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Abstract A new construction of authentication codes with arbitration from
pseudo-symplectic geometry over finite fields is given. The parameters and the
probabilities of deceptions of the codes are also computed.

§1 Introduction

To solve the distrust problem of the transmitter and the receiver in
the communications system, Simmons introduced a model of authentica-
tion codes with arbitration (see [1]), we write symply (A2-code) defined as
follows:

Let S, Ep,Egr and M be four non-empty finite sets, f : SxEr — M and
g: M x Eg — SU{reject} be two maps. The six-tuple (S, Er, Er, M, £, g)
is called an authentication code with arbitration (A2-code), if

(1) The maps f and g are surjective;

(2) For any m € M and er € Er, if there is an s € S, satisfying
f(s,er) = m, then such an s is uniquely determined by the given m and
er;

(3) p(er,er) # 0 and f(s,er) = m implies g(m,er) = s, otherwise,
g(m, eg) = {reject}.
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S, Er,Er and M are called the set of source states, the set of trans-
mitter’s encoding rules, the set of receiver’s decoding rules and the set of
messages, respectively; f and g are called the encoding map and decoding
map respectively. The cardinals |S|, |Er|,|Er| and | M| are called the size
parameters of the code.

In an authentication system that permits arbitration, this model in-
cludes four attendances: the transmitter, the receiver, the opponent and
the arbiter, and includes five attacks:

1) The opponent’s impersonation attack: the largest probability of an
opponent’s successful impersonation attack is Py . Then

Py = max |er € Erler Cm |
meM | ER |
2) The opponent’s substitution attack: the largest probability of an
opponent’s successful substitution attack is Ps. Then
ma.xM|eR€ER|eRCmandeRCm']

Ps = max mm’e
5T meM | er € Egler C m |

3) The transmitter’s impersonation attack: the largest probability of a
transmitter’s successful impersonation attack is Pr . Then

max | {er € Erlep C m and p(er,er) # 0} |
PT = max meM,ergm
er€Br | {er € Erlp(er,er) # 0} |

4) The receiver’s impersonation attack: the largest probability of a
receiver’s successful impersonation attack is Pgr, . Then

max | {er € Erler C m and p(er,er) # 0} |
Pr, = max { 2€¥
er€ER | {eT € ETlp(eR, eT) # 0} l

5) The receiver’s substitution attack: the largest probability of a re-
ceiver’s successful substitution attack is Pg, .Then

max | {er € Erler C m,m’ and p(er,er) # 0} |
meM

Pgp, = max
B1 T eneEnmeM | {er € Er|er C mandp(er,er) # 0} |

Notes: p(egr,er) # 0 implies that any information s encoded by er can
be authenticated by ep.

In this paper, the P denotes the transpose of a matrix P. Some con-
cepts and notations refer to [2].

§2 Pseudo-Symplectic Geometry
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Let F, be the finite field with ¢ élements, where ¢ is a power of 2,
n=2v+4§ and 6=1,2. Let

0 I® K K
(%) a= (%) me (T

and S; is an (2v + §) x (2v + §) non-alternate symmetric matrix.
The pseudo-symplectic group of degree (2v+ §) over F, is defined to be
the set of matrices Psy,4.5(Fy) = {T|TSs *T = S5} denoted by Psg,5(Fy).

Let F.§2"+6) be the (2v + ) -dimensional row vector space over Fy.
Psg,+5(F,) has an action on F{*9) defined as follows
F{2+9) x Psg,15(Fg) — F2v+9)
((z1,22,. .., %2w4s), T) = (21,72, ..., T2046)T.
The vector space Fq(zu""s) together with this group action is called the
pseudo-symplectic space over the finite field F, of characteristic 2.

Let P be an m-dimensional subspace of Féz""'&), then PSj P is cogre-
dient to one of the following three normal forms

0 I
M(m,2s,s)=| I 0
O(m—Zs)

0o I
(s)
M(m,2s+1,s)= I 0 1
0(m—2s—1)
o I®
IG) 0
M(m,25+2,8)= 01
11
O(m—2s—2)

for some s such that 0 < s < [m/2]. We say that P is a subspace of type
(m,2s + 7, 8,€), where 7 =0,1 or 2 and € =0 or 1, if
(i) PSs tP is cogredient to M(m,2s + 7,s), and
(ii) e2y41 ¢ P or eg,4+1 € P according to € = 0 or € = 1, respectively.
Let P be an m-dimensional subspace of Fq(z"""s). Denote by P+ the set
of vectors which are orthogonal to every vector of P, i.e.,
Pt ={y e F®*)|yS; *z =0 for allz € P}.

Obviously, P* is a (2v + § — m)-dimensional subspace of Fy2*+%) .

More properties of geometry of pseudo-symplectic groups over finite
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fields of characteristic 2 can be found in [2)].

In [3-5] several constructions of authentication codes with arbitration
from the geometry of classical groups over finite fields were given and stud-
ied. In this paper a construction of authentication codes with arbitration
from pseudo-symplectic geometry over finite fields is given. The parameters
and the probabilities of deceptions of the codes are also computed.

83 Construction

Assume that n = (2v +§),s—1 < 50 € v, 28 < my,280 < mg.
Let {vo,e2,+1) be a fixed subspace of type (2,0,0,1) in the (2v + 2)-
dimensional pseudo-symplectic space F.,(2"+2); Py is a fixed subspace of
type (mo, 250, 80,1) in Fq(2"+2) and (vp,e2,41) C Py C (vo,eg,,_,.l)"'. The
set of source states S = {s|s is a subspace of type (2s,2(s—1),s—1,1) and
(vo,e2v+1) C 8 C Po}; the set of transmitter’s encoding rules Er={er|er
is a subspace of type (4,4,1,1) and er N Py = (v, e2,+1)}; the set of re-
ceiver’s decoding rules Ep={eg|er is a subspace of type (2,2,0,1) in the
(2v+2)-dimensional pseudo-symplectic space F,,(2”+2)}; the set of messages
M = {m|m is a subspace of type (2s+2,25+2,s,1), (1o, e2,4+1) C m, and
m N Py is a subspace of type (2s,2(s — 1),s — 1,1)}.

Define the encoding map:

fi:SxEr = M, (s,er)—m=s+er
and the decoding map:
g: M x Ep — SU {reject}

s if e C m, where s=mn F.
{reject} ifer g m.

Lemma 1. The six-tuple(S, E1, Er, M; f, g) is an authentication code
with arbitration, that is

(1) s+er=me M, forall s € S and er € E7;

(2) for any m € M, s = m N P, is the uniquely source state contained
in m and there is er € Er, such that m = s + er.

Proof. (1) For any s € S, s is a subspace of type (2s,2(s—1),s—1,1)
and {vp, e2,+1) C S C Py, we can assume that

Q 2s-2
s = Vo 1 N
€2p+1 1

then
0 0

t 0

Q Q I(s-1) 0 0
wo S| wo )= 0 It-D
€241 €2u+1 0 0 0
1

8=1 s=1

(m,er) — {

- OO0 OO
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For any er € Er, er is a subspace of type (4,4,1,1) and er NP =
(v0,€2,41), We can assume that

Vo 1
€2p+1 1
ér Uy 1’
Ug 1
then

o ¢ Yo 0100
€241 €241 1000
Uy 52 uy “1o0001
U2 U2 0 0 11

Obviously, uj,us ¢ S. Hence m = s + er is a (2s + 2)-dimensional
subspace and m N Py = s is a subspace of type (2s,2(s — 1),s —1,1). We
also have

. 0 I6-1) 0 0 x «
Q Q IG=D 0 0 0 * x*
Vo Vo
0 0100
mSptm= | ens1 |S2 | €21 | = 0 g 1 000
Uy Uy * * 00 01
ug u2 * * 0011

Therefore, m is a subspace of type (2s + 2,2s + 2,s,1), (v, €2,41) C m,
and m N Py is a subspace of type (25,2(s - 1),s —1,1),ie, m € M isa
message.

(2) f m € M, let s = mnN P, then s is a subspace of type (2s,2(s —
1),s —1,1) and {vy,ez,+1) C S C Py, i.e., s € S is a source state. Now let

Q 25—2
s= Vo 1 ’
€2v+1 1

then

0 I 0 0\ s-1
I(s_l) 0 00 s—=1

teg —
s52's = 0 0 00 1
0 0 0 0 1

Since m # Py, therefore, there are u;, us € m\ Py such that m = s@®{u1, ug)
and

¢ 0 - 0 0 x =

© Q 6= 0 0 0 % «

vo to 0 0 0100
w1 |S2 | ewt1 | = 0 0 100 0 (%)

" t * * 0 0 01

U2 Y2 * * 0 01 1

457



Let er = (vo, e2u41,u1,u2). Form (x) we deduce that er is a subspace of
type (4,4,1,1) and er N Py = (v, e2,+1). Therefore er is a encoding rule
of transmitter and satisfying s + er = m.

If s’ is another source state contained in m, then s’ C m, Py, i.e., 8’ C
mN Py = s. While dims’'=dims, so s'=s, i.e., s is the uniquely source state
contained in m.

Assuming the transmitter’s encoding rules and the receiver’s decoding
rules are chosen according to a uniform probability distribution, we can as-
sume that (vo, e2,41) = (€1, €2,41), then (vo, e2u41)* = (e1, €2, -+, €y, €42,
"+ ey, €u41).

Let n; denote the number of subspaces of type (2s,2(s — 1),s — 1,1)
contained in (g, ez,41)t, and containing (g, e2,41); N2, the number of
subspaces of type (mg, 250, S0, 1) contained in (v, €2,+1)*, and containing
a fixed subspace of type (2s,2(s—1), s—1, 1) as above; and n3, the number of
subspaces of type (mo, 250, So, 1) contained in (vp, e,+1)*, and containing
(Vo, €2,41)-

Lemma 2. (1) n; = N(2s - 2,s - 1;2v — 2);

(2) ng = N(mgp — 28,80 — s + 1;2(v — 3));

(3) na = N(mo — 2, s0; 2v — 2).

Where N(m, s;n) is the number of subspaces of type (m,s) in the n-
dimensional symplectic space F}").

Proof. (1) We can assume that s is a subspace of type (2s,2(s—1),s—
1,1) and (vg,ez,+1) C s C (v, e2,41)". Clearly, s has a form as follows

1 0 0 0 0 0 00O 1
s=| 0 0 0 0 0O 0 10 1,
0 P2 .P3 0 P5 Ps 00 25-2
1 s-1 v-s 1 s=1 v—s 1 1
where (P,, P3, Ps, Pg) is a subspace of type (2s — 2, s — 1) in the symplectic
space F2*~2), Therefore, n; = N(2s — 2,5 — 1;2v — 2).

(2) Assume that P is a subspace of type (mg,2s0, So,1) containing a
fixed subspace of type (2s,2(s—1),s—1,1) as above and P C (v, e2,.41)*.
It is easy to know that P has a form as follows

1 0 0 0 0 0 00 1

0 © 0 0 o 0 10 1
P=|0 I o0 0 0 0 00O -1

0 o0 0 0 I o 0 0O s-1

0 0 L3 0 0 Ls 00 mo—2s

1 1

1
where (L3, Lg) is a subspace of type (mg — 2s,sp — s+ 1) in the symplectic
space qu("_’). Therefore, ny = N(mg — 2s,s0 — s + 1;2(v — 3)).

(8) Similar to the proof of (1), we have ng = N(mqg — 2, so; 2v — 2).

s—1 v-s 1 8—1 v—s
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Lemma 3. The number of the source states is |S| = N(2s — 2,s —
1;2v — 2)N(mg — 25,80 — s+ 1;2(v — 8))/N(mo — 2, s50; 2v — 2).

Proof. |S| is the number of subspace of type (2s,2(s — 1),s — 1,1)
contained in Py, and containing (1p,e2,41). In order to compute |S|, we
define a (0,1)-matrix, whose rows are indexed by the subspaces of type
(2s,2(s — 1), s — 1,1) containing (v, e2,+1) and contained in (g, e2,41)",
whose columns are indexed by the subspaces of type (mqg, 2s¢, so,1) con-
taining (1o, eg,41) and contained in (1o, €2,4+1)*, and with a 1 or 0 in the
(i,j) position of the matrix, if the i-th subspace of type (2s,2(s—1),s-1,1)
is or is not contained in the j-th subspace of type (g, 230, 50, 1), respec-
tively. If we count the number of 1’s in the matrix by rows, we get n; - no,
where n; is the number of rows and ng is the number of 1’s in each row. If
we count the number of 1’s in the matrix by columns, we get nj - |\S|, where
ng3 is the number of columns and |S] is the number of 1’s in each column.
Thus we have n; - ng = ng - |S|.

Lemma 4. The number of the encoding rules of transmitter is |[Ep| =
4(v-1)
q .

Proof. Since e is a subspace of type (4,4,1,1) and erNPy = (v, €2p41),
the transmitter’s encoding rules have the form as follows

1 0 0 0 0 0 00O 1
_fo o 0 0 0 0 10 1
=10 Ry, R; 1 Rs R 0 0 | 1 °
0 Ly L3 0 Ly Lg 0 1 1

1 8-1 v-58 1 s8-1 v=-s 1 1

where Ry, Rs, Rs, Re, L2, L3, Ls, Lg arbitrarily. Therefore, |Er| = ¢*¥~1).
Lemma 5. The number of the decoding rules of receiver is |Er| = ¢**.

Proof. Since eg is a subspace of type (2,2,0,1) in the (2v + 2)-
dimensional pseudo-symplectic space Fq(z"“), it has the form as follows

en—( 0 0 0 0 0 0 10):1
R= R1 Rz R3 R4 Rs Rs 01 1
1 s—=1 wv-s 1 s8=1 wv=s 1 1

where Ry, Ry, R3, R4, Rs, Rg arbitrarily. Therefore, |[Eg| = ¢%*.

Lemma 6. For any m € M, let the number of er and ep contained in
m be a and b, respectively. Then a = ¢**~1), b = ¢?s.

Proof. Let m be a message. From the definition of m, we may take m
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as follows

1 0 0 0 0 0 00
0 0 0 0 0 0 1 0
oI 0o 0 0 0 0O
m=to 0o o0 0 IV o 0 0
0 0 0 1 0 0 0 O
0 0 0 O 0 0 0 1
1 8—-1 v-s 1 s—1 v 1 1
If er C m, then we can assume
1 0 0 0 O 0 0O 1
o o 0o o0 0 o0 10}
10 R, 0 1 R, 0 00 | 1 °
0 Lz 0 0 L5 0 01 1
1 8~1 wv—s 1 -1 v-=5 1 1

where Ry, Rs, Ly, Ls arbitrarily. Therefore, a = ¢4(>~1),
If ep C m, then we can assume
eR=(O 0 0 0 0 O 10)1
R1 Rz 0 R4 R5 0 01 1’
1 s-1 v—s 1 s5-1 v-s 1 1
where Ry, R,, Ry, Rs arbitrarily. Therefore, b = ¢%°.

Lemma 7. The number of the messages is |M| = ¢*(*=9)|S|.

Proof. We know that a message contains a source state and the number
of the transmitter’s encoding rules contained in a message is a. Therefore
we have [M| = |S||Er|/a = ¢**~9)|S).

Lemma 8. (1) For any er € Er, the number of ep which is incidence
with er is ¢ = ¢°.

(22),(For) any ep € EgR, the number of ez which is incidence with ep is
d=q*v-1),

Proof. (1) Assume that er € Er, er is a subspace of type (4,4,1,1)
and er N Py = (vo, €2,+1), We may take er as follows

1 0 0 0 0 0 0 0\ 1
ene | 00 0 0 0 0 1 0]
T=10 0 o0 1 0 0 0 0]
0 0 0 00 0 0 1/ 1

1 8-1 v—s 1 s-1 wv—-s 1 1

If ep C er, then we can assume
eR:(ooooo 010)1
Ry, 0 0 R, 0O 0 O0 1 1’
1 8-1 v-8 1 s8-1 wv—s 1 1
where R), Ry, arbitrarily. Therefore, ¢ = g2.
(2) Assume that egp € EpR, eg is a subspace of type (2,2,0,1) in the
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(2v + 2)-dimensional pseudo-symplectic space Fq(2"+2), we may take ep as

follows
. _(o 0 0 0 0 0 1 0)1
R={0 0 000 0 0 1/
1 s-1 v-s 1 1

1 s-1 v-s

If er D eg, then we can assume

1 0 0 0 O 0 00 1
I 0 0 O 0 10 1
°°=10 R, Rs 1 Ry Rs 0 0 | 1°
0 O 0o 0 0 0 01 1
1 s8-1 v=s 1 s-1 p—s 1 1

where Ry, R3, Rs, Rg arbitrarily. Therefore, d = g2(*-1),
Lemma 9. For any m € M and eg C m, the number of er contained
in m and containing ep is g2(*~V .
Proof. The matrix of m is like lemma 6, then for any eg C m, assume
that
e_(O 0 0 0 o0 010)1
R= Rl R2 0 R4 Rs 0 01 1’
1 s~1 v=sg 1 s-1 v-s 1 1
if ep C m and er D eg, then er has a form as follows
1 0O 0 0 0 0 00O
e = 6o 0 0 0 0 o0 10
T=lo L, 0 1 L 0 0 0
0 1
1

- e

0 R, O Ry 0 O

1 s-1 v-s 1 s=1 wv-s 1
where Lo, Ls arbitrarily. Therefore, the number of er contained in m and
containing ep is g2(*=1),

Lemma 10. Assume that m; and my are two distinct messages which
commonly contain a transmitter’s encoding rule e%.. s; and s, contained in
m; and my are two source states, respectively. Assume that sp = s N s2,
dim sg =k, then2 <k <2s—1, and

(1) The number of ep contained in m; Nm; is ¢*;

(2) For any ep C mj; N'mg, the number of er contained in m; Nmg and
containing ep is ¢F~2

Proof. Since m; = s; + e, mg = 82 + e and my # mo, then s; # so.
And because of {1y, e2,+1) C 81, 82, therefore, 2 < k < 25 - 1.

(1) Assume that s} is the complementary subspace of sg in the s;, then
si=so+s. (i1=1,2). Fromm; =s;+ep =so+s;+epand s;=m;NP,
(i=1,2), wehave sg = (m1 N Po) N(me N Ry) = ™ ﬂmgnPo =g8Nmg =
82 Nmy and m; Nmg = (81 +eT)nm2 = (30 + 8 +eT)nm2 = ((so +
eT) + 5;) N'my . Because sg + eT Cmg ,m1Nmy = (39 + eT) + (sl Nmg) .
While s’l Nmg C 81 Nmg = 89, My NMy = 59+ e'T . Therefore dim
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(my Nmg) = k + 2. From the definition of the message, we may take m,
and mq as follows, respectively

1 0 0 0 0 0 OO 1
0 O 0 0 0 o0 1 0 1
e = 0 A, 0 0 A 0 O O s—1
1“1 o 4 o o0 4 0 0 0| s-2
0 0 0O 1. 0 0 00O 1
0 0 0O 0 0 0 0 1 1
1 s-1 v-8 1 s-1 v-s 1 1
1 0 0 0 0 O 0 O 1
0 0 0O 0 0 0 1 O 1
— 0 Bg 0 0 B5 0 0 O 8—1
271 o B, 0 0 B, 0 0 0 | s-1
0o 0 0 1 0 0 0 O 1
0 0 0O 0 0 0 0 1 1
1 s-1 v—-s8 1 s-1 v-=s 1 1
Thus
1 0 0 0 O 0 0 0 1
0 O 0 0 O 0 1 0 1
_ 0 P2 0 0 P5 0 0 0 s—-1
mfime={ o p 0 0 PL 0 0 0| st
0 0 0 1 0 0 0 O 1
0 0 0 0 O 0 0 1 1
1 s-1 v-s 1 s8-1 wv-s 1 1
and

(0P 00 P O0OO0OY ,
d’m(o P2’00P5’000)—k 2.

If for any ep C my Nmy, then
en = 0O 0 0 0 0 o0 10 1
R=\R, R, 0 R, Rs 0 0 1) 1°
11
where R;, R, arbitrarily, and every row of (0 R; 0 0 Rs 0 0 0) is the linear

: " 0 ., 00 P 00O -
combination of the base of( 0O P, 0O P 000 ).So it is easy

1 8-1 v—-s 1 s-=1 v-s

to know that the number of er contained in m; Nm; is g*.

(2) Assume that m;Nmy has the form of (1), then for any eg C mjNma,
we can assume that

enef( 0 0 0 0 0 0 10):
R=\R, R, 0 Ry Rz 0 0 1) 1

1 s8-1 wyvy-s 1 s8-1 wv=s 1 1
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If er C myN'my and er C er, then er has the form as follows
1 0 0 0 O O OO 1
e = 0 0 0 0 0 o0 10 1
0 L, 0 1 Ly 0 0O 1’
0 R, 0 0 R 0 0 1 1
1 8-1 v-3 1 8-1 v=s 1 1
where every row of (0 Lz 0 0 Ls 0 0 0) is the linear combination of the base
£ ( 0 P 00 P 00O
0 P, OO P O0OTO
my N'mg and containing ep is g*~2.

) , then the number of er contained in

Theorem 1. The parameters of constructed authentication codes with
arbitration are
|S| = N(23—2, s—1;2v—2)N(mo—2s, s9—s+1; 2(v—s))/N(mo—2, so; 2v—2);
|M| = g*“=)|S]; |Er| = g**~1); |ER| = ¢*.
Theorem 2. In the A2 authentication codes, if the transmitter’s en-
coding rules and the receiver’s decoding rules are chosen according to a
uniform probability distribution, the largest probabilities of success for dif-
ferent types of deceptions:

1 1 1 1 1
PI‘=;1?(VT3)" PS=31 PT—E7 PRO_qT(l;-—s).’ PR:"'E'

Proof. (1) The number of the transmitter’s encoding rules contained

in a message is b, then
{|eR€ER|eRCmI} b 1

Pr = max

meM

[ Er | T 1Er| ¢

(2) Assume that opponent get m; which is from transmitter, and
send mgy instead of m,, when s; contained in m; is different from s;
contained in mg, the opponent’s substitution attack can success. Because
er C er C my, thus the opponent select e'T C my , satisfying mo = sz+e'T
and dim(s;[)s2) =k, then
malleeReE'RleRCmandeRCm'l

k
#m'e q 1
Ps = max { — = S = ——
ST mem | er € Epler C m | g% g2k’

where k=2s-1,P, = -}; is the largest.

(3) Let er be the transmitter’s secret encoding rules, s be a source state,
and m be the message corresponding to the source state s encoded by er.
Then the number of the receiver's decoding rules contained in m; is eg.
Assume that my is a distinct message corresponding to s, but my cannot
be encoded by er. Then m; N my contains g receiver’s decoding rules at
most. Therefore the probability of transmitter’s successful impersonation
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attack is

meAl}l,%:-c;zm | {er € Erler CmnNer} | ¢ 1

¢ 9

= max '
Pr er€Er | {er € Erler C er} |
(4) Let er be the receiver’s decoding rule, we have known that the num-
ber of transmitter’s encoding rules containing eg is ¢2(*~*) and a message
containing ep has ¢2(*~1) transmitter’s encoding rules. Hence the proba-
bility of a receiver’s successful impersonation attack is
m d
méa}xwl{eTGEq-leTCman erCer|

Pro = e, | {er € Erler Cer |
q2(s—l) _ 1
q2(u—l) - q2(v—s) :

(5) Assume that the receiver declares to receive a message my instead
of m;, when s; contained in m; is different from s; contained in mg, the
receiver’s substitution attack can be successful. Since ep C er C my,
receiver is superior to select efr , satisfying ep C e'T C my , thus mp =
Sy +ef1~, and dim(s;Nso) = k as large as possible. Therefore, the probability
of a receiver’s successful substitution attack is

max | {er € Erler C m,m and eg C er} |
m'eM

Pp, = max
s eR€EER,mEM | {eT € ETIGR C eT} ]

_ qk—2
- q2(s—l)’

where k =2s—1, Pp, = % is the largest.
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