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Abstract Let G = (V, E) be a graph. A set S C V is a dominating set of
G if every vertex not in S is adjacent to some vertex in S. The domination
number of G, denoted by v(G), is the minimum cardinality of a dominating
set of G. A set S C V is a total dominating set of G if every vertex of V' is
adjacent to some vertex in S. The total domination number of G, denoted
by 7:(G), is the minimum cardinality of a total dominating set of G. In
this paper, we provide a constructive characterization of those trees with
equal domination and total domination numbers.

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. The open
neighborhood of a vertex v € V is N(v) = {u € V | wv € E}, the set of
vertices adjacent to v. The closed neighborhood of v is N[v] = N(v) U {v}.
For S C V, the open neighborhood of S is defined by N(S) = UyesN(v),
and the closed neighborhood of S by N[S] = N(S)U S. The private
neighborhood PN (v, S) of v € S is defined by PN(v,S) = N[v] - N[S -
{v}]. The subgraph of G induced by the vertices in S is denoted by < § >.
For X,Y C V, if X dominates Y, we write X > Y,or X > GifY =V, or
X»-yifY = {y}

A set S C V is a dominating set of G if every vertex not in S is adjacent
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to some vertex in S. (That is N[S] = V.) The domination number of G,
denoted by 4(G), is the minimum cardinality of a dominating set of G. A
dominating set of G of cardinality v(G) is called a v-set of G.

Let G = (V, E) be a graph without isolated vertices. Aset SC Visa
total dominating set of G if every vertex of V is adjacent to some vertex
in S. (That is N(S) = V.) The total domination number of G, denoted
by 1:(G), is the minimum cardinality of a total dominating set of G. A
total dominating set of G of cardinality v:(G) is called a +;-set of G. A
set S C V is a paired-dominating set of G if S dominates V and < § >
contains at least one perfect matching. The paired-domination number of
G, denoted by 7,(G), is the minimum cardinality of a paired-dominating set
of G. Total domination in graphs was introduced by Cockayne, Dawes, and
Hedetniemi [1]. Paired-domination in graphs was introduced by Haynes and
Slater [7). The concept of domination in graphs, with its many variations,
is well studied in graph theory (see [4, 5}).

An area of research in domination of graphs that has received consid-
erable attention is the study of classes of graphs with equal domination
parameters. For any two graph theoretic parameters A and u, G is called
a (A, p)-graph if A(G) = u(G). The class of (v, )-trees, that is trees with
equal domination and independent domination numbers, was characterized
in [2]. In (3], the authors provided a constructive characterization of trees
with equal independent domination and restrained domination numbers,
and a constructive characterization of trees with equal independent dom-
ination and weak domination numbers is also given. In [6], those trees
with strong equality of domination parameters were characterized. In [8],
the authors characterized those trees with equal domination and paired-
domination numbers.

An immediate consequence directly of the definitions of domination,
total domination and paired-domination numbers, we have

Proposition 1 ([7]) Let G be a graph without isolated vertices. Then
Y(G) £ 1(G) < 1(G).

By Proposition 1, those trees with equal domination and paired-domination
numbers must be trees with equal domination and total domination num-
bers. In this paper, we give a constructive characterization of trees with
equal domination and total domination numbers. Figure 1(a) gives the tree
T of minimum order with ¥(T) = %(T) = 4,(T), (b) gives the tree T of
minimum order with ¥(T') = %(T) < ~,(T).
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(a) (b)

Figure 1: (a) v(Pa) = 7(Ps) = %(Ps) =2 (b)) v(T) = n(T) =3 <
"(T) =4

2 Main result

Let T = (V, E) be a tree with vertex set V and edge set E. A vertex of
T is said to be remote if it is adjacent to a leaf. The set of leaves of T is
denoted by L(T). In this paper, we use T, denote the subtree of T' — uv
containing v for uv € E(T). P, represents a path with ! vertices. To state
the characterization of trees with equal domination and total domination

numbers, we introduce five types of operations.

Type-1 operation: Attach a path P, to a vertex v of T', where v is in a
~¢-set of T'.

Type-2 operation: Attach an end vertex of a path P to a vertex v of a
tree T', where v is in a -y;-set of T' and for every y-set X of T, there is no
vertex v € X such that PN(u, X) = {v} in T.

Type-3 operation: Attach an end vertex of a path P; to a vertex v of a
tree T, where v is in a ~;-set of T' and for every «-set X of T, there is no
vertex u € X such that PN(u,X) = {v} in T.

Type-4 operation: Attach a remote vertex of a path P4 to a vertex v of
a tree T, where v is a vertex such that for every y-set X of T, there is no
vertex u € X such that PN(u,X)={v} inT.

Type-5 operation: Attach a vertex ug of Ty to a vertex v of a tree
T, where T} is a tree with V(T1) = {uo,u1,u2,us,us} and E(T}) =
{uou1, uruz, urua, ugus}.

Let J; be the family of trees with equal domination and total domina-
tion numbers. Then

Je ={T: v(T) = %(T)}.
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We define the family F; as :

F:={T: T is obtained from P4 by a finite sequence
of operations of Type-i,i = 1,2,3,4, 5}.

We shall prove that

Theorem 2
$ = .7::.

3 The proof of Theorem 2

We begin with a simple observation.

Lemma 3 If v i3 a remote vertex of a tree T, then for each total dominat-
ing set S, v € S.

Lemma 4 If T is a tree with v(T) = v(T'), S is a y-set of T, then for
eachv € S, PN(v,S) # ¢.

Proof. Suppose to the contrary that there exists a vertex v € S such
that PN (v, S) = ¢, then S — {v} is a dominating set of T, contradicts to

%(T) =¥(T). o

From Lemma 3 and Lemma 4, or the Observation 2 in [9], we have

Lemma 5 Let T be a tree with v(T) = v(T), S is a y-set of T. Then
SNL(T) = ¢.

By Lemma 5, we know that every ~,-set of a tree T with v(T') = v(T)
contains no leaves of T'.

Lemma 6 IfT is a tree with v(T) = v(T'), then T has a unique ~;-set.

Proof. We proceed by induction on n, the order of the tree T'. If n < 4,
then T € J; = {P4} and T has a unique 7;-set. Let n > 5 and assume that
the result is true for all trees 7’ € J; of order n/, n’ < n. Let T € J; be
a tree of order n and let vov vz - - - v; be a longest path in T'. If d(v;) > 3,
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then there exists a leaf u adjacent to v;. Let TV = T — {u}. Then, by
Lemma 3 and Lemma 5, 77 and T have the same 7;-set. Clearly, T’ has a
7(T")-set containing vy, Such a y(T”)-set is also a dominating set of T'. So,
1(T") = %(T") = 4(T') = 4(T"). By inductive hypothesis, T’ has a unique
~¢-set. It follows that T has a unique ~;-set. Hence, we may assume that
d(vl) =2.

Case 1: d(v) > 3.
Case 1.1: There is a remote vertex u € N(vz) \ {v1,v3}.

Let S be a y;-set of T and T/ = T,,, be the subtree of T'— vou containing
va. Then, by Lemma 3 and Lemma 5, {v;,v2,u} C S. So, § — {u} is
a total dominating set of T/ and ¥ (7T') < 7(T) — 1. However, let S’
be any y:-set of T/, by Lemmas 3 and 5, {v1,v2} € §’. Then S’ U {u}
is a total dominating set of T. So 1:(T) < %(T') + 1. Consequently,
%(T) = 71(T’) + 1. Since ¥(T) < ¥(I") +1 < %(T") +1 = %(T) = ~(T),
we have 7(T") = 1(T") and T’ € J;. By inductive hypothesis, T/ has a
unique y;-set S’ and {vi,v2} C S'. It follows that S = S’ U {u} is the
unique v;-set of T'.

Case 1.2: All of u € N(v2) \ {v1,v3} are leaves. Let S be a y-set of T,
then, by Lemma 3, {v;,v} C S.

If v3 € S, then v3 ¢ PN(v,S). Let TV = T,, be the subtree of
T — vyv; containing vo, then S — {v;} is a total dominating set of T". So
7(T") € %(T) — 1. On the other hand, let S’ be any 7;-set of T”, then,
by Lemma 3, v2 € §’. So S’ can be extended to a total dominating set of
T by adding to it the vertex v;. Hence 1(T") < %(T') + 1. Consequently,
(T) = 7(T") + 1. Since ¥(T) < ¥(T") +1 < %(T") +1 = %(T) = v(T),
we have y(T") = %(T") and T’ € J;. By inductive hypothesis, T’ has a
unique ~;-set S’ with v, € S’. It follows that § = 5§’ U {v,} is the unique
~¢e-set of T.

If 3 ¢ S and v3 ¢ PN(v2,S), let T' = T,, denote the subtree of
T — vpus containing vs, then § — {v1,v2} is a total dominating set of T".
So, %(T") € 7(T') — 2. However, any ;-set of T can be extended to a total
dominating set by adding to it the vertices vy and va. So, 1:(T) < 1(T')+2.
Consequently, 7:(T) = % (T") + 2. Since ¥(T) < v(T") + 2 < 1(T") +
2 = 3(T) = ¥(T), we have v(T’) = %(T') and T' € J;. By inductive
hypothesis, T has a unique v;-set S’. It follows that § = S’ U {v1,v} is
the unique ;-set of T.

If v3 € PN(vg,S), then vz ¢ S and for any vertex u € N[vs] \ {v2},
u ¢ S. By Lemma 3 and Lemma 5, v3 is not a remote vertex, and neither
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vz is adjacent to a remote vertex nor v; is adjacent to a vertex which is
adjacent to a remote vertex. Then, d(vs) = 1 or d(v3) = 2. If d(v3) = 1,
then T has a unique y;-set S = {v,v2}. If d(v3) = 2, let T = T,,, be the
subtree of T'—v3v, containing vy, then for any y;-set S of T', S—{v;,v2} isa
total dominating set of T’. So, 4:(T") < 7:(T')—2. However, any ~,-set of T’
can be extended to a total dominating set of T' by adding to it the vertices
vy and va. So %(T) < ¥(T") + 2. Consequently, 7:(T') = 7(T’) + 2. Since
Y(T) < Y(T")+2 < %(T')+2 = %(T) = y(T), we have 7(T") = 7(T") and
T’ € J;. By the inductive hypothesis, T has a unique v;-set S’. It follows
that § = S’ U {v1,v2} is the unique ~;-set of T

Case 2: d(vp) = 2.

By Lemmas 3 and 4, for any «;-set S of T, v1,v2 € S, vz € PN(v,95),
vg ¢ S. As discussed in the case v3 € PN(vy,S) of case 1.2, we can infer
d(vs) = 2. Furthermore, we claim that d(v4) = 2 and vs € S. Otherwise,
there is a vertex u € N(vs) \ {vs,vs}. By Lemma 3, u is not a leaf. Let T},
denote the subtree of T'— uv, containing u. From the above discussions, T},
must be a path P, with [ < 4. By Lemma 5, T\, # P,. So, T, = P3 or P;.
Let Ty, denote the subtree of T — v4vs containing v4 and T, denote the
subtree of T' — v4vs containing vs. Then, ¥(T,,) < d(v4) < 2(d(vq) — 1) =
|S NV (T,,)|. Since v4 ¢ S, SNV(T,,) is a total dominating set of T, so,
7(Tos) < W(T)=2(d(ws,)~1) and A(T) < 1(Tuy) +7(Tip) < d(va) +7(Top)-
Consequently, ¥(T') < 7:(T), a contradiction. So, d(vs) = 2 and vs € S.
Let T' = T — {wo,v1,v2,v3}, then S — {v1,v2} is a total dominating set
of T'. So 7(T') < %(T) — 2. However, any v;-set of T' can be extended
to a total dominating set of T by adding to it the vertices v; and vs. So
%(T) < %(T') + 2. Consequently, v(T) = 7(T") + 2. Since y(T) <
2+9(T") £ 2+ %(T") = %(T) = ¥(T), we have %(T’) = 4(T") and
T' € J;. By inductive hypothesis, T” has a unique ,-set S’. It follows that
S = 8§’ U {v,v2} is the unique ~;-set of T'. m]

Lemma 7 If T' € J;, and T is obtained from T' by a Type-i operation,
1=1,2,3,4,5. Then T € J;.

Proof. Let T’ € J;. Then, by Lemma 6, T’ has a unique +;-set S’. Suppose
that T is obtained from 7" by attaching a graph G; to the vertex v of 7"
satisfying the conditions required by the operation of Type-i, i = 1,2, 3,4
or 5.

If i = 1, then G; = P;. Let P, = u, then u is a leaf of T adjacent
tov € §'. Thus S is also a total dominating set of T, consequently, S’
is a y-set of T'. Since Y(T') 2 ¥(T”) = %(T') = %(T) > v(T), we have,
(T)=(T) and T € J;.
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If i = 2, then G2 = P, = upui, assume that u, is adjacent to v € §’.
Then S = S’ U {u;} is a total dominating set of T, so 1:(T") < v(T') + 1.
Let X be any v-set of T' with u; € X. If v ¢ PN(uy,X), then X \ {u,}
is a dominating set of T”, so 4(T") < 4(T) — 1. If v € PN(u3, X), then
XNV(T') = T' — {v}. We claim that y(T") < 4(T) — 1. Otherwise, suppose
that v(T') = 4(T), then X' = (X N V(T")) U {v} is a v-set of T’ and
PN(v,X') = {v} in T, contradicts to the choice of v required by Type-2
operation. So, ¥(T") < y(T) - 1. By v(T) 2 y(T") +1 = %(T") +1 2
Y(T) = v(T), we have ¥(T") = 7(T) and T € J;.

If i = 3 then G3 = Ps = upuiususuy, assume that u, is adjacent
tov € 8. Then § = S’ U {u3,uz} is a total dominating set of T, so
Y(T) < 7(T')+2. Let X be any y-set of T with ug € X. If v ¢ PN (ug, X),
then XNV (T) is a dominating set of T/, so ¥(T") < y(T)-v(Ps) = v(T)-2.
If v € PN(u4,X), then XNV (T") > T’ — {v}. So y(T") < v(T"— {v}) +1 £
¥(T)—1. We claim that v(T”) < v(T") — 2. Otherwise, suppose that y(T") =
¥(T) -1, then X' = (XNV(T"))U{v} is a y-set of T and PN (v, X') = {v}
in 7', contradicts to the choice of v required by Type-3 operation. So,
Y(T') < ¥(T) — 2. Since 7(T) £ %(T") + 2 = ¥(T") + 2 < ¥(T), we have
YT)=n(T)and T € J:.

If : = 4, we can prove T € J; similar to the proof of i =2 and 3.

If i = 5, then G5 = T}, where T} is the tree defined in Type-5 operation.
Then S = §'U{u1,u2} is a total dominating set of T', so 7(T') < 7(7")+2.
Let X be any y-set of T. If up ¢ X, then XNV(T') > T and XNV (Ty) >
Th. Since | X NV(T1)| 2 [y(Th)| = 2, +(T") < X nV(T')| < »(T) -
2. If up € X, then X NV(T") » T' — {v} and | X N V(T1)| > 3. So,
AT') 9T = {v}) +1 < |X AV(T)| +1 < 1(T) -3+ 1 = A(T) — 2. By
%(T) £ 7(T") +2=7(T") + 2 < ¥(T), we have ¥(T) = 7(T) and T € ;.
a

Lemma 8
F: C Tt

Proof. Note that Py € J;. Let T € F; be a tree obtained from P; by a

number of operations of Type-1, Type-2, Type-3, Type-4 or Type-5. By
Lemma 7, we can easily prove that T € J; by induction on the number of
operations required to construct the tree T'. m]

Lemma 9
J: € Fu.
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Proof. Let T be any tree in J;, we prove that T € F; by induction on n,
the order of the tree T. If n < 4, then T € J; = {P4} and clearly T € F;.
Assume that the result is true for all trees T € J; of order n’ < n, where
n > 5. Let T € J; be a tree of order n and let voviv2 - - - v; be a longest path
in T. By Lemmas 6 and 3, 5, T has a unique y;-set S and {v;,v2} € S. In
the following, we will follow the notation from the proof of Lemma 6 and
omit the proof of some results which have been proved in Lemma 6.

If d(v1) > 3, then there exists a leaf u adjacent to vy in T. Let TV =
T — {u}. As shown in Lemma 6, v,(T") = v(T"). Hence, T" € J;. By the
inductive hypothesis, T/ € F;. Hence T is obtained from 7" by a type-1
operation. Therefore, T € F,. Now assume that d(v,) = 2.

Case 1: d(v2) = 3.
Case 1.1: There is a remote vertex u € N(v2) \ {v1,vs}.

Let T' = T,, be the subtree of T — vau containing v;. As shown in
Lemma 6, TV € J; and %(T") = 7:(T") + 1. By inductive hypothesis, T" €
Fi. Now, we prove that v, satisfies the conditions required by the Type-2
operation. Let X’ be any vy-set of T', we claim that there is no vertex
w € X' such that PN(w, X’) = {vz}. Otherwise, X = (X' \ {w}) U {u}
is a dominating set of T, then 4(T") < 4(T”), contradicts to the fact that
YT) = %(T) = %(T") + 1 = ¥(T") + 1. Therefore, T is obtained from 7’
by a Type-2 operation. Thus T € F;.

Case 1.2: All of u € N(v3) \ {v1,v3} are leaves of T..

If v3 € S, then v3 ¢ PN(v2,S). Let T = T, be the subtree of T —vv;
containing vo. As shown in Lemma 6, T € J; and %(T) = 1(T") + 1. By
inductive hypothesis, TV € F;. We prove that v, satisfies the conditions
required by Type-2 operation. For every vy-set X’ of T/, we claim that
there is no vertex w € X’ such that PN(w, X’) = {ve}. Otherwise, X =
(X'\ {w})U {v:1} is a dominating set of T. Then ¥(T) < ¥(T"), contradicts
to the fact that ¥(T') = %(T) = 7(T") + 1 = ¥(T") + 1. Therefore, T is
obtained from T” by a Type-2 operation. Thus T € F;.

Ifvz ¢ Sand vz ¢ PN(vy,5), let T’ = T,,, denote the subtree of T—vqus3
containing vs, as shown in Lemma 6, T € J; and 7(T") = v+(T") + 2. By
inductive hypothesis, TV € F;. We prove that vs satisfies the conditions
required by Type-4 operation. For every y-set X’ of T”, we claim that there
is no vertex w € X’ such that PN(w, X’) = {vs}. Otherwise, X = (X'\
{w})U{v1,v2} is a dominating set of T'. Then 4(T") < ¥(T")+1, contradicts
to the fact that ¥(T') = 7(T) = %(T’) + 2 = 4(T’) + 2. Therefore, T is
obtained from T by a Type-4 operation and a finite sequence of operations
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of Type-1. Thus T € F;.

If v3 € PN(vz,95), as shown in Lemma 6, d(vs) = 1 or d(vz) = 2. If
d(vs) = 1, then T is obtained from P; by a finite sequence of operations
of Type-1. Then T € F;. If d(v3) = 2, let T,,, be the subtree of T — v3vy4
containing vz and T’ = T,,, be the subtree of T — v3v4 containing v4, then
Ty, is obtained from T} (T} is the tree defined in Type-5 operation) by a
finite sequence of operations of Type-1. As discussed in Lemma 6, T’ € J;.
By inductive hypothesis, T/ € F;. So, T is obtained from T” by a Type-5
operation and a finite sequence of operations of Type-1. Thus T € F;.

Case 2: d(vq) = 2.

As discussed in Lemma 6, we have d(v3) = d(vq) = 2 and v3,v4 ¢
S, vs € S. Let T/ = T — {vp,v1,v2,v3,v4}. Then S — {v1,v2} is a total
dominating set of T, so, 1:(T") < 7(T") — 2. Since v(T) < ¥(T')+2 <
2T +2 £ %(T) = ¥(T) , we have y(T") = v(T'). Then T' € J;.
By inductive hypothesis, 7' € F;. For every y-set X' of T”, we claim
that there is no vertex w such that PN(w,X’) = {vs}. Otherwise, X =
(X" \ {w}) U {v1,v4} is a dominating set of T, then v(T') < v(T") + 1,
contradicts to the fact that ¥(T) = 7(T) 2 %(T') + 2 = v(T") + 2. Thus
T is obtained from T” by a Type-3 operation. Then T € F;.

The proof is completed. O

Theorem 2 follows as an immediate consequence of Lemma 8 and Lemma 9.
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