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Abstract

The chromatic polynomial of a graph I', C(T’; A), is the polynomial
in A which counts the number of distinct proper vertex A-colorings
of I, given A colors. By applying the addition-contraction method,
chromatic polynomials of some sequences of 2-connected graphs sat-
isfy a number of recursive relations. We will show that by knowing
chromatic polynomial of a few small graphs, chromatic polynomial of
each of these sequences can be computed by utilizing either matrices
or generating functions.

1 Introduction

Much information about the chromatic polynomials can be found in [1]
and [2]). In [3], the authors compute the chromatic polynomial of some
strip graphs with their asymptotic limits. We feel that although our re-
sults may be similar to some of the results in [3], they have been obtained
independently and differently. Let’s assume that {¥,,}neN, {¥%}nen, and
{¥”} en are sequences of graphs such that for n > 2, the following relations
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in which §;, for 1 < ¢ < 6, are given graphs. Clearly, the above relations
can be rewritten in matrix form as
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One may notice that the second matrix relation can also be rewritten as
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Thus, for n > 2, we have
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These observations show us that by computing the chromatic polyno-
mials of ¥}, ¥{ and ;’s, chromatic polynomials of ¥,, can be computed
for n > 2. In section 2, we will give three examples of {¥,},en Whose
chromatic polynomials will be computed by defining appropriate {\II,,},.GN
and {¥} }nen and applying the above method.

An alternative method is to find generating functions for chromatic
polynomial of each sequence. Let fi(z), f2(z), and f3(z) denote the gen-
erating functions for chromatic polynomials of ¥,, ¥,, and ¥/, respec-
tively. To be more precise, we have fi(z) = Y v, C(¥n; N)z™, f2(z) =

o1 C(T; M)z, and fa(z) = Yo, C(¥4; A)z". By applying the so-
called “snake oil” method to the recursive relations we had for C(¥,; ),
C(¥,; ), and C(¥/; ), these generating functions can be computed as
follows:
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2 Main Results

Assume ¥, is the graph in Figure 2.1(a) and ¥, is recursively built from
¥, by identifying the vertices an—1, bn—1, Cn—1, dn-1 in ¥,_; with ver-
tices an—1, bn—1, tn-1, dp—1 of ¥,, respectively. ¥, is depicted in Figure
2.1(b). We know that

C(¥1;2) = AA—=1)(A% =3X+3)2(A® — 725 +212% — 35)% + 3502 — 21\ + 7).

(b) ¥n

Figure 2.1

In order to find the chromatic polynomial of ¥, for n > 2, we will
use the addition-contraction method. By adding the edge between a,_;
and d,_; and contracting it, one may notice that that C(¥,; ) is equal
to chromatic polynomial of a vertex-gluing of ¥,,_; and Q; plus chromatic
polynomial of an edge-gluing of ¥//_, and Q. Clearly, this satisfies the first
of the relations we introduced in previous section. ¥/ and ¥} are graphs
built from ¥,,_; by identifying vertices an—1, bp—1, cn—1, dn-1 thh vertices
@1y b1, €n1, dn_y of ¥/, and ¥” (see Figure 2.1(a)), respectively. In
Figure 2.2, we have drawn \Il’ and \Il” and in Figure 2.3, Q; and Q5.

CuiA) _ A0 _ 1429 + 918 — 36127 + 96818 — 183775+
AA-1)
251124 — 246523 + 16942 — 759\ + 175;
ﬂﬂ_;ii) = (A=1)(A—2)2(AT—0XS+37)5 —89A* + 1363 —134X%+83A—28).
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sestes

(a) Tn,

(b) ¥,

(c) O3, T
Figure 2.2

By applying the addition-contraction method to ¥}, and ¥¥ in a similar
way we did to ¥, clearly chromatic polynomials of ¥] and ¥/ satisfy
recursive relations we had in previous section with Q2-$2s graphs given in
Figure 2.3. Chromatic polynomials of these graphs are as follows:
f((fs_; i‘; = A8 —12)\7 46618 — 21715 + 468)1* — 6833 + 66872 — 408 + 121,

&‘iﬂ& = (A= 1)(A — 2)2(A® — 7A% + 22X% — 382 + 38X — 19),

f((fs'_ ’1‘; = (A= 2)(A® — 05 4+ 37\% — 88X + 120A% — 133) + 47),

C(S%; )
A

= (A= 1)(A = 2)(A\® — 82% + 28)3 — 54)% + 59\ — 29).
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Figure 2.4

Finally, our next example can be found in Figure 2.5 (a)-(c) (Please note
that ¥, = Cy, ¥ = K3, and ¥ = K3). Similarly, chromatic polynomial
of ¥, for n > 2, can be written in terms of those of ¥ _,, ¥/_,, @,
and §2; with these two latter graphs drawn in Figure 2.5 (d)-(e). It also
can be checked that chromatic polynomials of ¥/, and ¥ satisfy recursive
relations we had in our introduction with §23-§2¢ being graphs in Figure 2.5

(d)-(e)-
C(Q1; ) = A — 1)(A — 2)2(A% — 6A3 + 16)% — 21X + 13);
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C(; ) = AA = 1)(A% — 40 + 5)(A% — 4X2 + 7A — 5).

883880

(a) ¥n
(b) Ty,

(c) ¥

4%

(d) 919 93, Q5
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(e) Q2, U, Q6

Figure 2.5
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