complete graphs, simple regular graphs and some other
special classes of simple graphs on f-colorings. Liu et al. [4] studied some
properties of f-critical graphs (i.e. connected simple graphs G of f-class 2
satisfying that X (G — e) < x4(G) for any edge e € E(G)). When f(v) =1
for all v € VSG), many known results in the classification problem on
proper edge-colorings can be deduced.

L ‘We denote the neighbor set of vertex set S in G by Ng(S) for § C V(G).
et

1}<44G)+1.

V() = (ve V(G): 1 = (@)



Then Ng(V5'(G)) = {v € V(G) : wv € E(G),u € V;(G)}. The f-core of
a graph G is the subgraph of G induced by the vertices of V;(G) and is
denoted by Ga,. The number d(v)/f(v) is called the f-ratio of vertex v in
G. Agraph Gis A f(G?-peelable, if all the vertices of G can be iteratively
peeled off using the following peeling operation: Removal of a vertex v,
which has at most one remaining neighbor of f-ratio Az(G).

So far, the best results based on V' (G) are the following.

Theorem 1.1 [8] Let G be a simple graph. Suppose that V3'(G) # 0. If
;(vg is positive and even for all v € V3'(G) U Ng(Vy'(G)), then G is of
-class 1.

Theorem 1.2 (9] Let G be a simple graph. If G is As(G)-peelable, then
G is of f-class 1.

As shown in [9], a simple graph in which V' (G) =0 or Ga, is a forest
is Ag(G)-peelable. Af(G)-peelable simple graphs are the most extensive
class of graphs of f-class 1 obtained by coloring the edges in a particular

order so far.
We call a graph G RP-removable, if all the vertices of G can be itera-

tively removed using the following vertex removal operations:
(1) removal of a vertex v with degree at most (f(v) — 1)As(G) + 1;

(2) removal of a vertex v, which has at most one remaining neighbor of
f-ratio Af(G).

In Section 2, we prove that every RP-removable simple graph is of f-
class 1. In particular, we show that this sufficient condition is strictly better
than the one in Theorem 1.2 and is sharp. Also, we give a class of graphs
with x}(G) = A;(G). In Section 3, we discuss non-RP-removable simple
graphs. We find a more general class of simple graphs which are of f-class
1 by combining the previous conclusions with the vertex RP-removability
condition. As a result, we improve Theorem 1.1. In Section 4, we present
an open problem for further research.

2 MAIN RESULTS

Set ¥(G) = |V(G)| and Ey, = {uv : v € V(G) and uv € E(G)}. Given
an f-coloring of a subgraph G’ of G and an uncolored edge e in G, we
say that e can be f-colored if G' + e can be f-colored. Let C be a set
of colors. Suppose that G has been given a partial edge-coloring é with
colors in C. An edge colored with color & € C is called an a-edge. Denote
by |a(v)| the number of a-edges incident with the vertex v in G. Define
M®@) ={a: |a(v)| < f(v),a € C} for & It is easy to see that M(v) # @
if f(W)IC] > X secla(v)] in & When [C| > Ay(G), we have f(v)|C| >
fW)A§(G) 2 dg(v) > 3 cc la(v)] for any é&. Thus, M(v) # @ for a vertex
v € V(G) if |C| > Af(G), |C| = Af(G) and dg(v)/f(v) < Afp(G), or
|IC] = Af(G) and v is incident with at least one uncolored edge in é&. We
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adopt the convention that any subgraph G’ of G has fgr(v) = fg(v) for all
v e V(G).

We now describe a tool commonly used for f-colorings.

Define m(v,a) = f(v) — |e(v)| for each v € V(G) and each a € C.
Clearly, M(v) = {a: m{v,a) 2 1,a € C}. For two distinct colors a,b € C,
a walk W = wejvieqva...epvp is called an ab-alternating walk if W
satisfies the following conditions:

(a) the edges of W are colored alternately with a and b, and the first
edge of W is colored with b;

(b) m(vo,a) > 1if vo # vy,
m(vo,a) > 2 if vp = v, and |W] is odd;

(c) m vh,b% 2> 1if vy # v, and |[W| is even,
m(vp,a) > 1if vy # v, and |W] is odd.

In particular, any closed walk W of even length whose edges are colored
with a and b alternately is an ab-alternating walk. The operation, inter-
changing the colors a and b of the edges in an ab-alternating walk W, is
called switching W. After W was switched, m(v;,a) and m(v;, b) remain
as they were if ¢ # 0, h, while m(vp,bd) > 1 if W is not a closed walk of
even length. A maximal alternating walk is one whose length cannot be
increased.

In this section, we give two useful lemmas. One is the following.

‘Lemma 2.1 Let G be a graph, u € V(G) and k be a positive integer with
k> Af(G). If G —u can be f-colored with k colors and dg(u) < (f(u) —
1)k + 1, then G can be f-colored with k colors.

Proof. Clearly, for graph G, an f-coloring with m colors is also an f-
coloring with n colors if n > m. If Ay(G)=1, which implies that x;(G) =
1, then G can be f-colored with & > 1 colors. Next, we assume that
Af(G) 2 2.
Suppose that G — u is f-colored with the colors in C = {¢;, ¢, ...,ck}.
Next, we present an f-coloring of G with the colors in C.
For any edge e = uv € E,, we consider two cases.

Case 1. If there exists some color a € C such that |a(u)| < f(u) and
|a(v)] < f(v), then color e with o.
Case 2. Otherwise, we choose a color 8 € C such that [3(v)] < f(v). Color
e with color 8. Since before coloring e we had |8(u)| = f(u), after coloring
e we have [B(u)| = f(u)+1. We claim that there must exist a color, without
loss of generality, say <y, in C such that |y(u)| < f(u) — 2. (Otherwise, the
number of the colored edges incident with u is at least (f (ug -D(k-1)+
%f(u) +1) 2 (f(w) — 1)k + 2. It contradicts dg(u) < (f uf -1Dk+1)

ind a maximal yf-alternating walk P = uejvjeqvs...epvp. In particular,
when the walk P returns to u with a -edge, we continue to extend P by
choosing a (-edge incident with u. Since ,B(u)}L— [v(u)] > 3, there exists
such a §-edge which has not been included in P so far. If vy, = u, then P
must end at u with a G-edge. After switching P, we have lﬁ(uy = f(u)-1
and '7£u <f %u; If v, # u, then after switching P we have |f(u)| = f(u)
and |y(u)| < f(u) - 1.
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In either case, e can be f-colored with a color in C. Repeat this operation
until all edges in E, are f-colored with the colors in C.

Let ¢ be a function which assigns a positive integer t(v) to each vertex
v € V(G). A graph G is t-removable, if all vertices of G can be iteratively
removed using the following vertex removal operation: removal of a vertex
v with degree at most ¢(v).

Theorem 2.1 Let G be a graph. If G is (f—1)A 1(G) + 1-removable, then
x5(G) = &f(G).

Proof. Suppose that the vertices of G can be (f — 1)A¢(G) + 1-removed
in the order vy, vs,.. < Uy(G)- Let Gi = G — {v1,v2,...,9}(1 £i < V(G))
and let v, be the vertex such that F(G,) = @ and E(G,_,) # 0. Clearly,
G,_y is a star. By Lemma 1.1, we have x}(G,_l) = Af(G,s—1). Obviously,
Af(Gs—1) £ Af(G). Thus, G,_1 can be f-colored with Af(G) colors.
By hypothesis, dg, (ve—1) < (f(vs—1) = 1)As(G) + 1, 50 G4 3 can be f-
colored with A¢(G) colors by Lemma 2.1. Iteratively applying Lemma 2.1
to G; (i = s —2,s—3,...,1), then obtain that G can be f-colored with
Af(G) colors. |

Theorem 2.1 describes a class of graphs with f-chromatic indices equal
to Ay(G). For a simple graph, we have the following corollary.

Corollary 2.1 Let G be a simple graph. If G is (f=1)Az(G)+1-removable,
then G is of f-class 1.

Next, we confine ourselves to simple graphs. The following lemma is a
standard result on f-colorings of simple graphs.

Lemma 2.2 [8, 9] Let C denote the set of colors available to color the
edges of a simple graph G. Suppose that ey = wvg is an uncolored edge in
G, and graph G — eg is f-colored with the colors in C. If every neighbor v
of either w or vg has M(v) # 0, then we can f-color eq with a color in C.

Now, we give the other useful lemma.

Lemma 2.3 Let G be a simple graph, ©u € V(G) and k be a positive integer
with k > As(G). If u can be Ag(G)-peeled and G —u can be f-colored with
k colors, then G can be f-colored with k colors.

Proof. We denote the neighbor set of vertex u in G by Ng(u). Suppose
that G — u is f-colored with the colors in C = {¢y, ¢y, ..., ckg. Note that
k > A¢(G). We consider two cases.

Case 1. u has no neighbor of f-ratio A¢(G) in G.

In this case, dg(v)/f(v) < Af(G) for any v € Ng(u). Thus we always have
M(v) # 0 for every v € Ng(u) when coloring the edges in E, one by one.
So we can f-color every edge in E, with the colors in C by Lemma 2.2.
Case 2. u has exactly one neighbor of f-ratio As(G) in G.

Let ' € Ng(u) and dg(u')/ f(u') = A;(G). Clearly, u has no neighbor of
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f-ratio Ay(G) in G — uu’. As shown in Case 1, G — uu’ can be f-colored
with the colors in C. After f-coloring G — uu’ with the colors in C, we still
have M(v) # @ for each v € Ng(u) and v # /. And now, M(x') # 0 since
uu’ is uncolored so far. Then uu’ can be f-colored with a color in C by

Lemma 2.2.
In either case, we can obtain an f-coloring of G with k colors. |

We are now ready to prove the main result of this article.

Theorem 2.2 Let G be a simple graph. If G is RP-removable, then G is
of f-class 1.

Proof. First, we suppose that the vertices of G can be RP-removed in
the order vy, vy,...,v,(c). Furthermore, let G; = G — {v1,va,...,%;}(1 <
i < ¥(G)) and let v, be the vertex such that E(G,) = 0 and E(G,-;) #
0. As proved in Theorem 2.1, G,_; can be f-colored with Af(G) colors.
Consider vertex vs—1. If v,—; is RP-removed under operation (1), then
dg,_,(vs—1) £ (f(vs—1) — 1)A¢(G) + 1. By Lemma 2.1, G,_2 can be f-
colored with A¢(G) colors. If v;_; is RP-removed under operation (2),
then G,_3 also can be f-colored with A¢(G) colors by Lemma 2.3. In the
same way, we can iteratively prove that G; can be f-colored with Ay (G)
colors for ¢ = s - 3,s~4,...,1 and G can be f-colored with A¢(G) colors.

Clearly, Theorem 1.2 and Corollary 2.1 are just two special cases of
Theorem 2.2. Here, we show that Theorem 2.2 provides a strictly better
sufficient condition for a simple graph to be of f-class 1 than Theorem 1.2
and Corollary 2.1. See the graph G in Fig. 2.1. We have Ay(G) = 3
and Vg*(G) = V(G) \ {n1}. Ga, is indicated by thick lines. It is easy to
see that G is RP-removable in the order vy, vs,...,vs, in which vy, vs are
RP-removed under operation (1) and the others under operation (2). But
it is neither Ajy(G)-peelable nor (f — 1)Af(G) + 1-removable. (In G, no
vertex can be Ay(G)-peeled since each vertex has at least two neighbors of
f-ratio A(G), and no vertex can be (f —1)A;(G) + 1-removed except v;.)

v, v, v,

Vs

Vs Vs

Fig. 2.1. An RP-removable simple graph G with f(v;) =1 (i = 2,4,5,7)
and f(v;) =2 (5 =1,3,6,8,9).
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We call a graph G RP!-removable, if all the vertices of G can be it-
eratively removed using the following operation (1’) and the RP-removal
operation (2); a graph G RP?-removable, if all the vertices of G can be
iteratively removed using the following operation (2’) and the RP-removal
operation (1):

(1) removal of a vertex v with degree at most (f(v) — 1)Af(G) +2;

) ;emoval Aof (aé' \)/ertex v, which has at most two remaining neighbor of
-ratio Ay (G).

To see that the sufficient condition in Theorem 2.2 is sharp, we now
show that either class of RP!-removable simple graphs and RP2-removable
simple graphs contain simple graphs of f-class 2. Consider a simple graph
G’ which is obtained from G in Fig. 2.1 by changing the function f into
fw)=1(=1,2,4,5,7) and f(v;) =2 (j = 3,6,8,9). We have Af(G') =
3 and Vi’ (G') = V(G')\ {wn1}. Clearly, dg'(v1) =2 < (f(v1) - 1)Af(G')+2
and v; has exactly two remaining neighbors of f-ratio As(G’). So, v; can
be RP!-removed under operation (1’) or RP2-removed under operation
(2'). It is easy to see that G’ is RP'-removable as well as RP2-removable
in the same order vy, vs,...,ve. However, we say that G’ is of f-class 2, for
otherwise, there will exist a color such that the number of edges colored
with the color, i.e. (2 x 4+ 1 x 5)/2, is not an integer.

When f(v) =1 for all v € V(G), an RP-removable graphs G is reduced
to a A(G)-peelable graph, i.e. a graph all the vertices of which can be
iteratively peeled off using the following peeling operation: Removal of a
vertex v, which has at most one remaining neighbor of degree A(G).

Corollary 2.2 [3] Let G be a simple graph. If G is A(G)-peelable, then G
is of class 1.

3 FURTHER DISCUSSION

Let G be a graph. An RP-remaining graph of G is a subgraph obtained
by removal of some vertices using the RP-removal operation in G. In
particular, every graph is an RP-remaining graph of itself. We call an
RP-remaining graph H of G minimal if no vertex can be RP-removed in
H. A graph G has no minimal RP-remaining graph if and only if G is an
RP-removable graph. According to the definition of RP-removability, it
is easy to see that, if there are several choices available, we may perform
the RP-removal operations for those vertices in any order. So, for a non-
RP-removable simple graph G, the minimal RP-remaining graph of G is
exclusive and is denoted by G[U], where U is the set of “non-R P-removable”
vertices in G. Note that a non-RP-removable graph G has G[U] = G if no
vertex can be RP-removed in G.

We consider a non-R P-removable simple graph G. Clearly, every vertex
v € U is adjacent to at least two vertices of f-ratio As(G) in G[U] and

As(GIU)) = A4(G).
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Fig. 3.1. A non-RP-removable simple graph G with f(v;) =1
(i=1,...,4) and f(vj) =2 ( =5,...,12).

4 OPEN PROBLEMS

Consider the graph G in Fig. 4.1. Clearly, Af(G) = 3 and G is RP-
removable in the order v;,ve,vs,v4. However, x'f(G) # 3 (for otherwise,

there will exist a color such that the number of edges colored with the color,
i.e. (1 x3)/2, is not an integer).

Fig. 4.1. An RP-removable graph G with f(v;)=1(i=1,...,4).

Fig. 4.1 shows that, without condition “G is a simple graph”, the
condition “G is an RP-removable graph” does not insure that x}(G) =

A¢(G). Thus we present the following problem:

Problem 4.1 Find sufficient conditions for an RP-removable graph G to
have x}(G) = Af(G).

On the other hand, one could consider the classification problem on
f-colorings for non-RP-removable simple graphs.
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