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Abstract

The hyperbolic Fibonacci function, which is the being extension
of Binet’s formula for the Fibonacci number in continuous domain,
transform the Fibonacci number theory into “continuous” theory be-
cause every identity for the hyperbolic Fibonacci function has its
discrete analogy in the framework of the Fibonacci number. In this
new paper, it is defined three important generalizations of the k-
Fibonacci sine, cosine and quasi-sine hyperbolic functions and then
many number of concepts and techniques that we learned in a stan-
dard setting for the k-Fibonacci sine, cosine and quasi-sine hyperbolic
functions is carried over to the generalizations of these functions.

Keywords: Hyperbolic functions; Fibonacci hyperbolic functions.

1 Introduction

One of the major achievements of modern science is an understanding that

the world of Nature is hyperbolic.The theory of hyperbolic functions has
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developed in ways that, at first sight, does not appear to have any con-
nection to hyperbolic functions. However, a new class of the hyperbolic
functions based on the Golden Section could have far going consequences
for future progress of mathematics, physics, biology and cosmology. Also,
it does relate to the theory of Fibonacci numbers, an actively developing
branch of modern mathematics [1-3]. The Fibonacci numbers are given by
the sequence 0,1,1,2,3,5,... where each term is the sum of the previous
two. This sequence can be defined via the recursive formulas: Fy = 0,
Fi=1,and F, = F,_1 + Fp—2, n 2 2 [2]. It is well known that the ratio
of two consecutive classical Fibonacci numbers converges to Golden Mean,
or Golden Section, 7 = li,g/—g

In 1993, the Ukrainian mathematicians Alexey Stakhov and Ivan Tkachenko
developed a new approach to the theory of hyperbolic functions [4]. Us-
ing the so-called Binet formulas, they developed a new class of hyperbolic
functions called hyperbolic Fibonacci and Lucas functions [4-5]. This idea
was further developed in Stakhov and Rozin’s paper [6] where they de-
fined a class of symmetric hyperbolic Fibonacci and Lucas functions. In
Stakhov and Rozin’s article [7] a new surface of the second degree called
the Golden Shofar was developed. The hyperbolic Fibonacci and Lucas
functions and the Golden Shofar surface are the most important ingredi-
ents of the “golden” mathematical models applicable to the description of
the “hyperbolic worlds” of Nature.

In 2008, k-Fibonacci sequence {Fj n} was defined by Falc6n and Plaza
[8]. The k-Fibonacci sequence generalizes, between others, both the classic
Fibonacci sequence and the Pell sequence. In [8], Falcén and Plaza showed
the relation between the 4-triangle longest-edge (4TLE) partition and the
k-Fibonacci numbers, as another example of the relation between geometry
and numbers, and many properties of these numbers are deduced directly

from elementary matrix algebra. In [9], many properties of these numbers
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are deduced and related with the so-called Pascal 2-triangle. In [10], the 3-
dimensional k-Fibonacci spirals are studied from a geometric point of view.
These curves appear naturally from studying the k-th Fibonacci numbers
and the related hyperbolic k-Fibonacci functions.

We predict that hyperbolic Fibonacci and Lucas functions will have
great importance for the future development of Fibonacci and Lucas num-
ber theory. They generalize Fibonacci and Lucas numbers to the continuous
domain since Fibonacci and Lucas numbers are embedded in them. Each
discrete identity for Fibonacci and Lucas numbers has its continuous ana-
logue in the form of a corresponding identity for the hyperbolic Fibonacci
and Lucas functions, and conversely. Therefore, the theory of the hyperbolic
Fibonacci and Lucas functions is more general than traditional Fibonacci
and Lucas number theory.

The purpose of the present article is to develop continuous functions
within the Fibonacci number theory which lead to the hyperbolic Fibonacci
and Lucas functions [10, 6, 7, 12, 13] and the sinusoidal Fibonacci and k-
Fibonacci functions (17) and (18). In this new paper, we will extend the
results (3), (4) and (18) for the area of the generalized k-Fibonacci sequence.

2 The generalized k-Fibonacci hyperbolic func-
tions

Definition 1 For any positive real numbers k,t > 0; the nth generalized

(k,t)-Fibonacci sequence, say {Gk,t,n}nen 8 defined recurrently by
Gk,g'n+1 = SGk,t'n + tGk,t,n—l fO'I‘ n Z 1, (1)
where G0 =0 and Giz1 = 1.

Particular case of the generalized (k,t)-Fibonacci sequence {Gk,:,n} for
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t =1 is the k-Fibonacci sequence {F} ,}.
Binet's formula for the generalized (k, t)-Fibonacci sequence {Gy,¢,n} is
given by (see [14])
P —r3
2)
where 1, ro are the roots of the characteristic equation (1) defining Gy ¢,-
Alexey Stakhov, Ivan Tkachenko, Boris Rozin, Sergio Falcén and An-
gel Plaza developed recently a theory of the hyperbolic Fibonacci, Lucas
and k-Fibonacci functions (10, 6, 7, 12, 13], which are extensions of Bi-

net formulas for a continuous domain, have a strategic importance for the

Grtn =
k,t,n "'1—"'2’

development of both mathematics and theoretical physics. The classical
Fibonacci hyperbolic functions have been defined as

T _ =T

sFh (z) = 1—75"—
1.:c+,’.—:c

CFh((B) = T,

where sFh and cFh are called, respectively, the Fibonacci hyperbolic sine
and cosine, and 7 = 3—"35. In [10], the above functions have been extended
to the k-Fibonacci hyperbolic functions in the following way:

TE— T

VkZT+4
TE+Te"

vEE+4’

where 7, = "—"ﬂéf—rﬂ is the positive root of the characteristic equation

sFch(z) =

cFih (:B) =

associated to the k-Fibonacci sequence. Note that the hyperbolic Fibonacci
and kFibonacci functions are connected to the Fibonacci and k-Fibonacci

numbers by the following correlations:

P sFh(n), for n =2k
cFh(n), forn=2k+1
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and

kon =

sFih(n), for n = 2k
{ cFrh(n), forn=2k+1 ‘
From now on, in analogous way followed by Stakhov, Rozin [6] and Falcén,
Plaza [10] the so-called the generalized k-Fibonacci hyperbolic sine and

cosine functions are, respectively, defined as follows:

75, =515
Gy ¢h (z) = ‘”_6_’2 (3)

The TEThE
¢Gi¢h(z) = ——6—‘ (4)
where § = vk2+4t and 7k, is the positive root of the characteristic
equation (1) associated to the generalized k-Fibonacci sequence, that is
Tkt = &t:';ﬂ@, For some the values k£ and ¢, the graphics of these new
generalized k-Fibonacci hyperbolic sine and cosine functions are shown in

Fig. 1 in below.

SG1,11’1($) Slezh(:L')

471



by
]
-3 2 D 2 {
CGl,gh(w) ch,lh(a:)

Fig. 1. For some the values k, ¢, the generalized

k-Fibonacci hyperbolic sine and cosine functions.

From (2) Binet’s formula for the generalized k-Fibonacci sequence es-
tablishes that the general term of this sequence can be written as:

Tht— (-t)" Tit

Grom = 22 Thi, )

Notice that considering (3 — 5), these functions verify the property that, if
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z is an even number, = = 2n then sG :h(z) = Gt 2n, while if z is ard odd
number, z = 2n + 1 then sG ¢h(z) = Gk t,2n+1-

From now on for simplicity we will write 7 instead of 7 z.

We now present several results associated to the generalized k-Fibonacci

hyperbolic functions.

Theorem 2

2 2 48"
(cGk,eh(2)])° — [sGk,eh(z)])" = T
Proof. Let § = v/kZ + 4t. By the definitions of the generalized k-Fibonacci

hyperbolic functions, we get

TI + tz,r—z

[cGr.eh (2)]” - [1Greh (@) = [ 5 ]2‘ [Tz—f’"x]z

4"
= 3 after some algebra

which proves the theorem. m
This theorem given for the generalized k-Fibonacci hyperbolic functions

can be seen as a version of famous the Pythagorean Theorem given for the
classical hyperbolic functions.

Particular case is:

e If t = 1, the Pythagorean Theorem for the k-Fibonacci hyperbolic func-

tions appears [10, Proposition 1):

[cFih (z))* — [sFeh (z)]* = kzi_ rk
Theorem 3
2cG\';;c_¢ih_(:T-: ) [¢Grth () .cCr th (y) + Gk th () .cCrth ()], (6)
2t”c\(/§'l:,2¢f-lk(tzt— Y _ [cGr th(x) .cGrth (y) — $Gk th(z) .cGreh (y)],
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”f;——:%iiﬂl — [5Gr1h(2) cCrsh(y) + cGich(z) cGrsh(W)],  (7)

2tYsGy th(z — y)
VkZ 4t

Proof. Let 6 = vk2 + 4t and
LHS = c¢Ggih(z) .cGih (y) + 8Gi th (z) .cGreh () .

= [sGk,th(z) .cGrth(y) — cGrh(z) .cGx k().

Let us prove the identity (6):

x T =T v Y=Y
LHS = [(T +;'r )(T +;'r )+

+ (T.‘B - {2 TV — tll-r'”)]
) 0

= 325 ('r‘"“‘” + t’*’y—r‘(zﬂo) , after some algebra

from where the identity (6) is obtained. m
By doing y = z in the Eq. (6) and (7), the following corollary is ob-

tained.
Corollary 4
Grah(22) = L [(Gruh (@) + (sGch (@], (®
8Gk,:h(22) = \/ k2 + 4t.3Gy th(x) .cGk,th (y) .
Corollary 5
a1 2
[cGr,eh(z))” = m [cG’k,th(h) + \/m] , (9)
2t°
[SGk th(:z:)] = \/_f— [CGk,gh(2$) - W] .

Proof. Now, let us prove the identity (9). Let § = vkZ + 4t. From Eq. (8)

we have

[Gieh(@)]? = 2cGsh(2z) — [sGreh (z))?

é

2 1.2:: + tzz,,.-2z - 2%
= ECGk th (23}') - 62
= ECGk :h (233) + 62 y
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which completes the proof. m
The generalized k-Fibonacci hyperbolic functions have recurrent prop-

erties that are similar to the generalized k-Fibonacci numbers as shown in

below.

Theorem 6

$Gech(z + 1) = keGrsh(z) + tsGhsh (@ — 1) = =8 1)
il i ] m

Proof. Let § = vkZ + 4t and LHS = kcGy ¢h(z) + tsGg sh(z — 1). Thus,
by definitions (3) and (4), we obtain
z Z —T z—1 _ sz~1,.—(z-1)
LHS = k[TEET7) (T 7
) ()
kr® 4+ t7271 + 8% (k7% — tr—(=3-1)
- )
_ I—l (kT + t) + tz (k—t'r
- é
a:+1 + 1= (k-r —tT )
é
Tz+1 + & (1'2::—&2)
- )
e+l _ tz+1,r—(z+l) ==+l (1 - t)
= 3 + 3 .

, since 72 = kr +1

Thus, the result is obtained. m

Particular case is:
e If t =1 in Eq. (1), the k-Fibonacci numbers verify that
Fxo=0,F;1=1,Fgn41 = Feyn + Fin-1-

In Eq. (10), an analogous equation for the k-Fibonacci hyperbolic
functions is the following [10, Proposition 1]

sFih(z + 1) = kcFrh (z) +sFih (z - 1).
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Now, we present several versions of Catalan’s identity for the generalized

k-Fibonacci hyperbolic functions via the following theorem.
Theorem 7
G th(z — 1) .cCrth(z + 1) = [cGr ek (z))? = 2~ [sGrth (r)]?,
Gr,th(z = 1) .cGrh(z + 1) — [sGkth ()] = t77" [cGreh(r)]?, (11)
8Gxth(x — 1) .8Gk e (z +71) = [sGkth(z)]* = =57 [sGr b ()], (12)
3Gk th(z — 1) .8Gk th(z +7) — [cGrih(2)]? = —t* " [cGreh (r)]?. (13)
Proof. Let § = vk? + 4t and
LHS = sGy¢h(z — r) .8Gk ch (z + 1) — [sGih (z)]2.
Let us prove the identity (12). By definitions (3) and (4), we have

LHS = 312- [(T“’"r - t”""r-(“"")) ('r‘”'*" - t""+"7.-(z+r))
- (T:t _ tz,r—:c)2]

=T
62 (7.21' + t2r7.-2r - 2tr)

R (Tr - tr.,.-r)2

]
which proves the identity. m
By doing r = 1 in Eq. (11) and (13), the following identities (14) and

(15) are a generalization of the "Cassini formula" known as
Fo1Fooy - F2 = (-1)",
for the generalized k-Fibonacci hyperbolic functions.
_Theorem 8
[8Gr,eh (2))* — cGreh(z — 1) .cGreh(z +1) = —t=, (14)

[cGrth (2)]? = 8Gx th(z = 1) .8Gk th(z + 1) = 71, (15)
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Theorem 9 If
LHS1 = Gy th(z) cGrih (Y +71) — 8Grth(z + 1) 3Gk th (y),

then
LHS1 =tYcGx h(r) .cCrih(z —y), (16)

and, similarly, if
LHS2 = ch'th ((B) .SGk,th (y + 'I’) - CGk'th (.’B + 1") .SGk'th (y) y

then
LHS2 = t¥sGy th(r) .cGrth(z — y).

Proof. We only will prove Eq. (16). Let § = vk + 4t and LHS1 =
cGg,th(z) .cGi,th(y + ) —8Gg th(z + 1) .8Gi :h(y). Hence, by definitions
(3) and (4), we have
LHS1 = le [('r" +t°17%) (1‘”"" + t”""'f'(”""'))

- (1.=C+r _ tz+r1.-(Z+r)) (,.y - t”‘r'”)]
= 315 [tyHrromyr BT

HYTETYTT  {F T T

1
= = |gytro—r (;2=v 4 yz—y —(z-1)
_62[t T (‘r +t*7Yr )+

Y7 (T-"-‘-y + tw—yT-(x"U))]
= t¥cGgh(r) .cGreh(z —y).

3 The generalized quasi-sine k-Fibonacci func-
tion

The sinusoidal Fibonacci function (7] is a further development of a contin-

uous approach to the Fibonacci numbers theory begun in a series of papers

47



[12,13]. The definition of the function is

7% — cos (mz) 7%
—= ) 17
75 amn
where T = 1—'%@ On the other hand, Falc6n and Plaza [10] have defined the

quasi-sine k-Fibonacci function, which is a generalization of the sinusoidal

F(z)=

Fibonacci function, by

— cos(mz) T "

1..1:
FFy (z) = % ;
() Vi +4
where 7 = ﬁéfﬂ. Considering Eq. (5) given for the generalized k-

(18)

Fibonacci numbers and taking into account that cos (n7) = (—1)", natu-

rally we introduce the following definition.

Definition 10 The generalized quasi-sine k-Fibonacci function is defined

by
7% — cos (wz) t°r~%

VEZ+ 4t

where T = Tk 18 the positive root of the characteristic equation (1).

FGry(z) = ) (19)

For some the values k and ¢, the graphics of this new generalized quasi-

sine k-Fibonacci hyperbolic functions are shown in Fig. 2 in below.

‘/\\*//\ — N

3 & 3 I
2
20/

FG1, () FGa, (z)
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%/\" ) 7
FGi 2 (z)

Fig. 2. For some the values k, ¢, the generalized

quasi-sine k-Fibonacci hyperbolic functions.

In [10], Falc6n and Plaza have given several identites for these quasi-sine

k-Fibonacci functions. We now extend these identities for the generalized
quasi-sine k-Fibonacci.

Theorem 11

FGuy (z+1) = kFGiy () + tFGhs (3 - 1) = BT =8 (5
k,t = k,t k,t m
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Proof. Let § = vkZ + 4¢. Thus, by definitions (3) and (4), we obtain

kFGk’t (:B) + tFGk_t (1‘ - 1) =

Thus, the result is obtained. =

Particular case is:

e Ift =1 in Eq. (1), the k-Fibonacci numbers verify that Fxo = 0,
Fy) =1, Finy1 = Fin+ Fin—1. In Eq. (20), an analogous equation
for the k-Fibonacci hyperbolic functions is the following (10, Theorem

13 ]

k (T” — cos (gra:) t‘T“‘”) +

e (*r"l —cos (w(z — 1)) t=~1r—(=—1)

é
% {kr® + tr"1 - cos (nz) t*x
X (kr""‘ - t‘r"(”‘l))}

721 (k7 + t) — cos (wz) t* (A=r)

é

72+ — cos(nz) t* (-—.n—",",',‘ "'2)
é
72+! — cos (nz) t* ("2—;35‘13)
é

73+ — cos (w (z + 1)) t*=+1r—(@+1)

5 +

==t (1-1)

e

T .—z+1 -
FGiy(z+1) + gr A-9)

)

FFih (z + 1) = kFF4h (z) + FFeh (z - 1).

Similarly, Catalan’s identity for the generalized quasi-sine kFibonacci

functions is given by:

Theorem 12 Let LHS = FGi . (z — ) .FGys (z + 7)—[FGp: (z))?. Then,
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forr e Z,
LHS = (—1)""1t*=" cos (nz) [FGy ¢ (r)]? (21)
Proof. Let § = V42 + 4t. By definition (19), we get

1
&
X (1""""" —cos (7 (z+ 1)) t‘”'*"'r'(”"")) -

— (7% — cos (wz) t"r")z]

LHS = [(1‘""' —cos(m(z —r)) t”“'r_("’)) X

Jiz [ (Tm_r + (=1)"* cos (nz) t’-rr-z+") x
X (-rz+r +(=1)™" cos (nz) tzq.r?__,_,)
= (7% + cos? (wz) t**77%% — 2cos (nz) t7)]
= 312. [(_1)r+1 cos (wz) =772+
+(=1)""" cos (wz) £+ 72" + 2 cos () t’]

7" — cos (mr) 77T\ 2
F)
= (1) " cos (1) [FGie (1)),

= (=1)"t'4*=" cos (nz) (

which proves the identity (21). =

Particular case is:

e If t =1in Eq. (1), for the quasi-sine k-Fibonacci functions we have [10,
Theorem 14 |:

FFi (z — r) FFx (z + 1) — [FFk ()] = (=1)"*! cos (nz) [FF ()] .
Theorem 13 Forr€Z andt <1+ s,

. FGpe(z+71) .
zllongo FGk,g (.’t) =T
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Proof. Since 7 > 1 and, for t < 1+ s, £ < 1, we obtain

lim FGre(z+7) _ lim T2+ — cos ( (T + 1)) t=HTr—(=+r)
=00 Flet (w) - T—00 T — cos (“m) prym—
77 4 (=1)"* cos (7z) 154" ghex
T=o 1 — cos (nz) t* =

= 7.

Thus, the proof is completed. m

4 Conclusion

A new class of the hyperbolic functions based on the Golden Section could
have far going consequences for future progress of mathematics, physics,
biology and cosmology. In the first place, the hyperbolic Fibonacci and Lu-
cas functions which are the being extension of Binet’s formulas for the Fi-
bonacci and Lucas numbers in continuous domain transform the Fibonacci
numbers theory into “continuous” theory because every identity for the
hyperbolic Fibonacci and Lucas functions has its discrete analogy in the
framework of the Fibonacci and Lucas number theory. In the other words,
the theory of Fibonacci and Lucas numbers are being the “discrete” case of
the theory of the hyperbolic Fibonacci and Lucas functions. Considering
the fundamental role of the classical hyperbolic functions in the mathemati-
cal tools of the modern science, it is possible to suppose that the new theory
of the hyperbolic functions will bring the new results and interpretations
in various spheres of natural science.

The creator of non-Euclidean geometry was the Russian mathematician
Nikolay Lobachevsky who derived a new geometric system based on hy-
perbolic functions in 1827. The need for new geometrical ideas became
apparent in physics at the beginning of the 20" century as the result of
Einstein’s Special Theory of Relativity (1905). In 1908, three years after
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the publication of this great work, the German mathematician Herman
Minkowsky gave a geometrical interpretation of the Special Theory of Rel-
ativity based on hyperbolic ideas.

A consequence of the hyperbolic Fibonacci functions’ introduction has
been the realization that the classical hyperbolic functions, which are useful
in mathematics and theoretical physics, are not the only tools for creating
mathematical models of the “hyperbolic world". In addition to models
based on classical hyperbolic functions (Lobachevsky’s hyperbolic geometry,
Minkowsky’s geometry, etc.), there is a golden hyperbolic world based on
hyperbolic Fibonacci and Lucas functions [4-7]
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