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Abstract. We consider a variation of a classical Turédn-type extremal problem
due to Bollobds (2, p. 398, no. 13] as follows: determine the smallest even integer
o(C*,n) such that every graphic sequence 7 = (d1,da,...,dn) with term sum
o(r) =dy+da+---+dn > 0(C*,n) has a realization G containing a cycle with k
chords incident to a vertex on the cycle. Moreover, we also consider a variation of
a classical Turdn-type extremal result due to Faudree and Schelp (7] as follows:
determine the smallest even integer o(P:,n) such that every graphic sequence
7w = (d1,dz,...,dn) with o(n) > o(P.,n) has a realization G containing P, as
a subgraph, where P, is the path of length ¢. In this paper, we determine the
values of o(Ps, n) for n > £+1 and the values of o(C*, n) for n > (k+3)(2k +5).
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1. Introduction

The set of all non-increasing nonnegative integer sequences 7 = (dy, da,
...,dp) is denoted by NS,,. A sequence m € NS, is said to be graphic if it
is the degree sequence of a simple graph G on n vertices, and such a graph
G is called a realization of w. The set of all graphic sequences in NS, is
denoted by GS,. For a nonnegative integer sequence 7 = (d;,ds,...,dy),
define o(7) = dy +do + -+ d,. A chord of a cycle C is an edge not in
C whose endpoints lie in C. For a given graph H, a sequence m € GS,, is
said to be potentially ( resp. forcibly) H-graphic if there exists a realization
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of 7 containing H as a subgraph (resp. each realization of 7 contains H
as a subgraph). Moreover, a sequence # € GS, is said to be potentially
( resp. forcibly) C*-graphic if there exists a realization of 7 containing a
cycle with k chords incident to a vertex on the cycle (resp. each realization
of 7 contains a cycle with & chords incident to a vertex on the cycle).

Let e(G) be the number of edges in the graph G. It is well known (see
[2], chapter 6 for example) that one of the classical extremal problems in
extremal graph theory is to determine the smallest positive integer t(H,n)
such that every graph G on n vertices with ¢(G) > t(H,n) contains H as
a subgraph. The number ¢(H,n) is called the Turdn number of H. The
classical Turén theorem (see [2], chapter 6) determined the Turdn number
t(K,,n) for K,, the complete graph on r vertices. Faudree and Schelp (7]
proved that the Turén number ¢(P,,n) for P, is (5)3] + () + 1, where
7 =n mod (£). Let ¢(C*,n) denote the smallest positive integer such that
every graph G on n vertices with e(G) > t(C*,n) contains a cycle with
k chords incident to a vertex on the cycle. Since the complete bipartite
graph Ky n-(x+1) and the graph with at most k + 2 vertices contain
no cycles with k chords incident to a vertex on the cycle, it follows that
t(Ckn) > (k+1)n—(k+1)2+1 forn > k+3. In [1], Alon used the
function ¢(C*,n) to give an upper bound on anti-Ramsey function. Erdos
conjectured that (C*,n) = (k+ 1)n — (k + 1)2 + 1 for n > 2k + 2. This
was disproved by Lewin (2, p. 398, no. 12] for 2k < n < ﬂ%l Bollobas
[2, p. 398, no. 13] conjectured that there exists a function n(k) such that
t(C*,n) = (k+ 1)n — (k+1)2 + 1 for all » > n(k). Recently, Jiang [9]
proved the conjecture, and showed that n(k) < 3k + 3.

In terms of graphic sequences, the number 2¢t(H,n) (resp. 2¢(C*,n)) is
the smallest even integer such that each sequence 7 € GS, with o(7) >
2t(H,n) (resp. 2t(C*,n)) is forcibly H (resp. C*)-graphic. In [6], Erdés,
Jacobson and Lehel considered the following variation of the classical Turdn
number t(K,,n): determine the smallest even integer o(K,,n) such that
every sequence 7 € GS, without zero terms and with o(n) > o(K;,n)
is potentially K,-graphic. They showed that o(K3,n) = 2n for n > 6
and conjectured that o(K,,n) = (r — 2)(2n — r + 1) + 2 for sufficiently
large n. Gould et al. [8] and Li and Song [13] independently proved it for
r = 4. Recently, Li et al. [14,15] proved that the conjecture is true for
r=5andn > 10 and for 7 > 6 and n > ("3') + 3. In [8], Gould et al.
generalized the above variation as follows: for a given graph H, determine
the smallest even integer o(H,n) such that every sequence 7 € G3,, with
o(w) 2 o(H,n) is potentially H-graphic. The purpose of the paper is to
consider the variations of two classical Turdn numbers t(P,, n) and t(C*, n).
The paper is organized as follows. In section 2, we will determine the values
of o(Pe,n) for n > £+1 (see Theorem 2.5). In section 3, we will consider the
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variation of the classical Turdn number £(C¥,n), that is, we will determine
the smallest even integer o(C¥, n) such that every sequence 7 € GS,, with
o(r) > o(C*,n) is potentially C*-graphic for n > (k + 3)(2k + 5) (see
Theorem 3.8).

2. o(Pyn)forn>£4+1

In order to determine o(Pg, n), we need the following known results.

Theorem 2.1 [16] Let m# = (d1,d2,...,dn) € GS, with n > 3 and
d, > 1. Then 7 is potentially Cs-graphic if and only if d3 > 2 except for
two cases: m = (2%) and 7 = (2%), where C, is a cycle of length £ and the
symbol z¥ in a sequence stands for y consecutive terms, each equal to z.

Theorem 2.2 [16] Let m = (dy,dy,...,ds) € GS, with d, > 1. Then
« is potentially Cy-graphic if and only if all the following conditions must
be satisfied:

(1) da 2 2;

(2) di =n—1 implies that dp > 3;

(3) If n=25,6, then 7 # (2").

Theorem 2.3 [12,19] Let £> 5 and n > ¢. Then

(m-1)2n—-m)+2 iff=2m-1andn> 228
Comy ] 2n+d4m?—14m+12 if£=2m—1and n < 258,
0’( Zan)— (m—l)(2n—m)+4 iff=2mand n> .5_"_*2:1’

2n+4m? —10m+6 if¢=2mandn < 571,
Theorem 2.4 [5] Let # = (dy,d,...,d,) € NS, with even o(m).
Then 7 € GS,, ifand only if forany ¢, 1 <t <n-1,

n

id.- <tt-1)+ Y min{t,d;}.

i=1 j=t+1

We also need the following
Lemma 2.1 If£>3and n> £+ 1, then

(m—l)(2n—m)+2 ife=2m_1andn25mé—2,

U(P n)> 4m2_6m+4 ife=2m_.1andns 51712—2,
4m2_2m+2 if£=2mandn55_m2:l£.

Proof. Let m = ((£ — 1)%,07¢). Clearly, the only graph realizing =
is K, UK, _q, where K,_; denotes the complement graph of K,_;. Since
KUK, _¢ contains no P, 7 is not potentially P,-graphic. Hence (P, n) >
o(n)+2 = £(£—1)+2, that is, 0(Pom—1,n) = 4m?—6m+4 and o(Po, 1) >
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4m? — 2m + 2. Now consider 7 = ((n — 1)™~}, (m — 1)"~™*+1), It is easy
to see that Ky,—1 + Kn—m+1 is the only graph realizing 7, and has no path
of length 2m — 1, so that = is not potentially P,,,-1—graphic, where +
denotes ‘join’. Hence o(Pom—1,7) 2 o(7) +2 = (m —1)(2n — m) + 2. By
a similar argument using the degree sequence of the graph obtained from
Km-1 + Ky—mt1 by adding an extra edge joining two vertices of degree
m — 1, we have 6(Pypm,n) > o(n) +2 = (m — 1)(2n — m) + 4. Thus

(m=-1)2n-m)+2 iff=2m-1andn> im=2

(Ppyn) > 4m? — 6m +4 if £ =2m - 1andn<5"'2‘2,
aren) = (m-1)(2n-m)+4 ifl= 2mandn>—i'—
4m? - 2m + 2 if 6= 2mandn<—-‘"—

a
We now prove the following Theorem 2.5 which is the main result of

this section.
Theorem 2.5 (1) Let n > 2. Then o(P;,n) =2

_J n+1 ifnisodd,
(2) Let n > 3. Then o(P2,n) —{ n+2 ifnis even
(3) Let£>3and n > £+ 1. Then

(m-1)2n-m)+2 ifl=2m—-1andn> 5m2-2,

o(Pyn) = 4m? — 6m + 4 if £=2m - 1a.ndn<5"‘2‘2,
ERZY m-1)@n-m)+4 ife= 2m and n > 5732,
4m? - 2m + 2 if £ = 2mandn<—-—+—

Proof. (1) and (2) are trivial. In order to prove (3), by Lemma 2.1, it
is enough to prove that if # = (dy,dy,...,d,) € GS, with

(m-—l)(2n—m)+2 if=2m—1andn> 511:2—2,

o(m) > 4m? —6m+4 if £ = 2m—1andn<5'"2"'2,
=) m-1)(2n-m)+4 iff=2m andn > 32
4m? - 2m + 2 ife= 2mandn<—+—

then 7 is potentially Ps-graphic. We consider the following cases.

Case 1. £ = 3. Since o(mw) > 2n for n > 4, we have dy > 2. If
d; =2, then 7 = (2") and C, is a realization of 7. Thus 7 is potentially
P;-graphic. So we may assume that d; > 3. Let G be a realization of w and
z,y € V(G) with dg(z) = d; and dg(y) = da. Suppose zy € E(G). Since
dg(z) 2 3 and dg(y) > 2, let z € Ne(y) — {z} and w € Ng(z) — {y, z}.
Then w, z,y, z form a path of length three in G. Thus 7 is potentially Ps-
graphic. Suppose zy ¢ E(G). If £ and y have no common neighbor in G,
let z € Ng(y) and w € Ng(z). If zw € E(G), then z,w, z,y form a path of
length three in G. So we may assume that 2w ¢ E(G). Let G’ be obtained
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from G by deleting edges zw,yz but adding edges zy, 2w. Clearly, G’ is a
realization of 7 with zy € E(G’), the rest of the proof is similar to the case
when zy € E(G). If z and y have a common neighbor, say u, let v # u be
another neighbor of z. Then v,z, 4,y form a path of length three in G. In
either case, 7 is potentially Ps-graphic.

Case 2. {=4. Then o(w) > 2n+2 for n > 6 and o(#) > 14 for n = 5.
By Case 1, 7 is potentially P;-graphic, and hence we may assume that G
is a realization of # and contains P; = ujugusus as a subgraph. By The-
orem 3.2, we may further assume that {dg(u,),dc(u2), dg(us),de(ua)} =
{d1,d2,d3,ds}. If dg = 1, then by Theorem 2.4, we have o(7) < dy +
do+d3+(n—3) <6+ (n—3)+ (n—3) = 2n, a contradiction. Hence
d4 > 2. In other words, dg(u1),de(u2), dc(us),da(us) > 2. If there exists
a vertex £ € V(G) — {u1, ug, u3, uq} such that zu; € E(G) or zuy € E(G),
then x,u;,ug,us, uq Or uy,us,us,us4,z form a path of length four in G.
Thus 7 is potentially Ps-graphic. Suppose zu; ¢ E(G) for any z €
V(G)—{u1, u2, us, us} and zuy ¢ E(G) for any z € V(G)— {u1, u2, us, ua}.
We will prove that G contains Cj as a subgraph. If uvyu, € E(G), then
uugugugauy is a cycle of length four in G. If wyuy ¢ E(G), then by
dg(u1),de(us) = 2, we have ujug,uous € E(G), and hence ujuzugsuou,
is a cycle of length four in G. Hence G contains Cy as a subgraph. Denote

= G\ C;. If there exist z € G; and y € Cj such that zy € E(G),
then G contains a path of length four. Assume that there is no edge be-
tween V(G;) and V(C;). Take zy € E(C;) and z'y’ € E(G1), and let
G' =G - {zy+2'y'} + {zz' + yy'}. Clearly, G’ is also a realization of =,
and contains a path of length four. Thus 7 is potentially P4-graphic.

Case 8. ¢ > 5. Then, by Theorem 2.3, it is easy to see that o(7) >
0(Cy,n). Hence 7 has a realization G containing C; as a subgraph. Denote
G; = G\ C,. If there exist z € G, and y € C; such that zy € E(G),
then G contains a path of length £. Now we assume that there is no edge
between V(G;) and V(C;). Take zy € E(C,) and z'y’ € E(G:1), and let
G' =G - {zy+z'y'} + {zz' + yy'}. Clearly, G’ is also a realization of ,
and contains a path of length £. O

3. o(C*,n) for n > (k+ 3)(2k + 5)

In order to determine o(C*,n), we need the following known results.
Let 7 = (dy,ds,...,d,) € NS, and 1 £ k < n. Let

(dl - 11'--)dk—l - l,dk-i-l - 1’-'-addk+1 - liddk+2)"‘)dﬂ)
7|'"— lfdkzky
k (dl - 1,'--)ddp, - l,ddk+1,--~,dk_1,dk+1,--.,dn)
if dp < k.
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Let m;, = (d},d3,...,d,,_,), whered] > dj > -+ > dj,_, is a rearrangement
of the n — 1 terms of m).  is called the residual sequence obtained by
laying off dj from .

Theorem 3.1 [10] Let 7 = (d;,d2,...,d,) € NS, and 1 < k < n.
Then 7 € GS,, if and only if m;, € GS,_1.

Theorem 3.2 8] If # = (di,dz,...,dn) € GS, has a realization
G containing H as a subgraph, then there exists a realization G’ of 7
containing H as a subgraph so that the vertices of H have the largest
degrees of .

Let K; — e denote the graph obtained from K, by deleting one edge.
Lai [11] proved the following

Theorem 3.3 [11] For n=4,5 and n > 7,

_J 3n-1 ifnisodd,
0(K4_e’")"{‘3n—2 if n is even.

For n = 6, if 7 is a 6-term graphic sequence with o(7) > 16, then either 7
is potentially K, — e-graphic or m = (38).
Theorem 3.4 [18] Let 7 = (dy,ds,...,d,) € NS,, where d; = m and
o(m) is even. If there exists an integer n; < n such that d,, > h > 1 and
2
n > # [M%L], then m € GS,,.

Theorem 3.5 [17] Let n > 2r+2 and 7 = (dy,dy,...,d,) € GS, with
dry1 2 1. If doryo 2 7 — 1, then 7 is potentially K,,;-graphic.

Theorem 3.6 [4] Let # = (d;,ds,...,dn) € GSp. Then 7 has a
nonseparable realization if and only if d, > 1 and o(7) > 2(n —1).

Theorem 3.7 [3] Let G be a simple nonseparable graph of minimum
degree & on n vertices, where n > 3. Then G contains either a cycle of
length at least 26 or a Hamilton cycle.

We also need the following lemmas.

Lemma 3.1 Let k >2,n > k+3 and 7 = (d,dy,...,d,) € GS, with
o(m) > (k+ 1)n. If diys < 5L, then = is potentially C*-graphic.

Proof. Since o(n) > (k + 1)n, we have d; > k + 2. Furthermore, by
Theorem 2.3, o(n) = 0(Cr43,n). If n = k + 3, then 7 is potentially C*-
graphic. Assume thatn > k+4. Let pp=m,andfori=1,...,n—k—-3in
turn, p; be the residual sequence obtained by laying off the last term from
pi-1. Then p,_j_3 is a k + 3-term graphic sequence with o(pp_x—3) >
o(m) = 2(dn +dn1 4+ +drys) > (k+1l)n—(n—k-3)(k+1) =
(k+ 1)(k + 3). Hence, p,—k-3 is potentially C*-graphic. By Theorem 3.1,
fori=n-—-k—4,...,0 in turn, p; is also potentially C*-graphic. O

Lemma 3.2 Let k > 2,n > k+3 and 7 = (dy,dy,...,d,) € GS, with
o(w) > (k+ 1)n. Then

(1) di>(k+3)—ifori=1,2,...,[5+2
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(2) If d; = (k + 3) — i for some integer 4, where 2 < i < [£] +2, then
di—1 2 k+2and drys = (k+3)—2

Proof. (1) Assume that there is an 7, 1 < 7 < [£] + 2 such that
d, < (k+2)—r. Theno(m) < (r - 1)(n-1)+(k+2—r)(n—r+1)

—(k+)r+(k+1)n+k+3<1—(k+4) x1+(k+1)n+k+3 = (k+1)n,

a contradlctlon

(2) If d;~y < k+1, theno(n) < < (i-2)(n=1)+k+1+(n—i+1)(k+3—1i) =
(k+1)n+i2—(k+5)i+2k+6 < (k+1)n, a contradiction. Hence d;—; > k+2.
Ifdeys < (k+2)—i,theno(n) < (i-1)(n-1)+(k+3-d)(k+2—(i—
D)+ (k+2-d)(n—(k+2)) = (k+1)n+i%— (k+5)i+2k+6 < (k+1)n,
a contradiction. Hence di43 =(k+3)—4. O

We now define a new graph H (k) on k+3 vertices as follows: If k is odd
and V(K[,';H.z) = {v,va,... ,v[§]+2}, let H(k) be the graph obtained from
K[§l+2 by adding new vertices z;,x2,... 1 L[k ) 420 and joining x; to v; and
v, Z; to vy, V2, ..., 041 for2<i < [§]+1 and T(g142 to vy,vs,... 1 V)42
If k is even and V{(Kg),2) = {v1,v2,..., 94142}, let H(k) be the graph
obtained from K (5142 by adding new vertices z;, zo, . . T 5] +1, and joining
T; to vy and v, z; to v1,v2,...,Vi41 for 2 < ¢ < [ ] and T(g41 tO
V1,V2y... ,Ul§,]+2.

Lemma 3.3 H(k) contains a Hamilton cycle with k chords incident to

v; on the cycle.
Proof. Let

C = STV T2 0B gy, Tk is odd,
Vg2 T 5|41V g 15§V 5] T2V2T1IY g2 I K 8 even.

Then C is a Hamilton cycle of H(k) with v; adjacent to each vertex of
c.o
Let k >2,n > k+3and n = (d,ds,...,d;) € GS, with o(7) >
(k+1)n. We now define sequences 7o, . . . , Tk4+3 as follows. Let mg = 7. We
define
= (d8),...,d{)5, 00, dD) by

(1) deleting d; from o,
(2) subtracting one from the first d; remaining nonzero terms to get the

resulting sequence,
(3) re-ordering the last n — k — 3 terms of the resulting sequence to make

them non-increasing. . ' . |
For 2 i < k+3, given my = (df .., d50, 70, ... dE7Y), we
define |

= (df:zl’ dl(:lS’ d;:}_,p ceey ds:)) by
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(1) deleting dgi'l) from m;_,
(2) subtracting one from the first dg‘_l) remaining nonzero terms to get

the resulting sequence,
(3) re-ordering the last » — k — 3 terms of the resulting sequence to make

them non-increasing.

By the definition of 743, the following lemma. is obvious.

Lemma 3.4 Let k > 2, n > k+ 3 and 7 = (d,ds,...,d,) € GS,
satisfy

(1)di2k+2andd; > (k+4)—ifor2<i< [-§]+2;

(2) diys 2 [§]+ 2 if k is 0dd, and djg),4 > [§] + 2 and diys > [§] +1
if k is even;

(8) 743 is graphic.
Then 7 is potentially H(k)-graphic.

Lemma 3.5 Let k > 2beeven,n >k +3 and 7 = (dy,ds,...,d,) €
GS, with o(r) > f(k,n), where

(k+2)n !k+2!!k+4! +2 1fn> !k+2!gk+4!
fkyn)=4 (k+1)n+2 1f‘n<£5";2)-fﬂl la.ndnlseven,
(k+l)n+1 ifn< i’it%l'il—l and n is odd.

Then d[§]+3 _>_ ["25} + 2.

Proof. It is easy to check that f(k,n) > (k+2)n— M)ék—"'ﬂ+2 forn >
k+3. If dy 5 < & +1, then by Theorem 2.4, o(m) = Y0 & = "F+2d, +
Zt—§+3d' < ((k + 1)(k + 2) + Ez— +3mln{2 + 2 di}) + Et—- +3d =
G+DE+2)+2 g 0d < (5 + 1)(" +2)+2f+1)(n-5-2) =
(k+2n— M’éﬂ < f(k,n), a contradiction. Hence djg}, 3 > [2]+2. ]

Lemma 3.6 Let n > (k + 3)(2k +5) and = = (dy,dy,...,d,) € GS,
with dox46 < k and o(7) > (k+ 1)n. Then d; > 2k + 4.

Proof. If d; < 2k + 3, then o(7) < (2k + 3)(2k + 5) + k(n — 2k — 5) =
(k+1)n+ (k+3)(2k + 5) — n < (k + 1)n, a contradiction. O

Lemma 3.7 Let £k > 2, n > 2k +6 and 7 = (dy,d,...,d,) € GS,
with dak4+6 > k+1 and o(7) > (k+1)n. Then 7 is potentially C*-graphic.

Proof. If diy3 > k + 2, then by Theorem 3.5, 7 is potentially Kj3-
graphic, and hence 7 is potentially C*-graphic. Assume that dg43 =--- =
doxie = k+ 1. Clearly, d; > k + 2. We now consider the following two
cases.

Case 1. dp > k+2 Thend; > (k+4)—ifor2<i< [’°]+2 and
diys > [E] +2. For i =0,1,...,k+3, the values of d{’),,...,d$} ¢ differ
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by at most one. Hence mx43 = d}:,,";s), dgﬁ?, ., d%+%) satisfies
k+12m=dEd > >dfH) >m_1

for some m > 1. If m = 1, then mx43 must be graphic as o(mr43) is even.
If m > 2, then

1 [(m+(m—1)+1)2

< < .
— 7 ]_m+2_k+3

By Theorem 3.4, 7,3 is graphic. Thus, 7 is potentially C*-graphic by
Lemmas 3.4 and 3.3.

Case 2. dy = --- =dgkys = k+ 1. Then m; = (k*+2, d( {1 o d2k+6’
,dg)). Let
(kk+2) if k is even,
P=N (k1 k—1) if kis odd,
and
1 -
du%m ills, o (k)+6’1) 1)) © if k is even,
(dgc 1 dk+5a c1%ok46re 0 ,dn ) if k is odd.

Clearly, o(p) and o(p’) are even. Similarly, it is easy to follow from Theorem
3.4 that both p and p’ are graphic. It is easy to see that p has a realization
containing a Hamilton cycle for ¥ = 2 and 3. If k > 4, then by Theorems
3.6 and 3.7, p also has a realization containing a Hamilton cycle. Let G; be
a realization of p containing a Hamilton cycle, and let G2 be a realization
of p'. Let G' = G, UG: if k is even and G’ be the graph obtained from
G U Gs by joining the vertex of Gy with degree k — 1 to the vertex of Go
with degree dg& —1if k is odd. Clearly, G’ is a realization of m;. Let G
be the graph obtained from G’ by adding a new vertex of degree d; and
joining it to the vertices whose degrees are reduced by one in going from
7 to m;. Then G is a realization of # and contains a cycle with & chords
incident to the vertex of degree d; on the cycle. O
Lemma 3.8 (1) Let k=1 and n > 4. Then

& 3n~1 ifnisodd,
U(C yn) 2 { 3n—2 ifniseven.

(2) Let k (= 2) be even and n > k+ 3. Then

(k+2)n — A0 4 g jf > tBbtd)
o(C¥n) > (k+1)n+2 1fn < Qﬂw 1 and nis even,
(k+1)n+1 1fn<mm—landnisodd.
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(3) Let k (> 3) be odd and n > k + 3. Then o(C*,n) > (k+ 1)n + 2.
_f (n-1,27"1) if n is odd,
Proof. (1) Take m = { (n-1,2"21) if nis even,

and let
C= { K + 231K, if n is odd,

K, + (" 2=2K,UK;) ifniseven.
Then, it is easy to see that G is the unique realization of = and contains no
cycles of length at least 4. Hence 7 is not potentially C*-graphic. Thus,

3n—1 ifnisodd,

1 —
o(C ,")2‘7(7’)+2_{ 3n—-2 ifniseven.

(2) Firstly, we consider 7 = ((n — 1)%+1, 5+ 1)*=%-1), It is easy
to see that K st K, _x_, is the only graph realizing 7, and has no

cycles of length at least k + 3, so that 7 is not potentially C*-graphic.
Hence o(C*,n) 2 o(m)+2 = (k+2)n - Mﬂl + 2. Now we consider
7 = ((k+1)") if n is even and 7 = ((k + 1)"‘1 k) if n is odd. Clearly, 7
is not potentially C*-graphic. Hence

k _J (k+1)n+2 ifniseven,
o(C ’")Z"(")“‘{ (k+1)n+1 ifnisodd.

Thus, we have

(k+2)n !k+2!!k+4! +2 lfn> Sk+2!!k+4!
o(Ckn) 24 (k+1)n+2 lfn < Mk—“l 1 and n is even,
(k+1)n+1 ifn< !k—“l[ﬂ-l-l and 7 is odd.

(8) Take # = ((k + 1)*). Clearly,  is not potentially C*-graphic.
Hence o(C*,n) 2 o(m) +2=(k+1)n+2. O

The following Theorem 3.8 is the main result of this section.

Theorem 3.8 (1) Let k=1 and n > 4. Then

k. ~_J 3n—1 ifnisodd,
o(C ’n)_{3n—2 if n is even.

(2) Let £ >2and n > (k + 3)(2k +5). Then

o(C*,n) = (k+2)n — &2k L9 if & is even,
(k+1)n+2 if k is odd.

Proof. (1) By Lemma 3.8, we only need to prove that if 7 = (dy,ds, ...,
‘dp) € GS,, with
3n—-1 ifnisodd,
o(m) 2 { 3n—-2 ifniseven,
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then = is potentially C'-graphic. If m # (3%), then by Theorem 3.3, =
is potentially K4 — e-graphic, and hence = is potentially C-graphic. If
7 = (8%), then it is easy to check that = is also potentially C*-graphic.

(2) Assume that k > 2, n > (k+ 3)(2k+5) and 7 = (dy,d2,...,dn) €
GS, with

o(r) > (k+2)n—£k—*£)3(ﬂ'ﬁ+2 if k is even,
|l (k+1)n+2 if k is odd.

By Lemma 3.8, it is enough to prove that « is potentially C*-graphic.
Clearly, o(7) 2 (k+1)n+2,andso dy 2 k+2. If dy =n—1 or there is an
integer t, k+3 < t < d; +1 such that d; > d;;, then by Theorem 2.5, the
residual sequence m; = (d},d5,...,d;,_,) obtained by laying off d, from =
satisfies d] =dy — 1,...,d} ., = dks3 — 1 and

(k+2)n — EAEH) 4 5 _9(n —1)

= 0(Pr+1,mn — 1) if k is even,
(k+1)n+2-2(n-1) 2 0(Pry1,mn— 1)
if k is odd.

o(m}) =o(m) — 2dy >

By Theorem 3.2, there is a realization G’ of 7} containing Px1 as a sub-
graph so that the vertices of Pi41 have degrees dj,...,d} . This implies
that 7 is potentially C*-graphic. We now assume that

n=22>d > 2dipa 2 deys = =dugr 2 dayys > o 2 dn.

If diys < B2 or dokye > k + 1, then by Lemma 3.1 or Lemma 3.7, 7 is
potentially C*-graphic. Hence, we may further assume that dy.43 > [-’2‘-] +2
if k is odd, dp43 > [g] +1if k is even and dax46 < k. Lemma 3.5 implies
that djg),3 > [5] + 2 for even k. By Lemma 3.6, we have dy > 2k + 4, and
hencen—22>dy > --- > dgys = -+ = dagt6 = + - = dg,+2. By Lemma
3.2(1), we only consider the following two cases.

Case 1. d; > (k+4) —ifor 2 <i < [§]+ 2 By Lemmas 34
and 3.3, it is enough to check that mi.3 is graphic. Clearly, me3 =

k+3 k+3 k+3 .
(dfc:; )v--, ékie),..., (fe+ )) satisfies

k2m=diY 2 2d500 >m-1

for some m > 1. If m = 1, then 743 must be graphic as o(mk4.3) is even.
If m > 2, then

1 [(m-l-(m-—1)+1)2

< < .
e 7 ]_m+2_k+3
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By Theorem 3.4, 743 is graphic.

Case 2. There is an integer ¢, 2 < i < {£]+2 such that d; = (k+3)—i.
By Lemma 3.2(2), di—1 2 k + 2 and di43 = (k + 3) — 2. We now consider
Mooy = ((k+4—20)k+4=5 d0-D (D),

Subcase 2.1. k is odd. Let

f ((k+4 - 26)k+ety if (k + 4 — 2i)(k + 4 — 1) is even,
P= ((k+4—-20)+3% k+3—2) if (k+4— 2)(k+4—1)is odd,

and . . . .
@D, de P, dh LS Y)
;) if (k+4—2i)(k+4—1i)iseven,
= (d(i—l) -1 d(i—l) (i—-1) (i—l))
k+4 18,45 1o 1Cokqgr: 0

if (k + 4 — 24)(k + 4 — 1) is odd.

Clearly, o(p) and o(p’) are even, and it is easy to follow from Theorem 3.4
that both p and p' are graphic. If i = [£] + 2 = &£3, then

_J a™) i &5 is even,
P=1 a%%,0)  if E£5 is odd.

Since any realization of p has at least two edges, it is easy to get that =
has a realization G containing a cycle with k& chords incident to the vertex
of degree d; on the cycle. If i = [£] + 1= &L, then

- (3%‘7) if 3T "; ") is even,
P=0 3%,2)  if 2D s odd.

It is easy to see that p has a realization containing a Hamilton cycle, and
so 7 is potentially C*-graphic. If i < [!2‘- = L;—l, then by Theorems 3.6 and
3.7, p has a realization containing a cycle of length at least 2k + 6 — 4i or
a Hamilton cycle. Hence 7 is also potentially C*-graphic.

Subcase 2.2. k is even. Let p = ((k + 4 — 2i)***~%) and p’ =
(d;:_::), ey g’,;lg - 2d$™ D). By Theorem 3.4, both p and p’ are graphic.
Ifi = % + 2, then d§+2 =(k+3)-i= g + 1, which is impossible by
Lemma 3.5. Hence 2 < i < -’5- + 1. By Theorems 3.6 and 3.7, p has a
realization containing a cycle of length at least 2k + 8 — 4i or a Hamilton
cycle. Therefore, 7 is potentially C*-graphic. O
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