Unimodality of independence polynomials of
very well-covered graphs

Shih-Yan Chen* and Hsin-Ju Wang!

Abstract. In this paper, we show that the independence polynomial
I{(G*; z) of G* is unimodal for any graph G* whose skeleton G has stability
number a(G) < 8. In addition, we show that the independence polynomial
of K3, is log-concave with unique mode.

1 Introduction

In this paper, all graphs are undirected and simple. The sets of vertices
and edges of a graph G are denoted by V(G) and E(G), respectively. The
order of a graph G is the cardinality of V(G). A stable set in a graph G is
a set of pairwise non-adjacent vertices. The stability number a(G) of G is
the cardinality of a maximum stable set in G. We use s;, for the number of
stable sets in G of cardinality k (so = 1). The sequence {so, ..., Sq} is called
the independence sequence of G. The polynomial I(G;z) = 5% s,z* is
called the independence polynomial of G (Gutman and Harry, [3]). A
number of general properties of independence polynomial of a graph are
shown in [1] and [3]. A sequence {ag,...,an} of real numbers is said to be:

e unimodal if there exists some k& € {1,2,...,n}, called the mode of the
sequence, such that 0 < agp < a1 £ < ap—1 Lk 2 Qg1 2+ 2
an.

o log-concave if a? > a;_1 - a;41 holds for i € {1,2,...,n - 1}.

An independence polynomial of G is called unimodal (log-concave) if the
independence sequence formed by its coefficients is unimodal (log-concave).
We use mode(G) for the mode of the independence sequence. A graph G
is well-covered if all its maximal stable sets are of the same size. A well-
covered graph is called very well-covered if it has no isolated vertices and
its order equals 2a(G). For instance, the graph G*, which is obtained
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from G by appending a single pendant edge to each vertex of G, is a very
well-covered graph.

Recently, there has been a lot of investigation on the unimodality of
independence polynomials of graphs. J.I. Brown, K. Dilcher and R.J.
Nowakowski [2] conjectured that I(G;z) is unimodal for any well-covered
graph G. However, T.S. Michael and W.N. Traves [9] provided examples
of well-covered graphs with non-unimodal independence polynomials. Nev-
ertheless, the conjecture of Brown et al. is still open for very well-covered
graphs.

In {4], [5], [7] and {8], Levit and Mandrescu investigated some properties
of very well-covered graphs. For example, they showed in [5] that the
independence polynomial I(G*; z) of G* is unimodal for any G with a(G) <
4. They also showed in [7] and [8], that the independence polynomial of
K3, is log-concave with unique mode. The goal of this paper is to show
that the independence polynomial I(G*;z) of G* is unimodal for any G
with o(G) < 8 and the independence polynomial of K3, is log-concave
with unique mode.

2 Preliminaries

Throughout, let G = (V, E) be a simple graph with vertex set V = V(G)
and edge set £ = E(G). The neighbor of a subset S of V is the set
N(S)={w|we V,wv € E for some v € S}, while N[S] = N(S)uS. By
G UGy we denote the disjoint union of the graphs G;, Go. That is, the
graph with V = V(G;) U V(G2) and E = E(G,) U E(G,). In particular,
UnG means the disjoint union of n copies of the graph G. A graph G is a
complete bipartite graph with vertex classes V; and Vs if V(G) = V U V;,
V1NV, = 0 and each edge joins a vertex of V; to a vertex of V. If |V}| = m
and |Va| = n, then we use the symbol K, , for the complete bipartite
graph. A graph in which each pair of distinct vertices is joined by an
edge is called a complete graph. We use K, for the complete graph with n
vertices.

We state some useful results in this section. In the sequel, we use [n]
for the smallest integer that is greater than or equal to n and |n] for the
largest integer that is smaller than or equal to n.

Theorem 2.1 [7] If G is a very well-covered graph of order n with a(G) =
a, then sg < 81 £ -+ < S[ay2] and S[(2a-1)/3] = *** 2 Sa~1 = Sa-

Theorem 2.2 [6] Let G be a graph of order n and I(G;z) = Y2 g;2%.
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If I(G*;z) = Z:;(g’") t;xt, then
k n—j
=3 8 (k—j)
for0 <k <n=a(G").
Lemma 2.3 If G is a graph of order n with stability number a(G) = o,

then
a o n—a
(k) S oS (k) i

Proof. Since the stability number of G is o, there exists a stable set, say
Si, consisting of a vertices. It is clear that the number of stable sets in the
subgraph induced by S of cardinality k is (}), therefore, sx > (§).

To obtain the upper bound, let S; = V(G) — S;. Notice that to choose k&
vertices from V(G) to form a stable set one can choose 7 vertices from S; and
k—i vertices from §;. Notice also that if we choose 7 vertices, say vy, ..., v;,
from Sj, then there are at most (‘,:::) ways to choose k — i vertices from
S) to form a stable set of cardinality k. For if we let S5 = {v1,...,v:},
then |[N(S3) N Si| > i. Otherwise, there are vertices, say uy,us,...,u;
(j > a—1) of Sy — N(S5) such that {uy,us,...,uj,v1,v2,...,9;} is &
stable set of cardinality larger than a. This yields a contradiction. Thus
|N(S3) N Sl| > i. That is, if we choose i vertices from Sy then there are
at most ( ) ways to choose k — i vertices from S to form a stable set of

cardinality k. Since |S2| = n — a, there are at most (" i“) ways to choose
i vertices from S;, we see that

Sk < Z;_o G2
Tieo "7 5)
(Z?.'oa (")

%) 2nTe

A A

3 The unimodality of G*

Throughout, let G be a graph of order n with &(G) > 5 and G* be the very
well-covered graph obtained from G by appending a single pendant edge
to each vertex of G. Let I(G;z) = 129 s;2% and I(G*;z) = 1.0 o tiz'.
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Theorem 3.1 Let G be a graph of order n with a(G) = 5. Then I(G*;z)
18 unimodal with

___n-2}- 1 < mode(G*) < l‘___n -2'- 1 + 2.

Moreover, if n is even, then

[n_2_+1 < mode(G*) < n-2|- 1

+1.

Proof. Case 1. n is odd, say n = 2m+ 1. Since a(G) = 5, we only consider
the case that m > 2. We first show that {9 <t; < - <tpyq and tpe3 >
tm4d 2 -+ 2 tams1. By Theorem 2.1, we have that o <t < -+ < tppq1.
On the other hand,

5 r/2m+1- 2m+1—j
ti—tiyn = Yol m;t_, 7) - ;1-'1--3'3)]53'
> 0
holds for any m + 3 < i < 2m. Therefore tpys > tmtq = -+ > toms-
Moreover, observe that if m > 3, then

2tme2 = tma1 — tma3

im0 8i - (20 =) = G — Crdoh)

Tt 8 ey + (2m — 42 + 5i — 6) (1)

i=0 5% * mIi{m+3—1)!

AV

as the coefficients near s; are non-negative, therefore 2t 42 —tm41 —tmsz >
0. Thus (1) shows that either tmi2 = tmt1 OF tmyz = tmys if m > 3. If
m = 2, then n = 5. Since a(G) =5, G =U5K, and G* = U5K>. It is easy
to see that

I{(U5K3; ) = (1 + 2z)° = 1 + 10z + 402> + 802> + 80z4 + 32z°

is unimodal with mode(U5K>) = 3.
From the above, we conclude that the sequence {to,%1,...,tam+1} is uni-
modal and the possible positions for its mode are m+1, m +2 and m + 3.
Case 2. n is even, say n = 2m. Since o(G) = 5, m > 3. By Theorem 2.1,
we have that tg <t <... <t,,. Moreover,
-ty = i ol(Cr7) - Gn)lss
>0
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holds for any m + 2 < i < 2m — 1, therefore t,,40 > tipys > -+ 2 tom.
Now, by Lemma 2.3,

[ 2m (2m)]s + [(2711—2) 2m—2)]32

tmat —tm 2 [(27) = "
2 [(mg) = Gl LG B EE0)
- —(2m)! + 10(2m
ml(m41)! m m—l

2m—2)]
S (6m? + 12m).
Thus t;p41 > tm for m > 3. Therefore, the sequence {to,t1,...,t2m} is
unimodal and the possible positions for its mode are m+1and m+2. O

Theorem 3.2 Let G be a graph of order n with a(G) = 6. Then I(G*;z)
s unimodal with

["'2”] < mode(G*) < {";11 +2.

Proof. Case 1. n is odd, say n = 2m + 1. Since a(G) = 6, m > 3. By
Theorem 2.1, we have that ¢y <t; < -+ < tj41. On the other hand,

r~0[(2m+1—]) 2m+1—j)]sj

ti —ti it1—j

2

holds for any m + 3 < i < 2m. Therefore t;p43 > timpya > -+ 2 tom4r.
Moreover, observe that if m > 6, then

2tm+2 —tm+1 — tm+3

= 2mbl—iy _ (2m+1—i) _ (2m+1—i
= Zz—ost [2(v:t+2—:) —(1:1:1—:) - 17::3-;)] (2)
= Yoo i mrmgy - (2m — i2 + 5i — 6)

> 0

as the coefficients near s; are non-negative.
If 3 < m <5, then by Lemma 2.3,

2trn+2 - tm+l - tm+3

oo 8i - it - (2m — i + 5i — 6)

> LG22 (2m)ss + C2oH (2m — 12)s6)

= —1r 2m=3 ((2m — 12)ss + 22O A@M-3)Em—d) ;). ®3)
m-— m(m=1)(m-

> L (2m — 12)22m+1-6 4 160(2m - 3)]

> 0.

Therefore (2) and (3) show that either ¢myo = tmt1 OF tyy2 2 tmaa.
From the above, we conclude that the sequence {#g,%1,...,t2m+1} iS uni-
modal and the possible positions for its mode are m+ 1, m+ 2 and m + 3.
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Case 2. nis even, say n = 2m. Since a(G) = 6, m > 3. By Theorem 2.1,
we have that 5 < ¢; < --- < t,,. Moreover,

ti —tiya E?:o[(zi":;j - (333)]%

(\VA|

holds for any m + 3 < i < 2m — 1, therefore t;,43 > tmeq = -+ 2 tom.
Now, by Lemma 2.3,

t'm+l - tm.

(27) = (o +(3=2) = ()]s
((am) - (114 (Bh) - &A1 ©

—{(2m)! 15 m—2
m! m+1 + ml(m-1 '

;(,ZT('"m—f%r(llmz +17m).

Thus ty,4+1 > i for m > 3. Moreover, observe that if m > 7, then

v iv

2tm+2 - tm+12 —tm+3 s \
= Zs:O Si* [2 mr2:z) - (mrf-nl_-:s) (m?!i_-:s)] .
= 26 ¢ [ 2(2m—1)! _ (2m—1)! 2m—i)! ] (4)
i=0 "1 L (m+2-i)Y r'n—2)! M+ 1= m=1)! ~— m+3=7)[(m-3)!
= z,ﬂs.-ﬁ%.(zm—i%n— 14)
> 0

as the coefficients near s; are non-negative.
If m = 3, then n = 6. Since «(G) =6, G = U6K) and G* = U6K,. It is
easy to see that

I(U6K2; z) = (1 + 2z)°% = 1 + 12z + 6022 + 160z> + 240z + 19225 + 642°

is unimodal with mode(U6K32) =4 =m + 1.
If 4 < m < 6, then by Lemma 2.3

2m+2 — tm+1 — tmts

o8 A (2m — % + Ti — 14)

2 zmiljf[ ,31'3’ (2m - 14)s0 + $2Lm-l§)£(2m —2)s3) (5)
= . m—3 '[ E;n gm;i 22':‘an (2m — 14)sg + (2m — 2)s3)
2m—3)! | Bm(2m1)(2m-2
> o L (st (2m — 14) + (2m — 2)(9)]
>

Therefore (4) and (5) show that either tpmi2 2 tmy1 OF tmyo 2 tmqa if
m > 4. '
From the above, we conclude that the sequence {Zo,%1,...,%2m} is unimodal
and the possible positions for its mode are m+1, m+2and m+3. O
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Theorem 3.3 Let G be a graph of order n with a(G) = 7. Then I(G*;z)
is unimodal with

- . - -
nT-i-l < mode(G*) < nTH +3.

Moreover, if n is even, then

21 < oy < [221] 42,

Proof. Case 1. n is odd, say n = 2m + 1. Since a(G) = 7, m > 3. By
Theorem 2.1, we have that {g <t; <+ < t41. On the other hand,

Z =0l 7) = CRi)lss

holds for any m + 4 < ¢ < 2m. Therefore tmyq 2 tmas = -+ 2 tomel-
To finish the proof we need only to show that 2t 40 — ty1 —tmes = 0
and 2,43 — tmi2 — tmya > 0. For this, observe that

2mi2 —tmiy — tm43 _ .
= Ticosi (57 - (45 - ()]
= Yiosi i - (2m — %+ 5i — 6).
If m > 10, then 2t 42 — tm41 — tm4+3 = 0 as the coefficients near s; are
non-negative. If m = 3, then n = 7. Since a(G) = 7, G = UTK, and
G* = UTK>. It is easy to see that

I(UTKy; x) = (1422)7 = 141424842 +2802°% 45602 +-67225 + 4482541287
(6)

and 2t5 — t4 — tg > 0.

If 4 < m < 5, then by Lemma 2.3

2tm+2 = tmt1 — tme3

2m+1—i)! 2 4 s
i=0 %1 mimia—n1 * (2m — i + 50— 6).

> -Jq[ﬁg%j}f(zm — 12)s6 + Z2 3N (22m ;-120)87 + Z2=3 (2m)s,]

> ;1;[%:—:3}5%-'(2m — 12)(§)22m-¢ + =B (2m — 20)2™~6
+Ee5P (2m) (7)]

> 0.
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If6 <m <9, then by Lemma 2.3

2tm+2 —tm+1 — tmy3

;__0 8 % (2m—z 4+ 5i — 6)

> L [%m=B(9m - 20)s; + E22 (2m) 55 + G (2m — 2)sy]

= L& ((2m — 20)s; + mREmAGro 4 9;,"-5) (2m)s3
+ig—§<g—¥(‘—rl”':;:‘§ iy (2m = 2)sd]

> LB (2m - 20) . 22m+1-7 4 CocROm AERT G- (9m) (])
+ (281—31))((2"1:-—24))((::3)5) (2m - 2)(3)]

> 0.

On the other hand, observe that

2tr"ll+3 a tm+22 :1tm+4 2m4-1-1 2m+-1—1
= E;=o si - [2( 72?+3—_:) . (mbei) — (::4;')]
= Y08 sy - (2m —i% +9i - 22).

If m > 11, then 2t,,43 — t;n42 — tm+4 = 0 as the coefficients near s; are
non-negative. If m = 3, then by (6), 2tg — ts — t7 > 0.
If 4 < m < 6, then by Lemma 2.3

2"'7n+3 - tm+2 - tm+4

S0 S Gy - (2m — 4% + 9 — 22).

Z @E%(2m 22)80 !
z‘,;—'_f%ﬁ@m— 14)s; + 2,:‘;12 (2m - 4)s3)
2m—2)! r (2m+1)(2m)(2m =1
2 ‘(m_;—T(Z(:H)' [((ﬂ;)fsn’l's&&a’ (2m - 22)
+§,,,—"}r§ﬁ§%(2m - 14)2m + 1) + (2m - 4)(})]
> 0.

If 7 <m < 10, then by Lemma 2.3

2tm43 — tms2 —lmys
Yo 8i et L (om — 42 4+ 97 — 22).

m—1)I(m+4-~1)!

(—_m[ 2t (2m — 22)so+%?g 2m — 8)s,)
2m—1) 1 (2m+1)(2
'(—'Trm-l L(m+z>)- [((m+-¢'1-)()1£z-:;)) (2m - 22) -1+ (2m — 8)(3)]

VIV IV

From the above, we conclude that I(G*;z) is unimodal and the possible
positions for its mode are m+ 1, m+ 2, m+ 3 and m + 4.
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Case 2. niseven, say n = 2m. Since a(G) = 7, m > 4. By Theorem 2.1,
we have that ¢ <t <--- < ty. Moreover,

o .
= Ti=ol(r7) - (279

>0

holds for any m + 3 < i < 2m — 1, therefore t,, 43 2 tim4a = -+ 2 tom.
Now, by Lemma 2.3,

tmt1 — tm

() - Gl + 10) - G
(G2 - (- 1+ 1) - B2y

—(2m)! 21(2m—2)!
m+1 ™m + ml(m-1

{,3—%3%3,},(17171 + 23m)

Moreover, observe that

hiviv

\Y%

2tm+2 - tmg-l —tm43 o s
= Zz—o Sq [2(m':2’_:z) m’-:l-ti) - (m'-:3—‘i)] .
2(2m—i)! (2m—2)! (2m—1)!
21—0 1[ m+2—-i)l(m-2 = mFI=)(m=1)1 ~ (m+3—9)[(m=-3 ]

= Zi:o Si m_f"l—;;;_i 1° (2m - iz + Ti— 14).

If m > 7, then 2,42 — tm+1 — tm+s = O as the coeflicients near s; are
non-negative.
If 4 < m < 6, then by Lemma 2.3

2mt2 —tm+1 — tmy3

= ST osi el - (2m — 4 + 7 — 14)
> @f—ﬁ’y(zm — 14)sg
+ (:"47 L(2m — 14)s7 + £"'T_!?')-!(2m — 2)s3]
2 il ﬁ’l‘s'l(m 14)
+ 3=l (2m — 14)22m7 4 Cmo3h (9m — 2)(7)]
> 0.

From the above, we conclude that I(G*;z) is unimodal and the possible
positions for its mode are m+1, m+2and m+3. O

Theorem 3.4 Let G be a graph of order n with o(G) = 8. Then I(G*;z)
is unimodal with

[”;I] < mode(G*) < [”;ll +3.
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Proof. Case 1. n is odd, say n = 2m + 1. Since o(G) = 8, m > 4. By
Theorem 2.1, we have that tg < t; < -+ < t;py1. On the other hand,

Si=ol (T = CEA sy

ti—tiy1 =
> 0

holds for any m + 4 < i < 2m. Therefore tm4+q 2 tmts > +++ 2 tom1.
To prove the assertion, we first observe that tpy,42 > tmy1 for 4 < m < 14.
This is because of the following:

t"a*i?t"'z . 2
> (i) T (el +1(22) = o)l
+[(2+"g %) Z TR oy +[E02) (a3,

—2(2m+1)! 2m 2m—2)!
2 mi(gnrzn-w)2 1+ m'((m+1)1 -2m+1)+ sy 3)
+ 2(2m—3)! (
ml(m-2)! 4

= Zi,f%;;,);-![-m@m +1)(2m - 1)(2m - 2)
=2m(2m + 1)(2m - 1)(2m — 2)(m + 2)
+56m(2m — 2)(m + 1)(m + 2) + 140m(m — 1)(m + 1)(m + 2)]
= play[-82m +1)(2m - 1) — 4(2m + 1)(2m — 1)(m + 2)
+252(m + 1)(m + 2)]
> 0.

If 4 <m <5, then t42 > tmes = - -+ by Theorem 2.1, so that I(G*;z) is
unimodal and the mode of it is m + 2.

If 6 < m < 8, then tymi3 2 tmyq 2+ - by Theorem 2.1, so that I(G*;z) is
unimodal and the possible positions for its mode are m + 2 and m + 3.
If9 < m < 14, then t,, 44 2 tmqs = - - - from the above and

2tmi3 — tmi2 — tmid

Tio i * iy - (2m — i + 9i — 22)

> il (2m - 22) o+ Gl (2m - 14) - 5y

= m—21m-+f:l-ll-4 - (2m - 22) + m-12mni+3 1+ (2m —14)(2m +1)
1

= ml(@m - 22) + 2m - 149)(m + 4)]

> L

so that J(G*;z) is unimodal and the possible positions for its mode are
m+2,m+3and m+4.
Finally, if m > 15, then

2trg+2 - tm+21 _ltm+3 0 1 2 1

- + - -
Zg—o 8i ¢ [22( ::;:2-:) ( r:;n+1—:) (1:1"-:-3 :)
Yio 8i - bl - (2m — 2 + 5i — 6)

0

v il
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Zota = Imad S I ot -
= Yi=08i [2(1:.”:3::) nTIZ—_:) - 21::::;)]

T8 o8- Ol (9m — i 4+ 93 — 22)
0,

so that I(G*;z) is unimodal and the possible positions for its mode are
m+1,m+2,m+3and m+4.

Case 2. n is even, say n = 2m. Since a(G) = 8, m > 4. By Theorem 2.1,
we have that {5 < t; <.+ < t,,. Moreover,

=l CF) = (Gri)ss
0

v Il

2

holds for any m +4 < i < 2m — 1, therefore t, 14 = timys = -+ 2 tom.
Now, by Lemma 2.3,

tm-o-l —tm

((m) = Cmlso + (C) = (=)l
(CERY — ()14 (3 ) E
m+1)!m! + ml(m-1)!

z‘—yr’-rﬁ'l’fe,i (24m? 4 30m)
0.

If 4 <m <7, then tpuys > tmes = - -+ by Theorem 2.1, so that I(G*;z) is
unimodal and the possible positions for its mode are m + 1 and m + 2.
If 8 < m < 10, then t43 > tmys = -+ by Theorem 2.1 and

nviv

\%

2tm+2 - tm+1 - tm+3

= Z?;Oszl |(—,,,—}2W"%‘£gﬂ-(2m—i:+ Zzl - 14)
2 Iﬁ(jnm_ﬁl)@ﬁ (2m —8)- 81+z;£—1'$r§,73jgsﬂl'(2m—22)-33
> il (2m - 8) - (2m) + (mmrakey - (2m — 22) - 228
—8)! 2m-—1 2 2m—T7
= ey [t 2m(2m — 8)
+(2m — 22) - 22m-8]
> 0

by Lemma 2.3, so that I(G*;z) is unimodal and the possible positions for
its mode are m+ 1, m+ 2 and m + 3.
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If m > 11, then

2trg+3 - tm+% —tm4a o )
Zi=o Si - [2(mm::i) - (mr';-:i) - n?-:;—ti)]

ety - (2m = % + 11i - 34)

(2m — 34) - 50 + rigraday - (2m — 24) - 5

|
™
i
o
&

v

+§ 7
3
NIN (S
IS &
3lbH
+=

w -
~

3

I

—

=

&

> 1 (2m—34) - 1+ =30nlc . (2m — 24)(2m)
-(2m - 16) - (3)
2m(2m-—1
= m=2)m+3 Zm_':(‘iﬁlm_q-)ﬁ?@m - 34)
+2228 (2m — 24)(2m) + 28(2m — 16)]
> 0
and
2Umy2 — tmy1 — trpT3
Y im0 i it (2m — 2 4 Ti — 14)
> 0

by Lemma 2.3, so that I(G*; z) is unimodal and the possible positions for
itsmodearem+1,m+2, m+3andm+4. O

4 Unimodality of K3,

The well-covered spider Sy, n > 2, has n vertices of degree 2, one vertex of
degree n+ 1, and n + 1 vertices of degree 1 (see Figure 1). It is well-known
that S, = K7 ..

Figure 1 : The graph S, = K7 ..

In {7, Theorem 3.1], Levit and Mandrescu proved the following:

Theorem 4.1 The independence polynomial of K} ,, n 2> 2, is unimodal,
moreover, I(K1 n;z) = (1+2) - {Trol(}) - 2F + (:71)]- =¥}, and its mode
i8 unique and equals [-zléﬂ]
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In this section, we prove a similar result for (K3 ,;z). For this, we need
some lemmas.

Lemma 4.2 (3] If G is a graph and u € V(G), then I(G;z) = I(G -
u;z) +z - I(G — N[u];z). If Gy and G2 are graphs, then I(G U Ga;z) =
I(Gyiz) - I(G2; 2).

One can obtain the following result by applying Lemma 4.2.

Theorem 4.8 The independence polynomial of K3 ,,, n > 2, is

I(Kg'n;x)=(1+x)2-{kz_o[() 2’°+Z()( )} :z:"}.

Proof.
up

U

n Un

......

Figure 2 : The graph K3 ,..

Let K, . be the complete bipartite graph with vertex classes U =
{u1,u2} and V = {vy,...,v,} (see Figure 2). Then by Lemma 4.2, the
independent polynomial of K3 ,, n 2 2, is

I(K2nlx)
I(Kzn—{ul},a:)+:c - I(K3,, — N[u]; 2)
I(S, Ll{ul},a:)+:v I(KQUnKl,z)

oon

(1+2) {5 ol (3) - 2 + (F1)] - 2%} - (1 +2) + (1 + 22)(1 + o)
= (1 +2) - {3 sol(R) - 2'° oty | R
+(1+2)?[z(1 +2z)(1 + x)"' ]

(1 + z)2 {Zhool(0) -2+ (20) + (o) + 2("_2) z*}
(1+2)% {Ziol(®) - 25+ Ez- ( ) 2::)]

as (R2%) + (323) = (3=1). This shows the assertion. O

wm (D2 ()G )

i=1

Proposition 4.4 Let
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and h = |_2—":§"—lj, where 0 Kk <nandn>2 Thency £+ <cho1 <
Ch 2 Cht1 2 2 Cn.

Proof. Case 1. n=3m. For0<i<m-1,

c2rr;+i Com+i+l 3 am—2
[(277:1!;) 22m+‘ + 2( m— ) + (2m"-:-t—2)]

o) 2 Ly ()

It is easy to see that foranym e Nand0 < i <m—1, (2;",:'_;_:_1) N G

and (,07772,) > (,3772)). Moreover,

= (p o ) - 22mHiHl o GmL2tn (it
2m+t+1 - 2m+i+1)l(m—¢
0.

>

3m 2m+1
2m+:) -2

Therefore, com 2 C2m41 = -+ 2 cam. On the other hand, for any m € N

and 0 < j < 2m — 1, we have that

c2m—‘7 - C2m—j-1 3 amed
- —_ m—
= [(2m—%) - 22m ;‘*‘ 2(21ng —1)3;:_(217;— —2)3m_2
[(2m— —1) - 28mmI +2(2m—)—2) + (2m—_7-3)]
_ (3m) 2""-j -1.(3j42)  2(3m-1)l{m-2j-2 3m—2)!l-(m—2;j-3
T CmemEg1)! (2Lm—j_L5—1 5(m+j+1§! - é?;:;:.Lz)%zm—Jmﬁ
= Gy - [3m(3m = 1)(3j +2) - 221
-2(8m - 1)(m - 25 — 2)(2m - j)
—(m—2j-3)(2m - j)(2m - j - 1)].
Notice that
2(3m — 1)(m — 25 — 2)(2m — j) + (m — 25 — 3)(2m — j)(2m - j - 1)
(m — 2§ — 2)(2m — j)[2m + 2(3m — 1))

(2m - j)m(8m — 2)
22m=i=13m(3m — 1).

A IANIA

Thus we conclude that ¢g < - < com—1 < Com = Come1 = +** > Cp.
Case2. n=3m+1, For0<i<m-1,

czrg+i_:-11 - C2m4i42 3
[( mt+1) 22m+1+1 + 2(2m+§) + (217:1!-—1)]

[(2m+t+2) 22m+:+2 + 2(2m+‘l+1) + (2::-:)

It is easy to see that foranymeNand0<z<m 1, (2m+‘) > (2m+s+1

3m—1 3m-—1
and (p7701) 2= (om +i)- Moreover,
3m+1 ) . 22m+i+1 _ ( 3m+1 ) . 221TI+I'+2 _ (3m+1)!,22m+i+1_(3i+2)
2m+i+1 2m+i4-2

= Cmtir)(m=d)l
0.

\%
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Therefore, cam4+1 = Com+2 2 *+* 2 Cam+1. On the other hand, we have for
anymeNand 0<j<2m

Cam g = 3
= lamgsa)- gImsH1 +20m” ) + G 52))
[(2m+ ) 22m—] + 2(2m—3—1) + (23&—3—2)]
(Bmt1)1.27m=. (3j+1) _ 2(8Bm)l(m—2j—=1) _ (3m=1)l-(m—2;j—2
S | R ~ Rm=j)mFi 1) tz_m—j—.l'S(T! m+j+1}[.
G - [Bm(@m +1)(37 +1) - 22m—j
—2(3m)(m - 2j — 1)(2m - j + 1)
~(m ~2j — 2)(2m - j + 1)(2m - j)].

Notice that

2(3m)(m — 25 — 1)(2m — § + 1) + (m — 2j — 2)(2m — j + 1)(2m — 5)
(m —2j —1)(2m — j + 1)[2m + 2(3m)]

(2m — j + 1)8m?

92m=33m(3m + 1).

A IAIA

Thus we conclude that ¢g < --- < com L Comt1 = C2m42 2 *** 2 Cn.
Case3. n=3m+2. For0<i<m,

Com+i+1 — C2m+i+2

[Gmyiga) - 227 +2(700) + i)

[(2m11~:.-|2-2) 22m+t+2 + 2(2m+t+l) + (2m+1)]

It is easy to see that for any m € Nand 0 < i < m, (Gnt}) 2 2;";_‘:‘_'1_1

and ( 3m D2 (2m _H) Moreover,

2m—+i—1

( 3m42 ) - 22mHiHl _ ( 3m+2 | g2mti+2 _  (3m42)l2ImHH.(30)

2m+i+1 2me+i+2 CmtiF2){m—iF1)!
> 0.

Therefore, cam+1 = Com42 =+ * = C3m+2. On the other hand, we have for
any m € N and 0 < j < 2m that

camgil = Cam— 3m+1

m -

= [GEa) - B 4 2m) + ot )
[( ) 2 m=d + 2( 1) + (2m—_1—2)]

2m—j 2m=—j—
_ (Bm4+2)1-22m3.(3543)  2(3m+1)1(m—2j—2
- T2m—1-&1)')(’m+1+2)! §2m-1;?1m+::+25'
= Eor(mEBm+2)@Bm +1)(37 +3) - gom=j
—2(3m+1)(m—-25-2)2m—j+1)
—(m —2j - 3)(2m — j + 1)(2m — j)].
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Notice that

2Bm+1)(m=-2j—-2)2m—-j+1)

+(m —2j - 3)(2m — j + 1)(2m - j)
(m—2j-2)2m - j + 1)[2m + 2(3m + 1))
@2em-7+1)m(Bm+2)

22m=3(3m + 1)(3m + 2).

A INIA

Thus we conclude that ¢p < -+ < com < Com+1 = Com42 = +++ > ¢n. O

a= (2 () ()

and h = [2—":;*2], where 0 < k < n andn > 2. Then ch—1 > chy2 and
Cht1 > Ch2-

Lemma 4.5 Let

Proof. Observe that

Ch-1 — Ch42
[(x24) - 2" = (32) - 2223+ 2((i23) — G +(GD) - ("))

h— n—1)!
+2n'211.2—{t+l T° Ql("” h’) + h+f' n_I]:+1 T° Q2(ns h)
o,

where
Qi(n,h)= h(h+1)(h+2)—8(n—h+1)(n—-h)(n—h-1)
Q2(n,h)= h(h+1)(h-1)—(n—h+1)(n-h)(n-h-1)
Qs(n,h)= hh-1)(h-2)-(n-h+1)(n-h)(n—-h-1).

If n = 3m, then h = 2m and the following hold:
Q1(3m,2m) = 12m(m +1) >0

and
Q2(3m, 2m) 2 Q3(3m, 2m) = m(m — 1)(7m — 5) > 0.

If n =3m + 1, then A =2m + 1 and the following hold:
Q:1B3m+1,2m+1)=2(m+1)(12m+3) >0
and

Q283m+1,2m +1) > Q3(3m + 1,2m + 1) = m(7Tm? — 1) > 0.
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If n =3m + 2, then h = 2m + 1 and the following hold:
Qi(Bm+2,2m+1)=6(m+1) >0
and
Q2(83m+2,2m+1)> Q3(3m+2,2m+1) =m(m - 1)(Tm +4) > 0.

From the above, we conclude that c,—; > cp42. On the other hand, observe

that
Ch+1 — Ch—2

2 (h+1) 2h+l—[( n) 2h_2+2( 3)'*'(’;5:5)]
= fm—lm -2 — oy 24

—2)
[(h—321!1 ryn T (mglz(n—_)mﬁ]
e 1w v R L CTON

R(n,h) = n(n—1)[(n-h+2)(n-h+1)(n-h) 2+
“h(h+1)(h - 1) - 2577
_h(h+ 1)(h - 1)(h — 2)[2(n — 1) + (h - 3)]-

If n = 3m, then h = 2m and

R(3m,2m)
= (2m)(3m)(3m — 1)(12m + 9) - 22m~2
—(2m)(2m + 1)(2m — 1)(8m — 5)(2m — 2)
> 0

where

Ifn=3mn+1,thenh=2m+1and

R(3m+1,2m+1)
= (2m)(2m + 2)(3m + 1)(9m) - 22m~1
—(2m)(2m + 1)(2m + 2)(8m — 2)(2m — 1)
> 0.

Ifn=3m+2, then h=2m+1 and

R(3m +2,2m+1)

= (2m+2)(3m + 1)(3m + 2)(18m + 24) - 22m~!
—(2m)(2m + 1)(2m + 2)(8m)(2m — 1)

> 0.

Therefore, we conclude that cp41 > ch-2. O

Theorem 4.6 The independence polynomial of K3 ,, is unimodal with mode
equal to | 234 ).
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Proof. If n = 1, then I(K3,) = 1 + 6z + 10z? + 523, so that the mode
is 2= l_gj. Therefore, we may assume that n > 2. By Theorem 4.3, the
independence polynomial of K3, is

im0 { 5[5 () ()] <)

i=1

a= ()2 ()G

i=1

Let

then I(K3 ,;z) = (1 +z)?- Y.y cix’. By Proposition 4.4,c9 < < -+
Ch-1 < Cn 2 Cht1 2 o+ > o Where h = |28EL] Write I(K3 ;)

"*2 0.z%; then

A

(1+2z+2%)(co + 12+ -+ cpz™)
= gy+aiz+-+ an+2m“+2,

and therefore ag = cg, a1 = ¢1 + 2¢5, Gn+1 = 265 + Cp—1, Gn+2 = Cn, and
ag = cx+2ck—1+cr-2 for 2 < k < n. It is easy to see that ag < a; < a3 and
Gp 2 Gn41 2 Gnye2. Notice that if 2 < k < h—1, then ¢ + 2¢x-1 + cr—a <
Ck+1 + 2¢; + ck—1, so that as < a3 € -+ < ap. Similarly, we have that
Gh42 = Qh43 2 -+ 2 aGn. Hence the possible modes of I (K3 ;) are h,
h+1 and h + 2. Since ¢, > ¢p—1 and ci > cp41, by Lemma 4.5,

Qh41 — CQh

(en+1 +2ch + cp-1) = (ch + 2¢h—-1 + ch—2)
(ch+1 — ca—2) + (ch — cn-1)

0

Vi

and
Qht1 = Ghy2
= (ch+1+2ch +choy) — (chi2 + 2¢hy1 + Ch)
= (ch — cht1) + (Ch—1 — Ch42)
> 0.

Therefore, the mode of K3, ish+1= |28t | +1= 28] g
In view of Theorem 4.6, we provide the following question:
Conjecture: I(K;,;z) is unimodal for every t.

In (8, Theorem 5], Levit and Mandrescu proved that I(K7} ,;z) is log-
concave, we prove a similar result for /(K3 ,;z) as follows.

Theorem 4.7 The independence polynomial of K3 ,, is log-concave.
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Proof. If n. =1, then I(K3,) = 1+ 6z + 1022 + 5z°. It is easy to see that
the independence polynomial of K3, is log-concave, so that the assertion
holds for n = 1. Therefore, we may assume that n > 2. By Theorem 4.3,

I(Kg‘,,;z)=(1+x)2'{,§[() 2k+2()( )]‘”k}

Let 2 - .
== ()2 06

then I(K3 ;) = (1+2)2- Y[, c;iz’. Since the product of two log-concave
polynormals is also log-concave and (1 + z)? is log-concave, it is sufficient
to show that ¢ > cx—1ck41 for 1 < k < n— 1. For this, notice that
¢ —cocy = 2n? +8n+5 > 0and G—cic3 = 1(4n*+10n3+2n2—4n+3) > 0.
For3<k<n-1,let Ay = (k) 2ka,ndBk=2":1)+ _) then
¢x = A + Bi. Moreover,

Ci — Ck—1* Ck+1
= A% +2A;Bx — Ax—1Ak41 — Ag—1Br41 — Ag41Bx-1
+32 — Bj._1Bg41.

Observe that (“") > (", )(k'_';'_'fl) for i=1,2, therefore

B;‘:—Bk-1Bk+1
G aCY (o) + G - 4o ()
'2(2;2) (2-1) 2(2—3 (n; )

(&3 ) (:21)

4(%- )"';) 2 G0 - 12("'2) "21)2
(D -2 e B

-92. n—2y  n=k
n—k+l k-2 k

(2)(2’1)( )0 a2k + (1 - 25ty - 52)

2 € (0,1). To finish the proof, it is enough to show that

v

"'Vll

for 22k, 552
Ak +2ArBi — Ak—1Ak41 — Ak—1Bi41 — Ak41Bk—1 2 0.
For this, notice that A1 = 355 (125!, Ak-r = ez (D25, Be =

[2 + HE=D)(%), Bryr = (222 + GZHE)(R) and Broy = iy +

_ME-D(k-2) (7)1t follows that

A2 + 2-42kBk — Ag—1Ak+1 — Ag-1Biy1 — Ag1Bi-1
n 2k—
n(n-l)(k+1)(n—k+DD
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where

D= n(n-1)(k+1)(n—-k+1) 25+
+8k(n—1)(k+1)(n-k+1)
+4k(k — 1)(k+ 1)(n — k+ 1) — n(n — 1)k(n — k) - 254!
—2k(n — k)(n —1)(k + 1) — k%(n — k)(k + 1)
—8k(n — k)(k — 1)(n — 1) — dk(k - 1)(k - 2)(n — k)

= [p(n=1)(n+1) 254 —k2(n - k)(k+1)

—2k(k +1)(n — 1)(n — k)]
+[8k(n = 1)(k + 1)(n — k + 1) — 8k(n — k)(k — 1)(n — 1)]
+[4k(k — 1)(k + 1)(n — k + 1) — 4k(k — 1)(k — 2)(n — k)).

However,
8k(n — 1)(k + 1)(n — k + 1) — 8k(n — k)(k — 1)(n — 1) > 0,
dk(k — 1)(k+1)(n =k +1) — dk(k - 1)(k - 2)(n — k) 2 0
and
n(n—1)(n+1) 25! — k2 (n - k)(k+ 1) - 2k(k + 1)(n = 1)(n - k) 2 0.

This shows that ¢ — ck—1-cg41 20for1<k<n—-1. O
In view of Theorem 4.7, we provide the following question:
Conjecture: I(K;,;z) is log-concave for every t.
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