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ABSTRACT

In this paper we study the global behavior of the nonnegative equilibrium
points of the difference equation

aTn—21
Tntl = T k1 n=0,1,..,

b+c ] zn-2i
i=0
where a, b, ¢ are nonnegative parameters, initial conditions are nonneg-
ative real numbers and k,! are nonnegative integers, { < k + 1.
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1. INTRODUCTION

Difference equations appear naturally as discrete analogues and as nu-
merical solutions of differential and delay differential equations having ap-
plications in biology, ecology, physics, etc. [18].

Recently there has been an increasing interest in the study of nonlinear
difference equations. Although difference equations’ forms are very simple,
it is extremely difficult to understand thorougly the global behaviors of their
solutions. There has been a lot of work concerning the global asymptotic
behavior of solutions of rational difference equations. For example see Refs.
(1-18].

Hamza et al. [11] studied the asymptotic stability of the nonnegative
equilibrium point of the difference equation

Azp_y

Tppy = ——F—.
B+ C ] zn-2
i=l
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Elabbasy et al. [7] investigated some qualitative behavior of the solutions

of the recursive sequence
OTn—k
* .
B+~ H Tn—i
t=0

Elsayed [9] investigated the qualitative behavior of the solution of the

difference equation

Tniy1 =

b:z:,,x,,_l
CTn +dTrn-1
Also Elsayed [10] studied the behavior of the recursive sequence
bx2
CZn +drn_y )
Andruch et al. [2] studied the asymtotic behavior of solutions of the
difference equation

Tnyl = ATy +

Tp41 = aTp +

ATn—1
b+ cTnTn-1

Cinar [4] investigated the global asymptotic stability of all positive so-
lutions of the rational difference equation

ATn—1
1+ bxpTpn—1 ’

Yalcinkaya [16] investigated the global behaviour of the rational differ-
ence equation

Tn4l =

Tn+l =

Tn-m
Tny1 =a+ =
xn

El-Owaidy et al. [8] studied the dynamics of the recurcive sequence
T . O0Tn
T Bty

Battaloglu [3] discussed the global asymptotic behavior and periodicity
character of the following difference equation
QTn—k
B+ 7xfz—(k+l) ’
by generalizing the results due to El-Owaidy et al.
Our aim in this paper is to investigate the dynamics of the solution of
the difference equation

Tpt1 =

) aTn—-21
(1.1) Tnt+1 = e a— n=01,..

b+ec H Tn-2¢

i=0
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where a, b, c are nonnegative real numbers, initial conditions are nonneg-
ative and [, k are nonnegative integers, [ < k + 1.

2. PRELIMINARIES

Let I be some interval of real numbers and let f : I**! — I be a
continuously differentiable function. Then for every set of initial conditions
Ty T—(k+1)s -+ To € I, the difference equation

(2.1) Tnt1 = [ (TnyTn-1, s Tn-k), n=0,1,...,
has a unique solution {zp}or. .

Definition 1. An equilibrium point for Eq.(2.1) is a point T € I such that
Z=f(Z,%,....T). .

Definition 2. A sequence {zn},—_ is said to be periodic with period p if
Tntp =Zp for alln > —k.

Definition 3. (i) The equilibrium point T of Eq.(2.1) is locally stable if
for every € > 0, there exists § > 0 such that for all z_g,x_(k-1),...,T0 € I
with |2_x — E| + |T_(k—1) — B| + ... + |Zo — F| < §, we have |z, — F| < € for
alln > —k.

(ii) The equilibrium point T of Eq.(2.1) is locally asymptotically stable if
T is locally stable solution of Eq.(2.1) and there exists v > 0, such that for
allz_g,T_(k-1)s..-»To € I with |z-k — 5:‘|+|:c_(k_1) - :-B"-l-...-i-la:o —-F <,
we have hm 0 T = Z.

(iii) The equilibrium point T of Eq.(2.1) is global attractor if for all
T ky T_(k—1)---» To € I, we have hm N Ty, = T.

(iv) The equilibrium point T of Eq (2.1) is globally asymptotically stable
if T is locally stable, and T is also a global attractor of Eq.(2.1).

(v) The equilibrium point T of Eq.(2.1) is unstable if T is not locally
stable.

The linearized equation associated with Fq.(2.1) is

(2.2) Yns1 = Z a (Z, %, .y E) Yni, n=0,1,...
i=0 n—t .

The characteristic equation associated with £q.(2.2) is

k of _
(2.3) D 5 (BT07) Me=i=

i=0 I%n—i

Theorem 1. [13]Assume that f is a C* function and let T be an equilibrium
point of Eq.(2.1). Then the following statements are true.

(i) If all roots of Eq.(2.3) lie in open disk |\| < 1, then T is locally
asymptotically stable.
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(it) If at least one root of Eq.(2.3) has absolute value greater than one,
then T is unstable.

3. DynaMics oF EQ.(1.1)

In this section, we investigate the dynamics of Egq.(1.1) under the as-
sumptions that all parameters are nonnegative with ¢ # 0, the initial con-
ditions are nonnegative and [, k are nonnegative.

The change of variables z,, = "*{/gyn reduces Fq.(1.1) to the difference

equation

(3.1) Yniy1 = __’%——m'—) n=01,..,

1+ H Yn-2i

i=0

where v = £. We can see that 7, = 0 is always an equilibrium point of

Eq.(3.1). When v > 1, Eq.(3.1) also possesses the unique positive equilib-
rium §, = Yy 1.

Theorem 2. The following statements are true:

(i) If v < 1, then the equilibrium point §; = 0 of Eq.(3.1) is locally
asymptotically stable,

(#) If v > 1, then the equilibrium points J, =0 and §J, = **¥/y—1 are
unstable.

. Proof. The linearized equation associated with Fq.(3.1) about 7 is
42 k+1
Y L T = =
Zn41t (1 + ,yk+2)2 (; Zn-2i zn—2l) (1 n gk'i'?)z Zn-21=0,n=0,1,....
The characteristic equation associated with this equation is
—k4+2 k+1
2k+3 7Y 2i 2k+2-21 v 2k+2-21 __
N e Y oA X )————_k+22A =0.
(1+7*?) (1+7*+2)
Then the linearized equation of Egq.(3.1) about the equilibrium point
7, =0is

=0

Znt1 —V2n-20=0, n=0,1,...
The characteristic equation of Eqg.(3.1) about the equilibrium point 7, =

0is
N2k+2-21 ( A2+ _ 7) —=0.
So
A=0and A = /7.
In view of Theorem 1:
If ¥ < 1, then |A| < 1 for all roots and the equilibrium point 7, = 0 is
locally asymptotically stable.
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If v > 1, it follows that the equilibrium point 7, = 0 is unstable.
The linearized equation of Eq.(3.1) about the equilibrium point 7, =

k3~ —T1 becomes
1\ [kt 1
Znt1 + (1 - ;) (Z Zp-2i — 2n-21 | — ;21;—21 =0, n=0,1,...

i=0
The characteristic equation of F£q.(3.1) about the equilibrium point 7, =

1 k+1 ) 1
A2k+3 + (1 - _) ZA22 _ A2k+2—2l _ ;/\2k+2—2l = 0.
7 i=0

It is clear that this equation has a root in the interval (—oco, —1). Then
the equilibrium point 7, = *+/y — 1 is unstable.
Theorem 3. Assume that v < 1, then the equilibrium point i, = 0 of
Eq.(3.1) is globally asymptotically stable.
]

Proof. Let {yn}pe_(r41) be @ solution of Eq.(3.1). From Theorem 2 we
know that the equilibrium point 7; = 0 of Eq.(3.1) is locally asymptotically
stable. So it is sufficed to show that

Jmgn =0
Since
Ynt1 = -—liﬂ—l_m— < YYn-2t-
1+ [] yn-2i
i=0
We obtain
Yn+1 < TYn-21.
Then it can be written for t =0,1,...andp=1,2,...,2[ + 1
(3.2) Vet +p < V1 Y-@ir1-p)-
If y < 1, then tl_i‘n‘;no'y("‘") =0
and
lim y, = 0.
n—oo
The proof is complete. 0

Corollary 1. Assume that v = 1. Then every solution of Eq.(3.1) is
bounded.
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Proof. Let {yn}a__(k+1) be 2 solution of Eg.(3.1).We have from our as-
sumption and inequality (3.2)

Yet+1)+1 < Y-20,

Ye2i+1)+2 S Y-(2t-1)»

Ye(2i+1)+2t+1 < Yo-

It is obvious that every solution of Eq.(3.1) is bounded from above by
A = max {y-zl,y—(zl-n, --~,yo} . O

Theorem 4. Assume that at least one of the initial conditions y—; (i =
0,1,...,20) of Eq.(3.1) is zero. Then the following statements are true:
(i) If v > 1, then every solution of Eq.(3.1) is unbounded except zero.
(it) If v = 1, then Eq.(3.1) has periodic solutions of period (21 + 1).

Proof. Let {yn},2 _(k4+1) be & solution of Eq.(3.1).We have from Eq.(3.1)

_ 7y
Ye@+1)+1 = — 0

1+ [T y-2:

=0
"/H'ly—(zt—l)
Yi+1)+2 = YT I
1+ 'Ho Y-(2i-1)
=

t+1
_ Yo
Yi2i+1)42041 = P

1+ JT y—(2i-2p
i=0
When at least one of the initial conditions y_; (1 = 0,1, ..., 2l) is zero and
4 > 1, it follows that every solution of Eq.(3.1) is unbounded except zero
from the above equalities. If -y = 1, then Fq.(3.1) has periodic solutions of
period (2! +1).
The proof is complete. 0

4. NUMERICAL RESULTS

In this section, we give a few numerical results for some special values
of the parameters.

426



Example 1. Let yp4y = —2=2_ n=0,1,,..,.9 andl=1,k=1,y=

k41
1+ _I'Io Un-2i

=

04,y_4 =2,y_3 =1,y_2 =5,y_1 = 6,y0 = 3. Then we have the following
results for g, =0 :

n Un n Yn
1 0,06451612 55 4,354798.10~7
13 0,00162228 67 1,114828.10~10
35 0,00006410 85 4,566337.10713
44  0,00000410 100 4,675929.10~1%
Example 2. Let ypq1 = —22=2—, n=0,1,,..,99 andl =2,k =2,y =

1,y6=02,y_5 =3,y-4 =3, y-3 =4, y—2=1,9y_) = 5,9 = 3. Then we
have the following results for Corollary 1:

n Yn n Un
1 1,07142857 60 2,08075356
15 2,63852683 76 0,06252139
33 0,55374906 88 0,52619345
44  0,33493443 100 1,78498919
Example 3. Let yp41 = 22—, n=0,1,,..,49 andl=1,k=1,v=
14+ J] yn-ai
i=0

5,Y-4=2,y-3=1,y_0 = 5,;1_1 = 6,y0 = 0. Then we have the following
results for Theorem 4 (i):

n Yn n Yn
1 25 31 2,441406.10°
14 124,172185 38 4,850475.107
19  3,90625.10% 45 0
24 0 50 3,0315474.1010
Example 4. Let yn41 = 22—, n=0,1,,.,Tandl=1k=1,7=

1+ ,I'[o Yn—-32i
1,Y-4 = 2,y-3 = 1,y-2 = 5,y—1 = 6,50 = 0. Then we have the following
results for Theorem 4 (ii):

n yn n yﬂ

1 5 5 0,193548387

2 0,193548387 6 0

3 0 7 5

4 5 8 0,193548387
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ON QUOTIENT CURVES OF THE SUZUKI CURVE

F. PASTICCI

ABSTRACT. Inspired by a recent paper by Giulietti, Korchmédros and
Torres [3], we provide equations for some quotient curves of the
Deligne-Lusztig curve associated to the Suzuki group Sz(q).

1. INTRODUCTION

The Deligne-Lusztig curve of Suzuki type (shortly DLS-curve) is the
(projective geometrically irreducible, non-singular) algebraic curve defined
to be the non-singular model over the finite field F, of the (absolutely
irreducible) plane curve C of equation X%°(X? + X) = Y9 4+ Y, where
go = 2°,8 > 1 and q = 2¢3. Several authors have studied the DLS-curve
also in connection with coding theory, see [1], [2], [6], [7], [8], [9]. Here
we only mention that the DLS-curve has genus g = go(g — 1) and that
the number of its Fy-rational points is ¢> + 1. Actually, the two latter
properties characterize the DLS-curve, see [2]. The automorphism group
of the DLS-curve is the Suzuki group Sz(q).

In [3] the quotient curves of the DLS-curve arising from the subgroups of
Sz(q) are thoroughly investigated. For tame covering, that is for subgroups
of odd order, the authors obtain an exhaustive list of such curves. A similar
complete list for non-tame coverings cannot be produced because the Suzuki
group contains a huge number of pairwise non-isomorphic subgroups of even
order.

Our contribution here is to provide such a complete list for the cases
g = 8 and ¢ = 32. For all curves in the list, a plane equation is given as
well.

A motivation for the present work comes from the current interest in
curves over finite fields with many rational points, see van der Geer’s survey
[4). Indeed, the number of F4-rational points of a curve of genus g which is
Fg-covered by the DLS-curve is N = 1 + ¢ + 2gog 3, Proposition 3.1} and
this value is in the interval from which the entries of the tables of curves
with many rational points are taken for g < 50, ¢ < 128 in [5]. It should be

This research was performed within the activity of GNSAGA of the Italian INDAM,

with the financial support of the Italian Ministry MIUR, project “Strutture geometriche,
~ combinatorica e loro applicazioni”, PRIN 2004-2005.
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noted that we provide here (see Theorem 3.9) plane equations for quotient
curves of the DLS-curve defined over F3; with genus g € {12,28,30}. By
[5] these curves attain the largest value of Fg-rational points for which an
F;-rational curve of genus g is previously known to exist.

2. PRELIMINARY RESULTS ON THE DLS-CURVE

Throughout the present chapter X will stand for the DLS-curve over
F,. As we have mentioned in the Introduction A’ has genus go(¢ — 1) and
contains exactly g2 + 1 F,-rational points. The proposition below will be
useful in the sequel.

Proposition 2.1. For any b€ Fy, b # 0, there are elements z,y € Fq(X)
such that
Fo(X) = Fo(z,y), z*°(z+z) = b(y" +y).

Proof. We have Fo(X) = Fy(z,t) with z%(z? +z) = t9+¢t. Let y =
b=1(z2e0+1 4 t200)  that is t7 = b%yd + z9+%. Then F (X) = Fy(z,y).
Furthermore, y% = b~%(z7%% + t9) = =% (g%*! 4 ¢), and hence y? =
b~1(z7+% 4 t29). Now, since y? + y = b~1(z9+% 4 290 4 z290+1 4 1290} =
b~1z2% (29 + ), the claim follows. 0O

Let Cp be the plane curve of equation X2%(X9+X) = b(Y9+Y). C; has
only one singular point, namely the infinite point Y, of the Y-axis which
point is a go-fold point. We know from (8] that Fg(X) has just one place
centered at Yoo.

For a,c,d € Fy with d # 0, we define the following automorphisms of

F (X):

) zmz+a, _ J = dz,
(21) "'ba.c = { Y- a2t +y+g Yd = { y d2q°+1y;
for h := zy + z2%+2 4 429,

- [ = u/h
(2.2) @ ._{ v o/,

The automorphism group of F,(X) generated by v, ., 74 and ¢ is the full
automorphism group of Fy(X), it is isomorphic to Sz(g) and it acts on
the set of places of X'(Fy) as Sz(g) in its unique 2-transitive permutation
representation (3, Proposition 3.5].
By Proposition 2.1 Fg(X) = Fy(z,y) with 229 (29 + z) = y? +y. The
extension Fy(X)|Fy(z) is Galois of degree g, and = has a unique pole in
Fo(X) that we denote by Poo. Such a place is totally ramified in Fq(X )s
while all the other rational places of F' q(2) split completely in Fo(X)|F, ().
The Galois group of Fq(X)|F,(z) is To := {to,c | ¢ € Fg}. Note that Ty
comprises the identity and the elements of order 2 of the Sylow 2-subgroup
T = {Ya,c | a,c € Fg} of Aut(F,(X)).
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The stabilizer of P in Aut(Fe(X)) is the group TN, where N :=
{74 | d € Fy,d # 0}, and the normalizer N Aut(,(x)) (N) is the dihedral
group generated by N together with . Moreover, Aut(F,(X)) contains
two conjugacy classes of subgroups of Singer type, one consisting of cyclic
subgroups D+ of order ¢+ 2go+ 1 and the other of cyclic subgroups D~ of
order g—2go+ 1. The normalizer N Aut(F,( X))(D*') has order 4(g+2gp+1)
and is the semidirect product of D+ by a cyclic group of order 4. All these
results hold true for D™,

In some cases, Aut(F,(X’)) contains subgroups isomorphic to the Suzuki
group over a subfield F; of F;. This occurs if and only if § = 225! with a
divisor 3 of s such that 23 + 1 divides 2s + 1.

Proposition 2.2. Any subgroup of Aut(F4(X)) is conjugate to either a
subgroup isomorphic to Sz(g), or to a subgroup of one of the following
groups: TN, Naut,xy) (N), NAutce,xyD*), Npute, an(D7).

For tame covering, that is for subgroups of odd order, an exhaustive
list of quotient curves of the DLS-curve of Suzuki type has been recently
obtained in [3].

Theorem 2.3. Let X be a tame quotient curve of the DLS-curve. Then
one of the following holds.
I) r is any divisor of ¢ — 1, X has genus g = 9:—1q0 and s a non-
singular model over F, of the plane curve of equation

5—1
Y-/ (1+Z X2‘(2qo+1)-(qo+1)(1+X)2‘) = (X%+1)(Y2e-D/ry xa-1)
i=0
II) r is any divisor of ¢+ 2qo + 1, & has genus g = mq—;—lu +1 and
is a non-singular model over F g of the plane curve of equation

8—1
y(a+2q0+1)/r (1 + Exz‘qo(l + X)2 (904D -0 4 Xq/2) =
i=0
X 9+200+1 | y2a+2g0+1)/r ,
III) r is any divisor of g — 2go + 1, X has genus g = -‘Mﬂ;rﬂ"'—l -1 and
is a non-singular model over Fy of the plane curve of equation

s—1
by (@=200+1)/r (1 +3 X2 Cao+D—(q0+1)(1 4 X)”i) =
=0
(X 9200+ 4 y2(9-20+1)/7)( X901 4 X200-1),
where b= A% 4+ \%0~1 4 \=% 4 \~%+! gnd A\ € F e is an element of order
q9—2g0 +1.
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A similar complete list for non-tame coverings cannot be produced be-
cause the Suzuki group contains a huge number of pairwise non-isomorphic
subgroups of even order. However, the existence of non-tame quotient
curves of the DLS-curve of genus g has been given in Theorem 2.4 (see
[3]). For some of these curves also a plane equation has been provided, see
Theorem 2.5 ([3]).

Theorem 2.4. Let v,u,r be positive integers. For the following values of
g the DLS-curve has a quotient curve X of genus g.
i) g=20"utv(2241-v _ 1) vy < 25+ 1, v <u < v+log, (v+1),
i) g =22°(22*+1-v — 1), v < 23 +1, r|(g — 1), r|(222+1~7 - 1),
i) g = REI=W g 1),

v) 9= rﬂ‘iﬂ'——@o—l)’ ,7lla + 220 + 1),
v) g=1 s.q(s-_lh (20 +1) , 7l(g — 2g0 + 1),
vi) g =14 1(0;1)—_ (qo—l) » 7l(g + 290 + 1),
vii) g =1 [2 i(ﬂ‘_lk"_ (o0 +1)|, rl(a — 200 +1),

2 2/ . -
vii) g = %(““‘ﬁﬁ%}lg"‘”*“, g =22+ 3s, (25 + 1)|(25 + 1),
= (@+1)[(200+2)@-1)+20@ -]+ P@+1)(@-2) +
3*(g + 2g0 + 1)(7 - 1)(7 — 20),
ix) g=24(2%"v-1),3<v<28+1, for g =512.

Theorem 2.5. i') For u = v, v|(28 + 1) a non-singular model over
F, of the plane curve of equation
(2s+1/v)-1 )
XX+ X)=b Y YCV
=0

is a quotient curve of the DLS-curve of genus g as in 1).
ii’) For u =2, v =1 a non-singular model over F of the plane curve

of equation
Zx2‘+2x2 (Zx?’) Z x?‘( Z xﬁ’) e ZW‘
=0 i=0 i=0

8 a quotient curve of the DLS-curve of genus g as in i).
iii") A non-singular model over F of the plane curve of equation

s—1
1+ ZX2‘(2qo+l)—(qo+1)(1 + X)'A" =
=0

Sy T =y x4 )
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where the summation is extended over all pairs (i,j) of non-
negative integers with ¢ + 2j = (g + 2q9 + 1) /7, is a quotient curve
of the DLS-curve of genus g as in ).

8—1 . .
2'go 2%(go+1)—q0 q/2 _ i G T =D yriss
1+§X (1+X) + X2 =3 "(-1) XY
is a quotient curve of the DLS-curve of genus g as in ).
v') Let b be as in III). A non-singular model over Fq of the plane
curve of equation

b(l + ixz‘@%“)-(qo“)(l + X)2‘) =
=0
_ _ s GHi=D
(X%~ 4 X0 1)2(—1)’“%)("}”
where the summation is extended over all pairs (i,j) of non—
negative integers with i + 25 = (g + 2go + 1)/r, is a quotient curve
of the DLS-curve of genus g as in v).

In the following sections we are going to investigate the quotient curves
of the DLS-curve arising from its automorphism groups of even order. In
particular, we provide an equation for the cases not covered by the above

theorems, for ¢ = 8 and ¢ = 32.

3. QUOTIENT CURVES ARISING FROM 2-SUBGROUPS

Throughout this section the following notation will be used:
e U is a subgroup of T;
e Us is the subgroup of U consisting of all elements of order 2 together
with the identity;
e &:T — F, is the map given by ®(¥a,c) = q;
e Ay is the quotient curve of X arising from U;
® gy is the genus of Ay.

Proposition 3.1. [3, Proposition 7.1] Let U have order 2¢. IfUy has order
2Y, then
u = 2a—u+v(22s+1—u _ 1)

The map & is a homomorphism from T onto the additive subgroup
of F,. The restriction of ® to U is the homomorphism ®p;; with kernel
Ker(®j) = {¢0,c|c € Fq} isomorphic to Up.

Lemma 3.2. If U = Uy, then the fized field of U is generated by z and
F(y), where F(T) =1y, e, (T + ©).
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Proof. 1t is straightforward to check that both z and F(y) are fixed by U.
On the other hand, Fy(z, F(y)) cannot be a proper subfield of the fixed
field of U. In fact, the degree of the extension F(z,y) | Fo(z, F(y)) is less
than or equal to #U, as degF' = #U. 0

Lemma 3.3. Let U have order 24Ua, and assume that .0 € U, a €
Fq\ {0}. Then the fized field of U is generated by z(x + a) and F(y) +
a~lzF(a*®z), where F(T) = [1y, .cts, (T + ).

Proof. The group U is generated by U and 1,9. As the set {c € F |
Yo,c € Uz} is a linear subspace of Fy | F2, the polynomial F(T) is such
that F(Ty + T2) = F(T1) + F(T2) ([11]). Also, 1/)3,0 = Yp,0200+1 € Ua
implies F'(a2®+1) = 0. Then it is straightforward to check that z(z+a) and
F(y)+a~'zF(a%®z) are fixed by Up and 14,0. On the other hand, F,(z(z+
a), F(y) + a~'zF(a%®z)) cannot be a proper subfield of the fixed field of
U. In fact, by the proof of Lemma 3.2 the degree of the extension F4(X) |
Fq(z, F(y)) is equal to #Us. As the degree of Fy(z, F(y)) | Fq(x(x +
a), F(y) + a~'2F(a%%®z)) is at most 2, the claim follows. O

Lemma 3.4. Let U have order 44fUz, and assume that {Ye,a,%44} C U,
a,3,d,d € Fg, ad # 0, a # d. Then the fized field of U is generated
by z(z + a)(z + d)(z + a + d) and ad(a + d)F(y) + G(z), where F(T) =
I[Tyo.c6,(T + ©), and
G(T)= (T +a)3F(a®®T +a) + (T + d)3F(d?%T + d)+
(T +a+d)3F((a + d)?®°T + d®®a + a + d).

Proof. The group U is generated by Uz, s,z and ¥, 4. As the set {c € F |
to,c € Us} is a linear subspace of Fy | F'2, the polynomial F(T') is such that
FM+T)=F(T)+ F(Tz). Also, ‘¢'§,a = ’l/)o,azqou, '/)Z,J = ¢o'd2¢o+l and

(’/’a.ﬁ"»bd,J)2 = 1)0,0200+1 4429 d+ad290 +a2%0+1 iMply F(a2%+1) = F(d2a0+!) =
F(a%%d + ad?®) = 0. Notice that ad(a + d)F(y) + G(z) can be written as

= ( Myocatn v+ c)) T+ a)a(nrl’o.ceu, (a®Pz+y+c+ 6.)) +
(e +d)? ( Myo..cte (P®z+y+c+ J))+

(z+a+ d)3(]'[¢oiceu2((a +d)*Pr +y+c+ d®Pa+d+ J)).

Then it is straightforward to check that £ := z(z + a)(z + d)(z +a+d) and
n = ad(a + d)F(y) + G(z) are fixed by Uz, e,z and 95 5. On the other
hand, F,(&,7) cannot be a proper subfield of the fixed field of U. In fact,
by the proof of Lemma 3.2 the degree of the extension F(X) | Fy(z, F(y))

434



is equal to #ly. By Fq(z, F(y)) = Fg(&, 7, 2) it follows that the degree of
Fo(z, F(y)) | Fq(€,7) is at most 4, whence the claim. 0

3.1. The case g = 8. Let w be a primitive element of Fg satisfying w® =
w+ 1. As a result of a computer search, a set of representatives of the
conjugacy classes of 2-subgroups of Sz(8) is the following:

o Vi:=<{to01}>;

o Vo :=< {910} >;

o V3 :=<{¥o,1,%0,0} >;

o V; :=To;

o Vs =< {¥1,0,%0,w} >;

o Vs :=< {t1,0,%0,02} >;

o Vr =< {t1,0,%0,we} >;

o Vs =< {¥1,0,%0,c | c € Fg} >;

o Vo :=< {t1,0,Yw,0, %0, | c € Fs} >;

[ ] v1o =T,
By Proposition 3.1, for U € {V4, Vs, Vo, Vio} the curve Ay is rational. For
U € {V1,Vs2} Theorems 7.8 and 7.9 in [3] provide an equation for a plane
model of Xy. Therefore only the equation of &y, for 7 € {3,5,6,7} has to
be computed.

Theorem 3.5. The curve Xy, has genus 2 and it is Fy-birationally iso-
morphic to the plane curve of equation

X2+ X5=Y2+ (w+1)Y.
Proof. The curve Xy, has genus 2 by Proposition 3.1. By Lemma 3.2 we
have to prove that z!2 + z® + F(y)? + (w + 1)F(y) = 0 in F¢(X), where

Fiy)=yly+1)(y+w)y+w+1) =y + (@ +w+1)y? + (w? + w)y. This
follows from 212 + 2% = 8 + ¢, W? +w+ 1 = w® and W? + w = wt. ]

Theorem 3.6. The curve Ay, has genus 1 and it is F4-birationally iso-
morphic to the plane curve of equation

X6+ X' +wX3+X2=Y2+ (w+1).

Proof. The curve Xy, has genus 1 by Proposition 3.1. By Lemma 3.3 we
have to prove that

(@® +2) + (22 + 2)* +w(z® +2)% + (2® + 2)% =
(F(y) + 2F(2))? + (w + 1)(F(y) + zF())
in Fg(X). By straightforward computation,
(22 +2)° + (2® + 2)! +w(a® + 2)° + (2P +2)2 =

22 + 210 4 (1 + w)z® + wr® + wrt + wad + 22
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and
(F(y) +2F(2))* + (w + 1)(F(y) + zF(2)) =
P +y+2%+ (1 +w)zb + (w+1)2° + wrt + w2 + 22
Then the claim follows from 32 + y = z!2 + z5. O

Theorem 3.7. The curve Xy, has genus 1 and it is F4-birationally iso-
morphic to the plane curve of equation

X6+ X'+ X3+ X2 =Y2 + LY.
Proof. The proof is similar to that of Theorem 3.6. O

Theorem 3.8. The curve Ay, has genus 1 and it is F4-birationally iso-
morphic to the plane curve of equation

X6+ Xt +wXt+ X2=Y?2 + 5.
Proof. The proof is similar to that of Theorem 3.6. O

3.2. The case ¢ = 32. Let w be a primitive element of F3s satisfying
w® = w? + 1. As a result of a computer search, a set of representatives of
the conjugacy classes of 2-subgroups of $2(32) is the following:

o Vi =< {tho1} >;

o V) =< {'(/)g,was,‘l/)o’wzs} >;

o V3 :=< {tp,us,Y0,w7} >;

o Vi :=< {¥o0,uw, Yo,u8} >;

o Vs =< {“l’o,wﬂ,?ﬁo,ww} >3

o Vo :=< {tho,w2s,Yo,ue} >;

o V7 =< {10} >;

o Vg =< {¢0,w“1¢0,w7,¢0,w1°} >,

® Vg =< {¢0,w351¢0,w79¢0,w‘°} >

e Vip :=< {028, Yo,u7 Yo,ws} >;

o Vi1 :=< {%0,u8, Yo,u7) Yo,ue} >;

L4 vl2 =< {¢0,w231¢0,w71¢0,w37} >3

® Vi3 =< {¢w,0a¢0,w”1 "/’O,w"} >;

® Vig :=< {%w,0,%0,1, Yo,wie} >;

® Vis :=< {¥w,0, V0,028, Yo,u0} >;

® Vig :=< {¥uw,0, Yo,01 Yo,u0} >;

® V17 :=< {%w,0, Yo,u7, Yo,u0} >;

® Vig :=< {¥uw,0, Yo,w15, Yo,u0} >;

® Vig :=< {%w,0,¥0,w2, Yo,u0} >;

o Voo :=< {%uw,0, Yo,uw1s, Yo,uo} >;

o Vo1 :=< {¥w,0, Yo,ut0, Yo,w27} >;

® V=< {w‘w.Oy ¢’0,w3‘s¢0,w9} >;

L4 v23 =< {71[)10,0, ¢0,w3)¢0,w9} >3

o Voq :=< {¥uw,0, Yo,u8, Yo,we} >;

436



® v25 =< {¢w,0s ¢0,w‘37¢0,w9} >3

 Vag :=< {%uw,0, %0093, Yo,u0} >;

L v27 =< {'/’w,o, "/’0,1”13,"1’0,109} >3

L4 v28 =< {1/10,103: ¢0,w7a¢0,w1°s'¢0‘w’3} >3
® Vo9 :=< {¢w,0’¢0,17¢0,w7’¢0,ww} >3

o Vag :=< {tw,0,%0,1, Yo,u28, Yo,wis } >;

o V3 =< {¢w,01 ¢0,w77¢0,w°)¢0,w“} >3
L4 v32 =< {¢w,09¢0,w7’¢0,w1°1¢0,w"’} >
® Vi3 :=< {u,0, Yo,w Yo,w10, Yo,w27} >;
® Vag :=< {%u,0, Y0,u°) Yo,wi¢, Yo,w18} >;
o V35 :=< {'¢’w,0’ ¢0,w9:¢0,w‘3,¢0,w3‘} >,
o Vig :=< {0, Y0,w¢) Yo,u8 Yo,u} >

® Va7 :=< {¢w,0:¢0,ws¢0,w"¢0,w"} >3

o Vi =< {¢w,0)¢0,w7a '/’0,1091"1)0,14:13} >;
o Vig :=< {0, ¥0,1, Y0,w) Yo,uwre} >;

® Vyo =< {1/’10,01 "pO.w’) ¢0.w32’¢0,w”} >3
o V4 =< {¢w,0)¢0,w9a '/’O,w”"l’o,w“} >3
o Vio :=< {tw,0, Yo,u7, Y0,u9 Yo,w2e} >;
o Vg3 :=< {¢w,03¢0,w91 1/’0,1034:1/)0,10”} >3
o V44 :=< {%w,0,%0,1, Yo,uw3, Yo,wie} >;

o Vis :=< {¥w,0,%0,1, Yo,u2¢, Yo,wie} >;

o Vg :=< {tw,0, Yo,uw?> Yo,u15, Yo,wre } >;
L v47 =< {"pw,()a¢0.w9’¢0,w“:¢0,w13} >
o Vig :=< {%w,0, Yo,wt> Yo,us, Youwie} >;
o Vi :=< {¢w,0’¢0,w4a¢0,w°a 'V')O,w”} >3
o Vs :=< {¢w,0a¢0.w9,¢0,w13:¢0,w”} >
o V51 :=< {$u,0, Yo,u9 Yo,u7, Yo,w8} >;
o Vs =< {¢‘w,03¢0,w41 ¢O,w°, 1L'O,w“} >3
* v53 =< {ww,Oa "/"0,1’1/)0,11:133¢0,w1°} >3
® Vss :=< {%u,0, Y0010, Yo,w20, Yo,u27} >;
o Vss :=< {¥u,0,¥0,1, Y0,u8 Yo,wio} >;

® Vs :=< {"pw,o:¢0,w1°,¢0,w13’w0,w’7} >,
e Vs7 =< {"/’w.O, ¢0,w9’¢0,w“’¢0,w”} >3
o Vg =< {1/)19,0,¢0,w1°’¢0,w“1¢0,w37} >3
e V59 :=< {"/Jw,O) %,w%'/’o,wu,%,w“} >
® Voo :=< {¥w,0, ¥0,w10, Yo,w27, Yo,w2s } >;
L4 v61 =< {¢w,0’¢0,w9’¢0,w‘5,¢0,w”} >3
o Vo2 :=< {¥w,0, Yo,wt» Yo,u8) Yo,uwe} >;
e Vg3 :=<_ {1llw,o, ¢0,w9,¢0,w“)¢0,w“} >3
[ v64 = To;

o Vo5 :=< {¥w,0, ¥0,1, Yo,w12, Yo,wie, Yo,wa¢ } >;
® Vgg :=< {'w‘w.Oa "/’0,107) Tﬁo,ww, ¢0,w33:¢0,w’7} >3
® Ver :=< {¥w,0, %0,1, Yo,w> Po,u8, Yo,wio} >;
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e Ves
o Veo
e Voo
o Vn
o Vr
o Vi3
o Vo
o Vs
o Vi
o V7
o Vg
e Vrg
o Vgo
e Vg
o Vs
® Vg3
o Vg4
o Vg
® Vs
o Vgr
o Vg
e Vg
* Vo
* Vo,
* Voo
e Vo3
* Vo,
e Vos
® Vg
o Voy
e Vos
o Vyo
* Vioo
e Vin
¢ Vio2
¢ Vios
* Vios
* Vios
® Vigs
* Vior
e Vios
* Vioo
* Vio

=< {'l/’w,O, 1/’0,1) "l’o,w""‘/’O,w“a ¢0,w‘°} >3

=< {d’w.o’ "Po,w‘, Tﬁo,we y 'd’o,w"’ "l’O,w"'s} >

=< {%w,0,¥0,1 Yo,u8s Yo,wi0, Yo,ume } >i

=< {¢w,0a ¢0.w4 3 ¢O,w° ’ "»1’0,1032 ) 1/’0,1033} >3

=< {¢w,01 ¢0.11 ¢0,w‘°a "1[)0,102‘1 1/)0,1025} >3

=< {Yw,0,%0,1, Yo,u7» Yo,wte, Po,ure} >;

=< {"/)w.(h ¢o,w1° ’ "pO,w” ) ’/’O,w”a ¢0,w”} >3

=< {¢w.0’ "1’0,1.010 ) ¢0,w” ) ¢0,w“ y 1/)0,102"} >3

=< {'ﬁbw.Oa 11’0,10‘» ¢0,w°1 ¢0,w"1 1/’0,10”} >

=< {¢w,0a ¢0,1) ¢0,w°,"1’0,w71 dJO,wW} >3

=< {¢w,0) ¢0,w4 y ¢0,w°7 "»bO,w"‘2 ’ ¢0,w’6} >3

=< {1Ibw,0) ¢0,w7 ’ 1I’O,w“’a 7!’0,117” ) '/)O,W’s} >

=< {"/"w,wl3 ’ "pw",w“’a ¢0,w9 ’ 1/’0,w‘5 ) 'd’o,w"} >;

=< {"/’w,-w’9 ) ’bw",wm ’ ¢0,w9’ ¢O,w‘5a 'ﬁbO,w“} >3

=< {"/’w,w29 ) lbw“,ws, d)o,w’ y 1/)0,10“, ¢0,w3°} >

=< {"/’w,wa) ww“,wa ’ ¢0,w91 ¢0,w“ ) 1/)0,10”} >3

=< {"pw,w“ y Yu2 , w23, ¢0,w"a ¢0,w9’ ¢0,w“} >3

=< {"ﬁw,w”,'ﬁbwl?.wl% d’ﬂ,ls "/’0,101 ¢o,w1°} >4

=< {¢w.wl°,¢w19,w13 ) 1bli),l: '(bO.w’ "/’O,wl“} >3

=< {“obw.w29 ’ ¢w37.w“ ’ ¢0,w1°’ 1»{JO,uJ’"a ¢0,w37} >3

=< {"/)w,w“ ’ ¢w27,w‘9 ’ ¢0,w‘° ’ 1/)0,1033’ ¢O,w37} >;

=< {ww,w””\bw”,wzy "rbﬂ,w"v ¢0,w9a 1/)0,10“} >,

=< {Pw,0,%0,c | ¢ € Fa2} >;

=< {"/’w,w”; ¢w“,w°t "lbO,w“’ ) ¢0,w” ’ 11)0,103", 1»["O,w”} >3
=< {d’w,w”) d’w",wm, ¢0.11 'Jfo,ww, d’O,'w“) d’o,w”} >,
=< {"/’w,w”a 1pw"’,wm ) 1/)0,10‘ 3 ¢0,w° ) ‘/JO,w” ’ 1/)0,1029} >3
=< {¢w,w39’ ¢w17,w1° ) 1/’0,141", ¢0,w1° ’ ¢0,w’7a wO,w”} >3
=< {¢w.w” s Pr2e w8 wo,w‘a 7/)0,1051 ¢0.w"s wo,w“} >;
=< {"-L'w,w29 y 1|bw19,w1*‘l ) 7/)0.1 ) "/)O,w" [} ¢0,w‘“a %,w?a} >3
=< {"pw,w” ’ d)w‘“,w“’ ) ¢0,1’ ’¢o,w13 ) 'ﬂbo,w“ ’ ¢0,w24 } >,
=< {"/’w,w“ ) ¢w19,w13 ’ "/’0,1 ’ 7/’0,10) ¢0,w°) 1[’0,10"’} >3
=< {¢w,w”a ¢w27,w19 y 1/)0,1 ) ¢0,w5 ) '/’O,W“’ ) 1/'O,w“} >3

=< {¢w.w” ’ "/’w"’,w“’ ’ "/)O.W", ¢0,w‘°a %.w“ y ¢0,w37} >3
=< {"lbw,w”) 1pw’",w19 ’ ¢0,w1° y 1/’0,1.022 ) '»bO,w“’ ¢0,w3"} >3
=< {"tbw,w29 ) d’w”,uﬁ ’ ¢0,w" ) ¢0,w1°1 1/)O,w""’ ’ ¢0,w23} >3
=< {1/)w,w7° ’ "\bw”,wﬁ s "/’0.1 3 "‘bO,w" ) ¢0,w13 ’ ¢0.w1°} >
=< {"r/)w,w29 ) 1/’11:”,102 ) 1/’0,10‘ ) ¢0,w° ’ "I"O,w" y "l}O,‘w'm } >
=< {'d"w.w”s ¢w",w3 ) 1/’0,1 ’ '(bo,w“a ¢0,w" 3 ¢0,w35} >3
=< {d)w,w”s'ww“,wsa"bo,c | c€E F32} >3

=< {d}w,w”s"/}w”,w”"/m,c | cE F32} >3

=< {¢w,w”s¢w”,w199¢0.c I ce F32} >

=< {Yu,w9, Yuw1o,w13, Yo, | ¢ € Faa} >;

=< {ww,w”a"/’w",wm)@bo,c I ce F32} >;
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e Vi
* Vi
* Vi
e Viy
e Viis
* Vs
[ V117 =T.

=< {1l)w,wzn,'l,bwza'wa,’l/)wn’ww,1/)0,,: |ce F32} >,
=< {ww,w“y'bw",ws,"nbwm,w’:¢0,c ' ceE F32} >
=< {'ww,w”:"obw“,ws,"\bw"’.w“, ¢0,c I ce F32} >3
=< {¢w,w”: "l’w“,wsv "/)wa,w":d)o,c I ce F32} >3
=< {'ww,w“,d’w"",w“y’pw",wmawo,c | ceE F32} >,
:=<_ {¢w,w’91 wwz‘,waa"pwn,wm”'/)w”,w“’) ¢0.c | cE F32} >3

By Proposition 3.1, the genus gy, of the curve &y, is equal to

7

gVi'=<

\

Notice that for Y = V;, i = 64,90 and 106 < 7 < 117 the curve Ay is
rational. For Y € {V;,V7} Theorems 7.8 and 7.9 in [3] provide an equation
for a plane model of Ay. An equation for a plane model of Ay for the

60
28
30
12
14

O WK O

fori=1,

for 2<i <86,
fori =717,

for 8 <i<12,
for 13 <1< 27,
for i = 28,

for 29 < < 63,
for 66 <1< 79,
for 80 <i< 89,
for 91 <z < 105,
otherwise.

remaining cases is given in the following theorem.

Theorem 3.9. The curve Xy, is Fg-birationally isomorphic to the plane

curve of equation

o XV 4+ X94Y8+wl"Y4+wY2 4+ w!’Y =0, fori=2;
o X404+ X9 4+Y8 4 wBY4+wBY24+0w¥Y =0, fori=3;
o X404 X%+ V8 4 uwSY4 4+ wBY2+wl2Y =0, fori=4;
e X0 4 X9+ V84 Y4 +uwfY24+wBY =0, fori=5;

o X404 X9 4+Y8 4+ w?Y4 4+ w??Y? 4+ w!Y =0, fori=6;
o XV 4 X94+Y44+uwbY?2+wY =0, fori=8;

o X+ X9+ Y4+ w®Y2 4+ w8Y =0, fori=9;

o X4 X9+ Y4+ w%Y24w?Y =0, fori=10;

o X0 4 X4+ Y44+ w?Y24+w?Y =0, fori=11;

o X0 L X914 Y44+w?Y24+wdY =0, fori=12;

o X124 wO9X8 4+ wMXS +ut XS+l Xt +wX3 +wl® X2 +u5Y8 4+

wiY? 4+ w?Y? 4 w?Y =0, fori=13;

PS X12+w15X8+,w4Xs+,w21X5+w23X4+w30X3+w27X2+w22Y8+

wiY4 + w30Y2 + w?BY =0, fori= 14;

° X12+w27X8+w8X6+w2X5+w4X4+w24X3+w8X2+w3Y8+

wY? + w??Y?2 + wBY =0, for i = 15;
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o X124 X8 4128 X6 4 1527 X5 4+ 029 X4 408 X3 + 02 X2 +w2BYE 4
wiY? + w?Y2 4+ w?8Y =0, for i = 16;

° X12+w19Xs +w16x6+w25X5+w27x4 +w15X3+X2+w26Y8+
wiY4 + Y2 4+ w?®Y =0, fori=17;

o X124 130X8 1 9y20 X6 405 X5 407 X4+ w12 X3 4wl X2 4 0SY8 4
wiY4 + wiY2 + wBY =0, for i = 18;

o X124+ w!"X8+ X6+ uwBX5+uwd X4+ uwB X3+ wP® X2 +wMY® +
wiY? +w?Y24+Y =0, fori=19;

o X124+ w8 X84 u® X6+ X5+ X4 w12 X3 400 X2 425y 4
wiY? + wBY? 4 w??Y =0, for i = 20;

o X2 4 183X8 + X6 + wl®X5 + w X4 + w8X3 + wBX2 +
w?Y8 4+ wiY4 + wiY2 + w¥Y =0, fori=21;

o X124+ uw3X8+ w3 X640 X5 +wll X4+ w2 X3+ w!5 X2+ wl0y8 4+
w4 + w3Y?2 4+ wbY =0, fori=22;

o X124 02 X8 4 wl0X6 4 8 X5 ol X4 421 X3 4 opld X2 4 0Y8 4
wiY? + w8Y2 + w?PY =0, for i = 23;

o X124 05 X8+l X6 4y 1 X5 4+ B3 X4 4wt X3+ w7 X2 +wi2Y8 4
wiY4 + w®Y?2 4 w2Y =0, for i = 24;

o X124+ wBX5 +uwbX0+w3X® +uPX ! +ufX3 +w X2 +uwiYE +
wY4 + wiY? + w?BY =0, for i = 25;

o X2 4+w2X8+u? X0+ uwB XP 4w X+ X3+ wd X2 +uw?Y e+
wiY? 4+ w¥Y?2 + wbY =0, for i = 26;

o X124+ w8 X8 4 wl¥X6 +wX® +wd X4+ wX3+w' X2 +w?Y8 +
wiY* + wY2 + w'?Y =0, for i = 27;

o X0+ X%4+Y?24+uw®Y =0, fori=28;

o X204 p10X124p10X 104024 X8 + B X6 +wXP+wX 4 +w X3+
w3X?2 + Y4+ w02 + wiY =0, for i =29;

o X0 4pl6X12 4 1510 | 024 Y8 L 0 18 X6 | Y5 ¥4 L 24 %3 1
w3X2 + Y4 + w¥Y2 + w'7Y =0, for i = 30;

o X0 4qpl6X12 15 X104 024 %8 17 X6 Lo 2T X5 Loy L0 8%,
wX2 4+ Y4+ w2 + wBY =0, fori=31;

o X0 4 pI6X12 4 11410 4 24 %8 o 2356 o 0 I5%5 4 4 xd
woX3 4+ wSX2 + Y4 +wY2 + wBY =0, fori=32;

o X204 qp16X12 4 X104 24 %8 L 0 15 X6 4 )18 %5 | x4 28%3
wX2+Y44+Y24 w0 =0, fori=33;

o X0 40X 12 48 X104 2 X8 L w18 X6 + X5 +wX %+ wl"X3+
wX2+ Y4+ uwlY2 4+ w!"Y =0, for i = 34;

o X204 wl6X12 4 27 X10 L 124 X8 4 48X6 4 1y X5 4 X4+ X3 4
wX2+ Y4+ w?Y? 4+ wtY =0, fori = 35;

° X20+w16xl2+w28x10+w24xs+wxs+w16x5+wx4+w13X3+
w3X2 + Y4 4+ wBY? + w?Y =0, for i = 36;

° X20+w16X12+,w11Xw+,w24Xs+w10x6+w7x5+wx4+wlsx3+
wiX2 4+ Y4+ wllY? + w9 =0, for i = 37;



o X204 p16.X12 107 X101 124 X8 L0 24 X6 4 01T X5 404y 019 %3
wiX2+Y44+w'Y24+Y =0, fori=38;

o X204 opl6X12 430 X104 24 X8+ 112 X0+ X5 +wX 4 +uwPX3+
wPX2 4+ Y4 +wY2 4+ w3Y =0, fori=39;

° X20+w16x12+w5X10+w24x8+w15X6+w18X5+wx4+w28x3+
w3X2+ Y4+ wbY? + w0 =0, for i = 40;

o X0 116 X124 4p24 X104 0p24 X840 X6 4B X5 X4 +wB X3+
w3X2 4+ Y4+ wY?2 4 wl¥Y =0, fori=41;

° X2°+w16X12+'w"X1°+w2“X8+w1°X6+w7X5+wX“+w22X3+
WX+ Y4+ wlY? 4wl =0, for i = 42;

¢ XV +wl®X124ulX 0+ X8+ wl®XC+uwi XS +wX +uw? X3+
wPX2 4+ Y4+ uw3Y2 4+ 0% =0, fori=43;

° X20 +w16xl2+w28x10+w24xs+wﬁxs +w24X5+wX“+X3+
w3X2 +Y* +wBY? + w?Y =0, fori=44;

o X20 4 16X12 1 ,22X10 L 24 X8 4 29X 4 11X5 L X4 4
w X3 4+ w3 X2 4+ Y4 4+ w2Y? + w?2Y =0, for i = 45;

o X204 p16X12 405 X104 124 X8 405 X6 4 2 X5 4w X4+ w23 X3+
wSX2 4+ Y4+ wSY?2 4+ w?BY =0, for i = 46;

o X0 4wl8X 124910 X 104024 X8+ X0+ X5+ w X +uw3 X3+
w3X2 4+ Y4+ w02 + w®Y =0, for i =47;

0 X204 16X 12 1o 4 X104 024 XB L 022 X6 4 029 X5 4 x4 415 X3 ¢
wSX2 + Y4 +wiY2 + wiY =0, for i =48;

o X204 w8X12 4 X104+ 924 X8 + w9X 6+ wd X5+ wX i+ X3+
wPX24+ Y4+ Y2+ wY =0, fori=49;

o X201 op16 X124 12 %10 4 24 X8 L 025 X6 0 14 X5 4 X4y 0%3
w3X2 4+ Y4+ w?Y2 4+ wBY =0, for i = 50;

° X20+,wlsxl2+w21xl0+,w24xs+w13x6+wsxs+wx4+wlzxa+
w3X2 + Y4 +w?Y? + w?Y =0, fori=51;

o X204 16X 12,1029 X104 024 X8 126 X6 1 0 8 X5 4oy xd 11 X3,
w3X2 4+ Y4+ w?®Y?2 4+ w% =0, fori=>52;

o X204 4916 X124 416 X101 p24 X841 X6 422 X5 4w X4+ 08 X34
wX2+ Y4 + w2 + wlY =0, for i = 53;

° X20+w16x12+w2xl0+w24x8+w7x6+w13X5+,wx4+w21Xs+
w3 X2+ Y4+ w?Y? + w'?Y =0, fori=54;

0 X204 yp16X12 4 021 Y10 L 024 X8 02 X6 Lo 6x5 L ¥d 1223 1
w3 X2 4+ Y4+ wY?2 4+ w?Y =0, for i = 55;

o X20 4 16X12 | 19X10 4 24 X8 4 166 | 28 Y5 L o x4 |
w7 X3+ wbX2 4+ Y4 + w®Y2 + w?Y =0, for i = 56;

o XP04wlbX 12402 X 104w X8+ X+ w3 XS+ wX 4+ w0X3+
w3 X2 4+ Y4+ w?2Y? + w'2Y =0, for i = 57;

° X2°+w16X12+w9X1°+w24X8+w27X6+w19X5+wX4+w7X3+
wX2+ Y44+ wY2 4+ w'Y =0, fori=58;
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o XML wl6X12 4ot X104 y? X84 w2 X6 +uf XS+ wX 4 +uwl2X3+
wBX2 + Y4+ w''Y2 4+ w?lY =0, for i = 59;

° X20+w16xl2+w18Xm+w24Xs+w4Xs+w26Xs+wx4+w20x3+
wPX2+ Y44+ wBY2 + %Y =0, for i = 60;

o X204 qpl6X12 4 25 X104 1248 20 X6 Ly d x50 xd 43y
wPX2 4+ Y44+ wBY2 +wY =0, fori=61;

o X20 4 I6X12 4 0,24 X10 4 24%8 | )17 X6 4 2T X5 o o x4 4
w7X3 4+ w3 X2+ Y4 + wY?2 +wBY =0, fori=62;

o X204 y16X12 4 2 X104 24 8 023 X6 4015 X5 o)X 029 X3
w3 X2+ Y4+ w?Y2+uwlY =0, fori=63;

o X20 4 A X18 4 16 X12 1 12010 4 260 4 248 | 0 15X5 |
wX4+wX3 4+ uwSX24+ Y2+ wY =0, for i =65;

o X% 4+ uiX18 4 16 X12 4 20X10 4 2 XO 4 X8 + X5 +
wX*+wX3 + X2+ Y2 4+ w?Y =0, for i = 66;

o X20 4 pAX18 4 1612 4 1, 20%10 4 1 3x9 | 24 %8 | 0 10 Y5 |
wX4 +wX3 + X2+ Y2+ wY =0, fori=67;

o X20 4t X18 4 1612 4 120 X10 4 25 %9 | 024 %8 | 4 x5 o
wX*+ wBX + wSX2+ Y24 wBY =0, fori=68;

Py X20 + w4xl8 + w16xl2 + w20X10 + w20x9 + w24x8 + w23x5 +
wX+w' X3+ wb X2+ Y24+ wBY =0, for i =69;

° X20 + w4X18 + wlﬁXl? + w20X10 + wSXQ + w24X8 + w17X5 +
wX*+ X3+ wPX2 4+ Y2+ 48Y =0, fori=170;

o X20 4 8 X18 4 1612 4 2,20 X010 L 2859 L 024 y8 L 40 x5 o
wX® + wBX3 +wSX2+ Y2+ wY =0, fori="T71;

° X20 + ,w4xl8 + wlsxm + w20x10 + wleQ + w24x8 + leXs +
wX2 +wl X3 +uwSX2 4+ Y24+ w8Y =0, fori=72;

. X20 + w4x18 + wlexm + w20x10 + wit X + w24x8 + wzxs +
wX* +w¥ X3 + wS X2+ Y2+ w?Y =0, fori="173;

e X20 + w4x18 + w6 X12 + w20x10 + w15X9 + w24x8 + wB XS +
wXt 4+ w" X3 +wSX24+ Y2+ w¥Y =0, fori=T74;

o X204t X184 op10 X124 20X 10 4430 X0 4424 X8 4+ X5 4 wX* +
wi8X3 +wdX2 + Y2+ w?Y =0, fori=T175;

o X 4wt X184l X12 4 w0 X104 07 X9 4w XE 4 wXS+wX 4+
w2 X3+ wi X2+ Y2 +wdY =0, fori="76;

° X2°+w4X18+w16X12+w2°X1°+w6X9+w24X8+w5X5+wX4+
w X3+ uwSX2 4+ Y2+ wtY =0, fori=T77;

° X20 + w4x18 + leXm + w20x10 + w2lx9 + w24X8 + wllxs +
wX* + wP X3+ wS X2+ Y2+ w =0, fori="78;

o X20 4 8 X18 4 1612 4 1,20 X10 L 24 %9 | 248 o T X5 |
wX4+wI0X3 + w3 X2+ Y2 4+ wRY =0, fori="79;

o X8 +wlBX44+uwi X34+ w8 X2+ w X + w4+ wY 2+ wsY +uw?! =
0, for i = 80;
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o X84+wB X 44w X3+wR2 X2+ w' X +w¥Y 4wy 2+wdY +w?0 =0,
fori=81;

o X8 4u X4 X5 4+w X2 4wl X 4wl Y+ ulY 24 wlsY il =
0, for i = 82;

o X8+ wX4 4w X3+ uwBX2 4wy 4 w?V2 4wl +wll =0,
for i =83;

° X8+wlsx4 +w2x3+w2sx2 +,w13X+w10Y4 +w3°Y2+w27Y+
w? =0, fori=84;

° Xs+w1°X4+w19X3+w8X2+w25X+w15Y4+w27Y2+w22Y+
w!® =0, fori=85;

o X8+wl0X4+w¥X3+w' X2+ w8 X + wl®Y 1+ w?Y2 + w22y +
wll =0, for i = 86;

o X8+ wl7X4 w1 X3 + O X2 + w2l X + w2V + w18y 2 + By +
w!® =0, fori=_8T7;

o XP4wlX4 4wl X3 +w® X2+ 05X +wBY4 + w82 +uwBY +
w!? =0, for i = 88;

o X8+wBX44uw2X3+wBX2+wX + w0V w3y 42Ty =0,
for i =89;

o X104 wl7X8 403 X6+ w13 X5 + w2 X4+ w0 X3+ wS X2 +w X +
w!’Y? +wbY =0, fori=91;

o X0 4+uwO0X8 1w X0+ w8 X5+ w X +wBX3+uwB X2+ uwBX +
w8Y? + w'®Y + wb =0, for i =92;

o X104 %0X8 40 X6 4w X5 +w X4 +wOX3 + X2+ X +
w8Y?2 + w?®Y 4+ w? =0, for i =93;

o X104 430 X8 4 0y29 X6 1 0022 X5 L 07 X4 4wt X3 4 w6 X2 +wSX +
w8Y?2 4+ wBY +w? =0, fori=94;

o XW04wX84+uwdX8+wB X5 +uwP X402 X3 +u" X2+ uw?X +
w!7Y? + WY 4w =0, for i = 95;

o X0 4wnX8 4w X0 +uw2XS+uP X+ X3 +wl X2+ wX +
wi®Y? + w?lY =0, for i = 96;

o X104 20 X8 {11 X6 4 024 X5 L 21 X4 4 11 X3 4 X2 43X +
w¥Y?2 + w3Y + w? =0, fori=97;

o X104 02l X8 1 opll X6 4 X5 + w2l X4+ wB X3+ wd X2+ w6 X +
w8Y?2 + wl%Y + € =0, for i = 98; _

° X1°+w25X8+w19X6+w6X5+w22X4+w2X3+w2X2+w22X+
wi%Y? 4+ wllY + w2 =0, for i = 99;

° X10+w25X8+,w19Xs+w21x5+w22x4+ngs+w25Xz+w11X+
w02 4+ w?6Y + wd =0, for i = 100;

o X104 25 X8 4 019 X6 4 28 X5 L 12254 L 04 Y3 40 30%2 4 29K L
w72 + w?Y + wl® =0, for i = 101;

o X104l X8 1122 X6 1 0y22 X5 4 0y20 X4 4 0y21 X3 418 X2 40 X 4
w?Y?2 + wiY + w? =0, for i =102;
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o X104l X8 4 u2X6 4 wBX5+uwP0X 4w X3+uwd X2+ w0 X +
w?Y? + w¥Y +w® =0, for i = 103;

o X0 4w X84+w2X0+uwSX5+uw0 X+ wl X3+ wB X2+ X +
w?Y? + w'8Y + w!! =0, for i = 104;

o X0+ uwl"X8 +ulX0+wS X5+ X+ X3+l X2+ X +
wY?2 + wY + w? =0, for i = 105.

Proof. The proof is a straightforward computation based on Lemmas 3.2,
3.3, and 3.4. O

4. QUOTIENT CURVES ARISING FROM SUBGROUPS OF EVEN ORDER OF
TN
Thanks to a computer research, for both ¢ = 8 and ¢ = 32 there are
only two conjugacy classes of subgroups of even order of TN which are not
2-subgroups, and they have order g(g — 1) and ¢?(g — 1). By [3, Theorem
8.1] the quotient curves of the DLS-curve associated to those subgroups are
rational.

5. QUOTIENT CURVES ARISING FROM SUBG_ROUPS OF EVEN ORDER OF
Nautee,xnN

Theorem 9.2 in (3] gives an equation for the quotient curve of the DLS-
curve associated to subgroups of even order of N Aut(F,( x))N .

6. QUOTIENT CURVES ARISING FROM SUBGROUPS OF EVEN ORDER OF
_ )+
NAut(F.,(A’))D

Any subgroup of Npyge X))f)*' has order 2ir, for some i =0, 1,2 and
for a certain divisor r of g+2go+1. Theorem 10.1 in (3] gives an equation of
the quotient curve associated to a subgroup of N Aut(F( :r))D+ for the case
i = 1. For both ¢ = 8 and g = 32 the integer ¢+ 2qo+ 1 is a prime number,
therefore by [3, Proposition 11.1] the case i = 2 gives rise to rational curves.

7. QUOTIENT CURVES ARISING FROM SUB_GROUPS OF EVEN ORDER OF
Nputee, (2P~

Any subgroup of N Aut(E( x))f)_ has order 2¢r, for some i = 0,1, 2 and
for some divisor r of ¢ — 2o + 1. Theorem 10.2 in (3] gives an equation of
the quotient curve associated to a subgroup of N Aut(F,( x))f)"' for the case
i = 1. For ¢ = 8 the integer ¢ — 2o + 1 is a prime number, therefore by (3,
Proposition 11.1] the case i = 2 gives rise to rational curves. For ¢ = 32 we
have ¢ — 2gp + 1 = 25. Therefore for ¢ = 2 we have the cases r = 25 giving
rise to a rational curve, and » = 5 giving rise to a curve of genus 5.



8. CLASSIFICATION OF ELLIPTIC AND HYPERELLIPTIC CURVES OF GENUS
2 COVERED BY THE DLS-CURVE OF SUZUKI TYPE FOR ¢ = 32

In this section we will provide canonical equations for both elliptic and
hyperelliptic curves of genus 2 which are quotient curves of the Suzuki curve
defined over the finite field with 32 elements.

A computer based investigation, together with Theorem 8.1 below, has
proved that the hyperelliptic curves of genus 2 are pairwise non-isomorphic.

Theorem 8.1. [10] Assume K to be of even characteristic. LetT' and A
be two hyperelliptic curves of genus g given in their canonical form, that is

T =v(Y2+h(X)Y +g(X)), degg(X)=2g+1, degh(X)<g;
A=v(Y?+h(X)Y +g1(X)), deggi(X)=2g+1, deghi(X)<g.
ThenT and A are birationally equivalent if and only if each of the following

two conditions are satisfied.

i) n = m, and there is rational function w(X) = (aX + b)/(cX + d)
with ad — bc # 0 which maps the set {oyp,...,0an, 00} onto the set

{ﬁo: e ):3711 ('X.)}.
ii) There is o rational function v(X) € K(X) such that
2 _9X) g1(w(X))
v(X)* +uv(X) = h(X)2 + ha(w(X))E
8.1. Canonical equations for elliptic curves &,,, ¢ =91,...,105.

e wIX3I 4+ ubX +Y2+Y +w¥0 =0, for i = 91;
wX3+wllX +Y24Y + w8 =0, for i = 92;
w3 X3+ w8 X +Y24+Y +w!? =0, for i = 93;
wA X3+ w®X +Y24+Y +w? =0, for i = 94;
wX3 4+ wdOX +Y24Y +w?® =0, for i = 95;
wB X3+ wX +Y2+Y +w? =0, for i = 96;
wB X34+ w®*X +Y24Y +1=0, fori =97;
wX3+uwSX+Y24Y +w® =0, fori =98;
wHX3 4+ w3 X +Y24+Y +uw® =0, for i = 99;
wBX3 4+ w¥X +Y2+Y +w? =0, for i = 100;
w X3+ wMX +Y?24+Y +w? =0, for i = 101;
X34+ wBX +Y24+Y +1=0, fori =102;
w®X3 4+ uwbX +Y24+Y 4wl =0, for i = 103;
WX+ wX +Y24+Y +w!l =0, for i = 104;
wBX3 4+ wX +Y?2+Y +w'? =0, for i = 105.

8.2. Canonical equations for hyperelliptic curves &,,,, i = 65,...,79.

o wi0X5 4+ wllX4 +uwBX3 4+ wSX2+Y2 4 wY =0, for i = 65;
o wi0X5 4 w19X4 4+ w12 X3 4 wSX24Y2 4+ w2lY =0, for i = 66;
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w0 X8 + X+ wPX3 +wSX2+ Y24+ wY =0, for i =67,
w30X5 4+ w0 X4+ wB X3+ wSX2 4+ Y2 4+ wBY =0, for i = 68;
w30X5 4+ wX4 4+ w2 X3+ wSX2 4+ Y24+ w'8Y =0, for i = 69;
w0X® + X4 + w4 X3 4+ w5 X2 4+ Y2 4+ w8Y =0, for i = 70;
w30X% +wB X + w8 X3 4 wbX2 + Y2+ w?Y =0, for i = 71;
w30X5 + w' X4+ w®X3 4+ wSX2 4+ Y24+ wl8Y =0, for i = 72;
w30 X5 + wB X4 + " X3+ wSX2 4+ Y2+ w'?Y =0, for i = 73;
w30X5 4 wib X4 + w2 X3 + w5X24+ Y24+ w3 =0, for i = 74;
w0X5 + X4 4+ w3 X3 +wbX2+ Y2+ w?BY =0, for i = 75;
w0X® 4+ wl0X4 4+ wB X3 + X2+ Y2+ w¥Y =0, for i = 76;
wOX® 4+ B X+ X3+ wS X2+ Y2 +utY =0, fori = T7;
w3O0X5 + w8 X4 + wBX3 + wSX2 4+ Y2+ w0 =0, for i = 78;
w30X® 4+ wl X4 + P X3 4+ wB X2+ Y2 4 w?2Y =0, for i = 79.
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