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Abstract

A diagonalised lattice is a two dimensional grid, where we add exactly
one arbitrary diagonal in each square, and color each vertex black or white.
We show that for every diagonalised lattice there is a walk from the left
to the right, using only black vertices, if and only if there is no walk from
the top to the bottom, using only white vertices.

1 Introduction

The following chessboard problem, which is also called Steinhaus Chessboard
Theorem, is due to Steinhaus [4, p. 36]. Let there be a chessboard with n rows
and m columns. The squares are colored arbitrarily black and white. Assume
that a king is not able to step from the left column to the right column, by
using only black squares. Then a rook can go from the top row to the bottom
row, by using only white squares. Surowka [5] gives a combinatorial proof of
a theorem that implies the Steinhaus Chessboard Theorem. In Section 4, we
will prove the Steinhaus Chessboard Theorem with a theorem for diagonalised
lattices, which we define in Section 2.

Gale [1] showed that the game of Hex can not end in a draw, and that this
fact is equivalent to the Brouwer Fixed-Point Theorem. The dual graph of the
game of Hex is a diagonalised lattice, where all diagonals are directed in the same
way. One direction of our Theorem 1 in Section 3 says that, if in a diagonalised
lattice there is no horizontal black walk then there is a vertical white walk.
This statement is also equivalent to the Brouwer Fixed-Point Theorem, as in
Gales proof [1, Section 3] the direction of the diagonals does not play any role.
Nevertheless, we will give a proof by induction for both directions of Theorem 1
in Section 3, and notice that the Brouwer Fixed-Point Theorem occurs in the
proof of both directions.

The following idea is contained in the proof of a basic result of plane topology
[2, Lemma 2.1] of Luo et al.. Let there be a (plane) brick wall such that some
of the bricks are colored black and the others are colored white. If there is no

ARS COMBINATORIA 97A(2010), pp. 59-63



way from the left to the right using only black bricks, then there is & way from
the top to the bottom using only white bricks. We notice that the dual graph
of such a brick wall is a diagonalised lattice.

2 Definition of Diagonalised Lattices

An undirected graph G is a pair (V, E), where V = V(G) is a finite set, and
E = E(G) is a subset of {{a,b} | a,b € V and a # b}. We will write @ ~ b if
{a,b} € E. A bimarked graph G = (V, E, M) is an undirected graph G = (V, E)
together with a function M : V — {0,1}. We say a vertex u € V is black if
M(u) =0 and it is white if M(u) = 1.

A diagonalised lattice G = (V,E,M) is a bimarked graph, where
Ta,Th Yo, Yb € Z, Z is the set of integers, z, < Tb, Ya < Y5, and V = {(z,9) €
2z, < z < zpandy, < ¥ < w}. The edges of G are defined as fol-
lows. For t;,z2,41,92 € Z we have on the one hand (z1,11) ~ (Z2,12) if
|zg = z1] = 0 and |y2 — 41| = 1l or |z — 21| = 1 and |y2 — 1| = 0. On
the other hand, if 2 —z; = 1 and y2 — y1 = 1, then we have exactly one
of the edges (xh'yl) ~ (x20y2) and (xls y2) ~ (1'2:!!1)’ ie, the diagonals in
G. The width of G is z, — z, and the height of G is y, — 5. We now define

Figure 1: Example of a diagonalised lattice.

L={(z,y) € Vlz = 2.}, R = {(z,9) € V|z = 2}, T = {(z,9) € Vly = s},
and B = {(z,y) € Vly = ya}, i.e., the left, right, top, and bottom side of the
diagonalised lattice.

Let G = (V, E) be an undirected graph. A walk of length n > 1 from a to
b in G is a sequence (ap,a1,...,as) of vertices in V such that ag = a, a, = b,
and a;_; ~ a; for i = 1,...,n. If all vertices of a walk are distinct then it is a
path. A walk is black if all its vertices are black, and it is white if all its vertices
are white. We call a walk from a to b horizontal if a € L and b € R and we
call it vertical if « € T and b € B. By a Jordan arc J we denote a continuous
map from [0, 1] into R? such that J(z) # J(y) for z # y. A graph G is planar if
there is a drawing of G in the plane such that the vertices are drawn as points
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at pairwise different positions, each edge is represented by a Jordan arc between
the corresponding points, and two Jordan arcs may only intersect at points of
common vertices.

3 The Main Result

Theorem 1 In every diagonalised lattice there is a horizontal black walk if and
only if there is no vertical white walk.

Proof. Let G = (V, E, M) be a diagonalised lattice. To prove the first direction,
we indirectly assume that there is a horizontal black walk and a vertical white
walk in G. Let G be drawn planar in the plane such that a vertex (z,y) € V
is represented by the point {z,y) in the plane and the edges are represented by
straight lines. There is a shortest horizontal black walk and a shortest vertical
white walk in G, which means that both walks are paths. The representations
of those paths are continuous paths in the rectangular set {(z,y) € Rz, <
z<zpandy, <y < ¥} By Lemma 2 of Maehara(3] the continuous paths
must have a common point. The only allowed common points of Jordan arcs
in a planar drawing are points of common vertices. Thus, the two paths have
a common vertex, which is a contradiction. We notice that, for the proof of
Lemma 2, Maehara uses the Brouwer Fixed-Point Theorem, which he then
applies to prove the Jordan Curve Theorem.

To prove the second direction, we have to show that there is a horizontal
black walk in G or there is a vertical white walk in G. If the height of G is 0,
we have a vertical white walk in G if any of the vertices is white and otherwise
we have a horizontal black walk in G. The same argument works if the width
of Gis 0.

If the height of G is 1, we use induction on n, the width of G. The casen =0
was discussed before. Let n > 1 and G’ be G without the right two vertices,
indicated by the gray color in Figure 2 and Figure 3, where the diagonals are
not shown. We indirectly assume that there is no horizontal black walk and no
vertical white walk in G. Thus, there cannot be a vertical white walk in G,
which implies the existence of a horizontal black walk in G’, by the induction
hypothesis. Up to isomorphism, there are only two possibilities, of which the
first is shown in Figure 2. Here, the upper gray vertex has to be white and this

implies that the lower gray vertex is black, and therefore, one diagonal yields
a vertical white walk in G and the other produces a horizontal black walk in
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G, contradicting our assumption. Figure 3 shows the second possibility, where
both gray vertices have to be white, which also is a contradiction. If the width

of G is 1, the proof works in the same way.

Now, we indirectly assume that G is a diagonalised lattice with minimum
number of vertices, such that there is no horizontal black walk and no vertical
white walk in G. We denote G without L, R, T, and B by M, as in Figure 4. M
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Figure 4:

is not empty, since the width and the height of G must be greater than 1, which
we proved before. In M there has to be a horizontal white walk or a vertical
black walk. Since otherwise we could rotate M by 90 degrees and obtain a
diagonalised lattice, with no horizontal black walk and no vertical white walk
in it, which is a contradiction to the minimality of G. We assume without loss
of generality that there is a vertical black walk in M, as shown in Figure 4,
since the proof works analogously if we assume a horizontal white walk in M.
We denote the graph without R by G, and the graph without L by Gr. In G
and Gr we have a horizontal black walk, since by our assumption there is no
vertical white walk. The two horizontal black walks of G and Gr combined
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with the vertical black walk of M produce a horizontal black walk of G, which
is a contradiction. Actually, at this point, we again use Lemma 2 of Maeharaf3)],
in a similar way as above, and therefore the Brouwer Fixed-Point Theorem also
occurs implicitely in the proof of the second direction of our theorem. 0O

4 Steinhaus Chessboard Theorem

To prove the Steinhaus Chessboard Theorem with Theorem 1, we assume, that
the rook has no possibility to go from the top row to the bottom row, by using
only white squares on an arbitrarily black and white marked chessboard. We
will show that the king has a walk from the left to the right.

The dual graph of the chessboard is a lattice. We mark the vertices of this
lattice with the color of the corresponding squares of the chessboard. Now, we
will add diagonals to the squares of the lattice to obtain a diagonalised lattice.
If all vertices of a square S are white, we may add any diagonal to S, without
producing a vertical white walk, as this vertical white walk would have been in
the lattice before, also. If at least one vertex of S is black, we add a diagonal to
S which leads into at least one black vertex. Again no vertical white walk can
arise. After we have added a diagonal to each square of the lattice, we apply
Theorem 1 and obtain that there is a horizontal black walk. This horizontal
black walk is a walk for the king on black squares of the chessboard from left

to right. O
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