Unimodality of independence polynomials of very well-covered graphs

Shih-Yan Chen* and Hsin-Ju Wang[†]

Abstract. In this paper, we show that the independence polynomial $I(G^*;x)$ of G^* is unimodal for any graph G^* whose skeleton G has stability number $\alpha(G) \leq 8$. In addition, we show that the independence polynomial of $K_{2,n}^*$ is log-concave with unique mode.

1 Introduction

In this paper, all graphs are undirected and simple. The sets of vertices and edges of a graph G are denoted by V(G) and E(G), respectively. The order of a graph G is the cardinality of V(G). A stable set in a graph G is a set of pairwise non-adjacent vertices. The stability number $\alpha(G)$ of G is the cardinality of a maximum stable set in G. We use s_k for the number of stable sets in G of cardinality k ($s_0 = 1$). The sequence $\{s_0, \ldots, s_{\alpha}\}$ is called the independence sequence of G. The polynomial $I(G; x) = \sum_{k=0}^{\alpha(G)} s_k x^k$ is called the independence polynomial of G (Gutman and Harry, [3]). A number of general properties of independence polynomial of a graph are shown in [1] and [3]. A sequence $\{a_0, \ldots, a_n\}$ of real numbers is said to be:

- unimodal if there exists some $k \in \{1, 2, ..., n\}$, called the mode of the sequence, such that $0 \le a_0 \le a_1 \le ... \le a_{k-1} \le a_k \ge a_{k+1} \ge ... \ge a_n$.
- log-concave if $a_i^2 \geq a_{i-1} \cdot a_{i+1}$ holds for $i \in \{1, 2, \ldots, n-1\}$.

An independence polynomial of G is called unimodal (log-concave) if the independence sequence formed by its coefficients is unimodal (log-concave). We use mode(G) for the mode of the independence sequence. A graph G is well-covered if all its maximal stable sets are of the same size. A well-covered graph is called $very\ well-covered$ if it has no isolated vertices and its order equals $2\alpha(G)$. For instance, the graph G^* , which is obtained

^{*}Department of Applied Mathematics, Chung Yuan Christian University, Taiwan.

[†]Department of Mathematics, National Chung Cheng University, Taiwan.

from G by appending a single pendant edge to each vertex of G, is a very well-covered graph.

Recently, there has been a lot of investigation on the unimodality of independence polynomials of graphs. J.I. Brown, K. Dilcher and R.J. Nowakowski [2] conjectured that I(G;x) is unimodal for any well-covered graph G. However, T.S. Michael and W.N. Traves [9] provided examples of well-covered graphs with non-unimodal independence polynomials. Nevertheless, the conjecture of Brown $et\ al.$ is still open for very well-covered graphs.

In [4], [5], [7] and [8], Levit and Mandrescu investigated some properties of very well-covered graphs. For example, they showed in [5] that the independence polynomial $I(G^*;x)$ of G^* is unimodal for any G with $\alpha(G) \leq 4$. They also showed in [7] and [8], that the independence polynomial of $K_{1,n}^*$ is log-concave with unique mode. The goal of this paper is to show that the independence polynomial $I(G^*;x)$ of G^* is unimodal for any G with $\alpha(G) \leq 8$ and the independence polynomial of $K_{2,n}^*$ is log-concave with unique mode.

2 Preliminaries

Throughout, let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). The neighbor of a subset S of V is the set $N(S) = \{w \mid w \in V, wv \in E \text{ for some } v \in S\}$, while $N[S] = N(S) \cup S$. By $G_1 \cup G_2$ we denote the disjoint union of the graphs G_1 , G_2 . That is, the graph with $V = V(G_1) \cup V(G_2)$ and $E = E(G_1) \cup E(G_1)$. In particular, $\cup nG$ means the disjoint union of n copies of the graph G. A graph G is a complete bipartite graph with vertex classes V_1 and V_2 if $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and each edge joins a vertex of V_1 to a vertex of V_2 . If $|V_1| = m$ and $|V_2| = n$, then we use the symbol $K_{m,n}$ for the complete bipartite graph. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We use K_n for the complete graph with n vertices.

We state some useful results in this section. In the sequel, we use $\lceil n \rceil$ for the smallest integer that is greater than or equal to n and $\lfloor n \rfloor$ for the largest integer that is smaller than or equal to n.

Theorem 2.1 [7] If G is a very well-covered graph of order n with $\alpha(G) = \alpha$, then $s_0 \leq s_1 \leq \cdots \leq s_{\lceil \alpha/2 \rceil}$ and $s_{\lceil (2\alpha-1)/3 \rceil} \geq \cdots \geq s_{\alpha-1} \geq s_{\alpha}$.

Theorem 2.2 [6] Let G be a graph of order n and $I(G;x) = \sum_{i=0}^{\alpha(G)} s_i x^i$.

If $I(G^*;x) = \sum_{i=0}^{\alpha(G^*)} t_i x^i$, then

$$t_k = \sum_{j=0}^k s_j \cdot \binom{n-j}{k-j}$$

for $0 \le k \le n = \alpha(G^*)$.

Lemma 2.3 If G is a graph of order n with stability number $\alpha(G) = \alpha$, then

 $\binom{\alpha}{k} \le s_k \le \binom{\alpha}{k} \cdot 2^{n-\alpha}.$

Proof. Since the stability number of G is α , there exists a stable set, say S_1 , consisting of α vertices. It is clear that the number of stable sets in the subgraph induced by S_1 of cardinality k is $\binom{\alpha}{k}$, therefore, $s_k \geq \binom{\alpha}{k}$. To obtain the upper bound, let $S_2 = V(G) - S_1$. Notice that to choose k vertices from V(G) to form a stable set one can choose i vertices from S_2 and k-i vertices from S_1 . Notice also that if we choose i vertices, say v_1, \ldots, v_i , from S_2 , then there are at most $\binom{\alpha-i}{k-i}$ ways to choose k-i vertices from S_1 to form a stable set of cardinality k. For if we let $S_2' = \{v_1, \ldots, v_i\}$, then $|N(S_2') \cap S_1| \geq i$. Otherwise, there are vertices, say u_1, u_2, \ldots, u_j $(j > \alpha - i)$ of $S_1 - N(S_2')$ such that $\{u_1, u_2, \ldots, u_j, v_1, v_2, \ldots, v_i\}$ is a stable set of cardinality larger than α . This yields a contradiction. Thus $|N(S_2') \cap S_1| \geq i$. That is, if we choose i vertices from S_2 then there are

at most $\binom{\alpha-i}{k-i}$ ways to choose k-i vertices from S_1 to form a stable set of cardinality k. Since $|S_2| = n - \alpha$, there are at most $\binom{n-\alpha}{i}$ ways to choose

$$\begin{array}{ll} s_k \leq & \sum_{i=0}^k \binom{n-\alpha}{i} \binom{\alpha-i}{k-i} \\ \leq & \sum_{i=0}^k \binom{n-\alpha}{i} \binom{\alpha}{k} \\ \leq & \sum_{i=0}^{n-\alpha} \binom{n-\alpha}{i} \binom{\alpha}{k} \\ = & \binom{\alpha}{k} \cdot 2^{n-\alpha}. \end{array}$$

3 The unimodality of G^*

i vertices from S_2 , we see that

Throughout, let G be a graph of order n with $\alpha(G) \geq 5$ and G^* be the very well-covered graph obtained from G by appending a single pendant edge to each vertex of G. Let $I(G;x) = \sum_{i=0}^{\alpha(G)} s_i x^i$ and $I(G^*;x) = \sum_{i=0}^n t_i x^i$.

Theorem 3.1 Let G be a graph of order n with $\alpha(G) = 5$. Then $I(G^*; x)$ is unimodal with

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 2.$$

Moreover, if n is even, then

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 1.$$

Proof. Case 1. n is odd, say n=2m+1. Since $\alpha(G)=5$, we only consider the case that $m\geq 2$. We first show that $t_0\leq t_1\leq \cdots \leq t_{m+1}$ and $t_{m+3}\geq t_{m+4}\geq \cdots \geq t_{2m+1}$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_{m+1}$. On the other hand,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{5} \left[\binom{2m+1-j}{i-j} - \binom{2m+1-j}{i+1-j} \right] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+3 \le i \le 2m$. Therefore $t_{m+3} \ge t_{m+4} \ge \cdots \ge t_{2m+1}$. Moreover, observe that if $m \ge 3$, then

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{5} s_i \cdot \left[2\binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+1-i} - \binom{2m+1-i}{m+3-i} \right]$$

$$= \sum_{i=0}^{5} s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6)$$

$$\geq 0$$
(1)

as the coefficients near s_i are non-negative, therefore $2t_{m+2}-t_{m+1}-t_{m+3}\geq 0$. Thus (1) shows that either $t_{m+2}\geq t_{m+1}$ or $t_{m+2}\geq t_{m+3}$ if $m\geq 3$. If m=2, then n=5. Since $\alpha(G)=5$, $G=\sqcup 5K_1$ and $G^*=\sqcup 5K_2$. It is easy to see that

$$I(\sqcup 5K_2; x) = (1+2x)^5 = 1 + 10x + 40x^2 + 80x^3 + 80x^4 + 32x^5$$

is unimodal with $mode(\sqcup 5K_2) = 3$.

From the above, we conclude that the sequence $\{t_0, t_1, \ldots, t_{2m+1}\}$ is unimodal and the possible positions for its mode are m+1, m+2 and m+3.

Case 2. n is even, say n=2m. Since $\alpha(G)=5, m\geq 3$. By Theorem 2.1, we have that $t_0\leq t_1\leq\ldots\leq t_m$. Moreover,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{5} [\binom{2m-j}{i-j} - \binom{2m-j}{i+1-j}] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+2 \le i \le 2m-1$, therefore $t_{m+2} \ge t_{m+3} \ge \cdots \ge t_{2m}$. Now, by Lemma 2.3,

$$\begin{array}{lll} t_{m+1} - t_m & \geq & [\binom{2m}{m+1} - \binom{2m}{m}] s_0 + [\binom{2m-2}{m-1} - \binom{2m-2}{m-2}] s_2 \\ & \geq & [\binom{2m}{m+1} - \binom{2m}{m}] \cdot 1 + [\binom{2m-2}{m-1} - \binom{2m-2}{m-2}] \cdot \binom{5}{2} \\ & = & \frac{-(2m)!}{m!(m+1)!} + \frac{10(2m-2)!}{m!(m-1)!} \\ & = & \frac{(2m-2)!}{m!(m+1)!} (6m^2 + 12m). \end{array}$$

Thus $t_{m+1} > t_m$ for $m \ge 3$. Therefore, the sequence $\{t_0, t_1, \ldots, t_{2m}\}$ is unimodal and the possible positions for its mode are m+1 and m+2. \square

Theorem 3.2 Let G be a graph of order n with $\alpha(G) = 6$. Then $I(G^*; x)$ is unimodal with

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 2.$$

Proof. Case 1. n is odd, say n = 2m + 1. Since $\alpha(G) = 6$, $m \ge 3$. By Theorem 2.1, we have that $t_0 \le t_1 \le \cdots \le t_{m+1}$. On the other hand,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{6} \left[\binom{2m+1-j}{i-j} - \binom{2m+1-j}{i+1-j} \right] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+3 \le i \le 2m$. Therefore $t_{m+3} \ge t_{m+4} \ge \cdots \ge t_{2m+1}$. Moreover, observe that if $m \ge 6$, then

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{6} s_i \cdot \left[2\binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+1-i} - \binom{2m+1-i}{m+3-i} \right]$$

$$= \sum_{i=0}^{6} s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6)$$

$$> 0$$
(2)

as the coefficients near s_i are non-negative.

If $3 \le m \le 5$, then by Lemma 2.3,

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{6} s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6)$$

$$\geq \frac{1}{m!} \left[\frac{(2m-2)!}{m!} (2m)s_3 + \frac{(2m-5)!}{(m-3)!} (2m-12)s_6 \right]$$

$$= \frac{1}{m!} \frac{(2m-5)!}{(m-3)!} \left[(2m-12)s_6 + \frac{2m(2m-2)(2m-3)(2m-4)}{m(m-1)(m-2)} s_3 \right].$$

$$\geq \frac{1}{m!} \frac{(2m-5)!}{(m-3)!} \left[(2m-12)2^{2m+1-6} + 160(2m-3) \right]$$

$$> 0.$$
(3)

Therefore (2) and (3) show that either $t_{m+2} \ge t_{m+1}$ or $t_{m+2} \ge t_{m+3}$. From the above, we conclude that the sequence $\{t_0, t_1, \ldots, t_{2m+1}\}$ is unimodal and the possible positions for its mode are m+1, m+2 and m+3.

Case 2. n is even, say n=2m. Since $\alpha(G)=6$, $m\geq 3$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_m$. Moreover,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{6} \left[\binom{2m-j}{i-j} - \binom{2m-j}{i+1-j} \right] s_j \\ & > & 0 \end{array}$$

holds for any $m+3 \le i \le 2m-1$, therefore $t_{m+3} \ge t_{m+4} \ge \cdots \ge t_{2m}$. Now, by Lemma 2.3,

$$\begin{array}{ll} t_{m+1} - t_m & \geq & [\binom{2m}{m+1} - \binom{2m}{m}] s_0 + [\binom{2m-2}{m-1} - \binom{2m-2}{m-2}] s_2 \\ & \geq & [\binom{2m}{m+1} - \binom{2m}{m}] \cdot 1 + [\binom{2m-2}{m-1} - \binom{2m-2}{m-2}] \cdot \binom{6}{2} \\ & = & \frac{-(2m)!}{m!(m+1)!} + \frac{15(2m-2)!}{m!(m-1)!} \\ & = & \frac{(2m-2)!}{m!(m+1)!} (11m^2 + 17m). \end{array}$$

Thus $t_{m+1} > t_m$ for $m \ge 3$. Moreover, observe that if $m \ge 7$, then

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{6} s_i \cdot \left[2\binom{2m-i}{m+2-i} - \binom{2m-i}{m+1-i} - \binom{2m-i}{m+3-i} \right]$$

$$= \sum_{i=0}^{6} s_i \cdot \left[\frac{2(2m-i)!}{(m+2-i)!(m-2)!} - \frac{(2m-i)!}{(m+1-i)!(m-1)!} - \frac{(2m-i)!}{(m+3-i)!(m-3)!} \right]$$

$$= \sum_{i=0}^{6} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14)$$

$$> 0$$
(4)

as the coefficients near s_i are non-negative.

If m = 3, then n = 6. Since $\alpha(G) = 6$, $G = \sqcup 6K_1$ and $G^* = \sqcup 6K_2$. It is easy to see that

$$I(\Box 6K_2; x) = (1+2x)^6 = 1 + 12x + 60x^2 + 160x^3 + 240x^4 + 192x^5 + 64x^6$$

is unimodal with $mode(\sqcup 6K_2) = 4 = m + 1$.

If $4 \le m \le 6$, then by Lemma 2.3

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{6} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14)$$

$$\geq \frac{1}{(m-1)!} \left[\frac{(2m)!}{(m+3)!} (2m-14)s_0 + \frac{(2m-3)!}{m!} (2m-2)s_3 \right]$$

$$= \frac{1}{(m-1)!} \frac{(2m-3)!}{m!} \left[\frac{2m(2m-1)(2m-2)}{(m+3)(m+2)(m+1)} (2m-14)s_0 + (2m-2)s_3 \right]$$

$$\geq \frac{1}{(m-1)!} \frac{(2m-3)!}{m!} \left[\frac{2m(2m-1)(2m-2)}{(m+3)(m+2)(m+1)} (2m-14) + (2m-2)\binom{6}{3} \right]$$

$$> 0.$$
(5)

Therefore (4) and (5) show that either $t_{m+2} \ge t_{m+1}$ or $t_{m+2} \ge t_{m+3}$ if $m \ge 4$.

From the above, we conclude that the sequence $\{t_0, t_1, \ldots, t_{2m}\}$ is unimodal and the possible positions for its mode are m+1, m+2 and m+3. \square

Theorem 3.3 Let G be a graph of order n with $\alpha(G) = 7$. Then $I(G^*; x)$ is unimodal with

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 3.$$

Moreover, if n is even, then

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 2.$$

Proof. Case 1. n is odd, say n=2m+1. Since $\alpha(G)=7$, $m\geq 3$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_{m+1}$. On the other hand,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{7} \left[{2m+1-j \choose i-j} - {2m+1-j \choose i+1-j} \right] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+4 \le i \le 2m$. Therefore $t_{m+4} \ge t_{m+5} \ge \cdots \ge t_{2m+1}$. To finish the proof we need only to show that $2t_{m+2} - t_{m+1} - t_{m+3} \ge 0$ and $2t_{m+3} - t_{m+2} - t_{m+4} \ge 0$. For this, observe that

$$\begin{array}{ll} & 2t_{m+2} - t_{m+1} - t_{m+3} \\ & = & \sum_{i=0}^{7} s_i \cdot [2\binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+1-i} - \binom{2m+1-i}{m+3-i}] \\ & = & \sum_{i=0}^{7} s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6). \end{array}$$

If $m \ge 10$, then $2t_{m+2} - t_{m+1} - t_{m+3} \ge 0$ as the coefficients near s_i are non-negative. If m = 3, then n = 7. Since $\alpha(G) = 7$, $G = \sqcup 7K_1$ and $G^* = \sqcup 7K_2$. It is easy to see that

$$I(\sqcup 7K_2; x) = (1+2x)^7 = 1+14x+84x^2+280x^3+560x^4+672x^5+448x^6+128x^7$$
(6)

and $2t_5 - t_4 - t_6 \ge 0$. If $4 \le m \le 5$, then by Lemma 2.3

$$\begin{array}{ll} & 2t_{m+2}-t_{m+1}-t_{m+3}\\ & = & \sum_{i=0}^{7}s_{i}\cdot\frac{(2m+1-i)!}{m!(m+3-i)!}\cdot(2m-i^{2}+5i-6).\\ & \geq & \frac{1}{m!}[\frac{(2m-5)!}{(m-3)!}(2m-12)s_{6}+\frac{(2m-6)!}{(m-4)!}(2m-20)s_{7}+\frac{(2m-2)!}{(m)!}(2m)s_{3}]\\ & \geq & \frac{1}{m!}[\frac{(2m-6)!}{(m-3)!}(2m-12)\binom{7}{6}2^{2m-6}+\frac{(2m-6)!}{(m-4)!}(2m-20)2^{2m-6}\\ & & +\frac{(2m-2)!}{(m)!}(2m)\binom{7}{3}]\\ & > & 0 \end{array}$$

If $6 \le m \le 9$, then by Lemma 2.3

$$\begin{array}{ll} 2t_{m+2} - t_{m+1} - t_{m+3} \\ &= \sum_{i=0}^{7} s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6). \\ &\geq \frac{1}{m!} \left[\frac{(2m-6)!}{(m-4)!} (2m-20)s_7 + \frac{(2m-2)!}{m!} (2m)s_3 + \frac{(2m-3)!}{(m-1)!} (2m-2)s_4 \right] \\ &= \frac{1}{m!} \frac{(2m-6)!}{(m-4)!} \left[(2m-20)s_7 + \frac{(2m-2)(2m-3)(2m-4)(2m-5)}{m(m-1)(m-2)(m-3)} (2m)s_3 + \frac{(2m-3)(2m-4)(2m-5)}{(m-1)(m-2)(m-3)} (2m-2)s_4 \right] \\ &\geq \frac{1}{m!} \frac{(2m-6)!}{(m-4)!} \left[(2m-20) \cdot 2^{2m+1-7} + \frac{(2m-2)(2m-3)(2m-4)(2m-5)}{m(m-1)(m-2)(m-3)} (2m) \binom{7}{3} + \frac{(2m-3)(2m-4)(2m-5)}{(m-1)(m-2)(m-3)} (2m-2) \binom{7}{4} \right] \\ &\geq 0. \end{array}$$

On the other hand, observe that

$$2t_{m+3} - t_{m+2} - t_{m+4}$$

$$= \sum_{i=0}^{7} s_i \cdot \left[2\binom{2m+1-i}{m+3-i} - \binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+4-i} \right]$$

$$= \sum_{i=0}^{7} s_i \cdot \frac{(2m+1-i)!}{(m-1)!(m+4-i)!} \cdot (2m-i^2+9i-22).$$

If $m \ge 11$, then $2t_{m+3} - t_{m+2} - t_{m+4} \ge 0$ as the coefficients near s_i are non-negative. If m = 3, then by (6), $2t_6 - t_5 - t_7 \ge 0$. If $4 \le m \le 6$, then by Lemma 2.3

$$2t_{m+3} - t_{m+2} - t_{m+4}$$

$$= \sum_{i=0}^{7} s_i \cdot \frac{(2m+1-i)!}{(m-1)!(m+4-i)!} \cdot (2m-i^2+9i-22).$$

$$\geq \frac{1}{(m-1)!} [\frac{(2m+1)!}{(m+4)!} (2m-22)s_0$$

$$+ \frac{(2m)!}{(m+3)!} (2m-14)s_1 + \frac{(2m-2)!}{(m+1)!} (2m-4)s_3]$$

$$\geq \frac{1}{(m-1)!} \frac{(2m-2)!}{(m+1)!} [\frac{(2m+1)(2m)(2m-1)}{(m+4)(m+3)(m+2)} (2m-22)$$

$$+ \frac{(2m)(2m-1)!}{(m+3)(m+2)} (2m-14)(2m+1) + (2m-4)\binom{7}{3}]$$

$$> 0.$$

If $7 \le m \le 10$, then by Lemma 2.3

$$\begin{array}{ll} & 2t_{m+3} - t_{m+2} - t_{m+4} \\ = & \sum_{i=0}^{7} s_i \cdot \frac{(2m+1-i)!}{(m-1)!(m+4-i)!} \cdot (2m-i^2+9i-22). \\ \geq & \frac{1}{(m-1)!} \left[\frac{(2m+1)!}{(m+4)!} (2m-22)s_0 + \frac{(2m-1)!}{(m+2)!} (2m-8)s_2 \right] \\ \geq & \frac{1}{(m-1)!} \frac{(2m-1)!}{(m+2)!} \left[\frac{(2m+1)(2m)}{(m+4)(m+3)} (2m-22) \cdot 1 + (2m-8)\binom{7}{2} \right] \\ > & 0. \end{array}$$

From the above, we conclude that $I(G^*;x)$ is unimodal and the possible positions for its mode are m+1, m+2, m+3 and m+4.

Case 2. n is even, say n=2m. Since $\alpha(G)=7, m\geq 4$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_m$. Moreover,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{7} [\binom{2m-j}{i-j} - \binom{2m-j}{i+1-j}] s_j \\ & > & 0 \end{array}$$

holds for any $m+3 \le i \le 2m-1$, therefore $t_{m+3} \ge t_{m+4} \ge \cdots \ge t_{2m}$. Now, by Lemma 2.3,

$$\begin{array}{ll} & t_{m+1}-t_m\\ \geq & [\binom{2m}{m+1}-\binom{2m}{m}]s_0+[\binom{2m-2}{m-1}-\binom{2m-2}{m-2}]s_2\\ \geq & [\binom{2m}{m+1}-\binom{2m}{m}]\cdot 1+[\binom{2m-2}{m-1}-\binom{2m-2}{m-2}]\cdot \binom{7}{2}\\ = & \frac{-(2m)!}{(m+1)!m!}+\frac{2!(2m-2)!}{m!(m-1)!}\\ = & \frac{(2m-2)!}{(m+1)!m!}(17m^2+23m)\\ > & 0. \end{array}$$

Moreover, observe that

$$\begin{array}{ll} & 2t_{m+2}-t_{m+1}-t_{m+3} \\ = & \sum_{i=0}^{7} s_i [2\binom{2m-i}{m+2-i}-\binom{2m-i}{m+1-i}-\binom{2m-i}{m+3-i}] \\ = & \sum_{i=0}^{7} s_i [\frac{2(2m-i)!}{(m+2-i)!(m-2)!}-\frac{(2m-i)!}{(m+1-i)!(m-1)!}-\frac{(2m-i)!}{(m+3-i)!(m-3)!}] \\ = & \sum_{i=0}^{7} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14). \end{array}$$

If $m \geq 7$, then $2t_{m+2} - t_{m+1} - t_{m+3} \geq 0$ as the coefficients near s_i are non-negative.

If $4 \le m \le 6$, then by Lemma 2.3

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{7} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14)$$

$$\geq \frac{1}{(m-1)!} \left[\frac{(2m)!}{(m+3)!} (2m-14) s_0 + \frac{(2m-7)!}{(m-4)!} (2m-14) s_7 + \frac{(2m-3)!}{m!} (2m-2) s_3 \right]$$

$$\geq \frac{1}{(m-1)!} \left[\frac{(2m)!}{(m+3)!} (2m-14) + \frac{(2m-7)!}{(m-4)!} (2m-14) 2^{2m-7} + \frac{(2m-3)!}{m!} (2m-2) {7 \choose 3} \right]$$

$$\geq 0.$$

From the above, we conclude that $I(G^*;x)$ is unimodal and the possible positions for its mode are m+1, m+2 and m+3. \square

Theorem 3.4 Let G be a graph of order n with $\alpha(G) = 8$. Then $I(G^*; x)$ is unimodal with

$$\left\lceil \frac{n+1}{2} \right\rceil \leq mode(G^*) \leq \left\lceil \frac{n+1}{2} \right\rceil + 3.$$

Proof. Case 1. n is odd, say n=2m+1. Since $\alpha(G)=8, m\geq 4$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_{m+1}$. On the other hand,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{8} \left[{2m+1-j \choose i-j} - {2m+1-j \choose i+1-j} \right] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+4 \le i \le 2m$. Therefore $t_{m+4} \ge t_{m+5} \ge \cdots \ge t_{2m+1}$. To prove the assertion, we first observe that $t_{m+2} > t_{m+1}$ for $4 \le m \le 14$. This is because of the following:

$$\begin{array}{l} t_{m+2} - t_{m+1} \\ \geq [\binom{2m+1}{m+2} - \binom{2m+1}{m+1}] s_0 + [\binom{2m}{m+1} - \binom{2m}{m}] s_1 \\ + [\binom{2m-2}{m-1} - \binom{2m-2}{m-2}] s_3 + [\binom{2m-3}{m-2} - \binom{2m-3}{m-3}] s_4 \\ \geq \frac{-2(2m+1)!}{m!(m+2)!} \cdot 1 + \frac{-(2m)!}{m!(m+1)!} \cdot (2m+1) + \frac{(2m-2)!}{m!(m-1)!} \cdot \binom{8}{3} \\ + \frac{2(2m-3)!}{m!(m-2)!} \cdot \binom{8}{4} \\ = \frac{(2m-3)!}{(m+2)!m!} [-4m(2m+1)(2m-1)(2m-2) \\ -2m(2m+1)(2m-1)(2m-2)(m+2) \\ +56m(2m-2)(m+1)(m+2) + 140m(m-1)(m+1)(m+2)] \\ = \frac{(2m-3)!}{(m+2)!(m-2)!} [-8(2m+1)(2m-1) - 4(2m+1)(2m-1)(m+2) \\ +252(m+1)(m+2)] \\ > 0. \end{array}$$

If $4 \le m \le 5$, then $t_{m+2} \ge t_{m+3} \ge \cdots$ by Theorem 2.1, so that $I(G^*; x)$ is unimodal and the mode of it is m+2.

If $6 \le m \le 8$, then $t_{m+3} \ge t_{m+4} \ge \cdots$ by Theorem 2.1, so that $I(G^*; x)$ is unimodal and the possible positions for its mode are m+2 and m+3. If $9 \le m \le 14$, then $t_{m+4} \ge t_{m+5} \ge \cdots$ from the above and

$$\begin{array}{ll} 2t_{m+3} - t_{m+2} - t_{m+4} \\ &= \sum_{i=0}^{8} s_i \cdot \frac{(2m+1-i)!}{(m-1)!(m+4-i)!} \cdot (2m-i^2+9i-22) \\ &\geq \frac{(2m+1)!}{(m-1)!(m+4)!} \cdot (2m-22) \cdot s_0 + \frac{(2m)!}{(m-1)!(m+3)!} \cdot (2m-14) \cdot s_1 \\ &= \frac{(2m+1)!}{(m-1)!(m+4)!} \cdot (2m-22) + \frac{(2m)!}{(m-1)!(m+3)!} \cdot (2m-14)(2m+1) \\ &= \frac{(2m+1)!}{(m-1)!(m+4)!} [(2m-22) + (2m-14)(m+4)] \\ &> 0, \end{array}$$

so that $I(G^*;x)$ is unimodal and the possible positions for its mode are m+2, m+3 and m+4.

Finally, if $m \geq 15$, then

$$\begin{array}{ll} & 2t_{m+2} - t_{m+1} - t_{m+3} \\ = & \sum_{i=0}^8 s_i \cdot \left[2\binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+1-i} - \binom{2m+1-i}{m+3-i} \right] \\ = & \sum_{i=0}^8 s_i \cdot \frac{(2m+1-i)!}{m!(m+3-i)!} \cdot (2m-i^2+5i-6) \\ > & 0 \end{array}$$

and

$$2t_{m+3} - t_{m+2} - t_{m+4}$$

$$= \sum_{i=0}^{8} s_i \cdot \left[2\binom{2m+1-i}{m+3-i} - \binom{2m+1-i}{m+2-i} - \binom{2m+1-i}{m+4-i} \right]$$

$$= \sum_{i=0}^{8} s_i \cdot \frac{(2m+1-i)!}{(m-1)!(m+4-i)!} \cdot (2m-i^2+9i-22)$$

$$\geq 0,$$

so that $I(G^*; x)$ is unimodal and the possible positions for its mode are m+1, m+2, m+3 and m+4.

Case 2. n is even, say n=2m. Since $\alpha(G)=8, m\geq 4$. By Theorem 2.1, we have that $t_0\leq t_1\leq \cdots \leq t_m$. Moreover,

$$\begin{array}{rcl} t_i - t_{i+1} & = & \sum_{j=0}^{8} [\binom{2m-j}{i-j} - \binom{2m-j}{i+1-j}] s_j \\ & \geq & 0 \end{array}$$

holds for any $m+4 \le i \le 2m-1$, therefore $t_{m+4} \ge t_{m+5} \ge \cdots \ge t_{2m}$. Now, by Lemma 2.3,

$$\begin{array}{l} t_{m+1} - t_m \\ \geq \left[\binom{2m}{m+1} - \binom{2m}{m} \right] s_0 + \left[\binom{2m-2}{m-1} - \binom{2m-2}{m-2} \right] s_2 \\ \geq \left[\binom{2m}{m+1} - \binom{2m}{m} \right] \cdot 1 + \left[\binom{2m-2}{m-1} - \binom{2m-2}{m-2} \right] \cdot \binom{8}{2} \\ = \frac{-(2m)!}{(m+1)!m!} + \frac{28(2m-2)!}{m!(m-1)!} \\ = \frac{(2m-2)!}{(m+1)!m!} (24m^2 + 30m) \\ > 0. \end{array}$$

If $4 \le m \le 7$, then $t_{m+2} \ge t_{m+3} \ge \cdots$ by Theorem 2.1, so that $I(G^*; x)$ is unimodal and the possible positions for its mode are m+1 and m+2. If $8 \le m \le 10$, then $t_{m+3} \ge t_{m+4} \ge \cdots$ by Theorem 2.1 and

$$\begin{array}{ll} 2t_{m+2} - t_{m+1} - t_{m+3} \\ &= \sum_{i=0}^{8} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14) \\ &\geq \frac{(2m-1)!}{(m-1)!(m+2)!} \cdot (2m-8) \cdot s_1 + \frac{(2m-8)!}{(m-1)!(m-5)!} \cdot (2m-22) \cdot s_8 \\ &\geq \frac{(2m-1)!}{(m-1)!(m+2)!} \cdot (2m-8) \cdot (2m) + \frac{(2m-8)!}{(m-1)!(m-5)!} \cdot (2m-22) \cdot 2^{2m-8} \\ &= \frac{(2m-8)!}{(m-1)!(m-5)!} \cdot \left[\frac{(2m-1)(2m-2)\cdots(2m-7)}{(m+2)(m+1)\cdots(m-4)} 2m(2m-8) \right. \\ &+ (2m-22) \cdot 2^{2m-8} \\ &> 0 \end{array}$$

by Lemma 2.3, so that $I(G^*; x)$ is unimodal and the possible positions for its mode are m+1, m+2 and m+3.

If $m \geq 11$, then

$$2t_{m+3} - t_{m+2} - t_{m+4}$$

$$= \sum_{i=0}^{8} s_i \cdot \left[2\binom{2m-i}{m+3-i} - \binom{2m-i}{m+2-i} - \binom{2m-i}{m+4-i} \right]$$

$$= \sum_{i=0}^{8} s_i \cdot \frac{(2m-i)!}{(m-2)!(m+4-i)!} \cdot (2m-i^2+11i-34)$$

$$\geq \frac{(2m)!}{(m-2)!(m+4)!} \cdot (2m-34) \cdot s_0 + \frac{(2m-1)!}{(m-2)!(m+3)!} \cdot (2m-24) \cdot s_1$$

$$+ \frac{(2m-2)!}{(m-2)!(m+2)!} \cdot (2m-16) \cdot s_2$$

$$\geq \frac{(2m)!}{(m-2)!(m+4)!} \cdot (2m-34) \cdot 1 + \frac{(2m-1)!}{(m-2)!(m+3)!} \cdot (2m-24)(2m)$$

$$+ \frac{(2m-2)!}{(m-2)!(m+2)!} \cdot (2m-16) \cdot \binom{8}{2}$$

$$= \frac{(2m-2)!}{(m-2)!(m+2)!} \left[\frac{2m(2m-1)}{(m+4)(m+3)} (2m-34) + \frac{2m-1}{m+3} (2m-24)(2m) + 28(2m-16) \right]$$

and

$$2t_{m+2} - t_{m+1} - t_{m+3}$$

$$= \sum_{i=0}^{8} s_i \cdot \frac{(2m-i)!}{(m-1)!(m+3-i)!} \cdot (2m-i^2+7i-14)$$
> 0

by Lemma 2.3, so that $I(G^*;x)$ is unimodal and the possible positions for its mode are m+1, m+2, m+3 and m+4. \square

4 Unimodality of $K_{2,n}^*$

The well-covered spider S_n , $n \ge 2$, has n vertices of degree 2, one vertex of degree n+1, and n+1 vertices of degree 1 (see Figure 1). It is well-known that $S_n = K_{1,n}^*$.

Figure 1: The graph $S_n = K_{1,n}^*$.

In [7, Theorem 3.1], Levit and Mandrescu proved the following:

Theorem 4.1 The independence polynomial of $K_{1,n}^*$, $n \geq 2$, is unimodal, moreover, $I(K_{1,n}^*;x) = (1+x) \cdot \{\sum_{k=0}^n [\binom{n}{k} \cdot 2^k + \binom{n-1}{k-1}] \cdot x^k\}$, and its mode is unique and equals $\lceil \frac{2n+1}{3} \rceil$.

In this section, we prove a similar result for $I(K_{2,n}^*;x)$. For this, we need some lemmas.

Lemma 4.2 [3] If G is a graph and $u \in V(G)$, then $I(G;x) = I(G - u;x) + x \cdot I(G - N[u];x)$. If G_1 and G_2 are graphs, then $I(G_1 \sqcup G_2;x) = I(G_1;x) \cdot I(G_2;x)$.

One can obtain the following result by applying Lemma 4.2.

Theorem 4.3 The independence polynomial of $K_{2,n}^*$, $n \geq 2$, is

$$I(K_{2,n}^*;x) = (1+x)^2 \cdot \left\{ \sum_{k=0}^n \left[\binom{n}{k} \cdot 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i} \right] \cdot x^k \right\}.$$

Proof.

Figure 2: The graph $K_{2,n}^*$.

Let $K_{2,n}$ be the complete bipartite graph with vertex classes $U = \{u_1, u_2\}$ and $V = \{v_1, \ldots, v_n\}$ (see Figure 2). Then by Lemma 4.2, the independent polynomial of $K_{2,n}^*$, $n \geq 2$, is

$$\begin{array}{ll} I(K_{2,n}^*;x) \\ &= I(K_{2,n}^* - \{u_1\};x) + x \cdot I(K_{2,n}^* - N[u_1];x) \\ &= I(S_n \sqcup \{u_1^*\};x) + x \cdot I(K_2 \sqcup nK_1;x) \\ &= (1+x) \cdot \{\sum_{k=0}^n [\binom{n}{k} \cdot 2^k + \binom{n-1}{k-1}] \cdot x^k\} \cdot (1+x) + x(1+2x)(1+x)^n \\ &= (1+x)^2 \cdot \{\sum_{k=0}^n [\binom{n}{k} \cdot 2^k + \binom{n-1}{k-1}] \cdot x^k\} \\ &+ (1+x)^2 [x(1+2x)(1+x)^{n-2}] \\ &= (1+x)^2 \cdot \{\sum_{k=0}^n [\binom{n}{k} \cdot 2^k + \binom{n-1}{k-1} + \binom{n-2}{k-1} + 2\binom{n-2}{k-2}] \cdot x^k\} \\ &= (1+x)^2 \cdot \{\sum_{k=0}^n [\binom{n}{k} \cdot 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i}] \cdot x^k\} \end{array}$$

as $\binom{n-2}{k-1} + \binom{n-2}{k-2} = \binom{n-1}{k-1}$. This shows the assertion. \square

Proposition 4.4 Let

$$c_k = \binom{n}{k} 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i}$$

and $h = \lfloor \frac{2n+1}{3} \rfloor$, where $0 \le k \le n$ and $n \ge 2$. Then $c_0 \le \cdots \le c_{h-1} \le c_h \ge c_{h+1} \ge \cdots \ge c_n$.

Proof. Case 1. n = 3m. For $0 \le i \le m - 1$,

$$= \begin{array}{l} c_{2m+i} - c_{2m+i+1} \\ = [\binom{3m}{2m+i} \cdot 2^{2m+i} + 2\binom{3m-1}{2m+i-1} + \binom{3m-2}{2m+i-2}] \\ - [\binom{3m}{2m+i+1} \cdot 2^{2m+i+1} + 2\binom{3m-1}{2m+i} + \binom{3m-2}{2m+i-1}]. \end{array}$$

It is easy to see that for any $m \in \mathbb{N}$ and $0 \le i \le m-1$, $\binom{3m-1}{2m+i-1} \ge \binom{3m-1}{2m+i}$ and $\binom{3m-2}{2m+i-2} \ge \binom{3m-2}{2m+i-1}$. Moreover,

$$\binom{3m}{2m+i} \cdot 2^{2m+i} - \binom{3m}{2m+i+1} \cdot 2^{2m+i+1} & = & \frac{(3m)! \cdot 2^{2m+i} \cdot (3i+1)}{(2m+i+1)!(m-i)!} \\ > & 0.$$

Therefore, $c_{2m} \geq c_{2m+1} \geq \cdots \geq c_{3m}$. On the other hand, for any $m \in \mathbb{N}$ and $0 \leq j \leq 2m-1$, we have that

$$\begin{array}{l} c_{2m-j}-c_{2m-j-1}\\ =& [\binom{3m}{2m-j}\cdot 2^{2m-j}+2\binom{3m-1}{2m-j-1}+\binom{3m-2}{2m-j-2}]\\ &-[\binom{3m}{2m-j-1}\cdot 2^{2m-j-1}+2\binom{3m-1}{2m-j-2}+\binom{3m-2}{2m-j-3}]\\ =& \frac{(3m)!\cdot 2^{2m-j-1}\cdot (3j+2)}{(2m-j)!(m+j+1)!}-\frac{2(3m-1)!\cdot (m-2j-2)}{(2m-j-1)!(m+j+1)!}-\frac{(3m-2)!\cdot (m-2j-3)}{(2m-j-2)!(m+j+1)!}\\ =& \frac{(3m-2)!}{(2m-j)!(m+j+1)!}\cdot [3m(3m-1)(3j+2)\cdot 2^{2m-j-1}\\ &-2(3m-1)(m-2j-2)(2m-j)\\ &-(m-2j-3)(2m-j)(2m-j-1)]. \end{array}$$

Notice that

$$2(3m-1)(m-2j-2)(2m-j)+(m-2j-3)(2m-j)(2m-j-1) \le (m-2j-2)(2m-j)[2m+2(3m-1)] \le (2m-j)m(8m-2) < 2^{2m-j-1}3m(3m-1).$$

Thus we conclude that $c_0 \leq \cdots \leq c_{2m-1} \leq c_{2m} \geq c_{2m+1} \geq \cdots \geq c_n$. Case 2. n = 3m + 1. For $0 \leq i \leq m - 1$,

$$= \begin{array}{l} {}^{c_{2m+i+1}-c_{2m+i+2}} \\ = [\binom{3m+1}{2m+i+1} \cdot 2^{2m+i+1} + 2\binom{3m}{2m+i} + \binom{3m-1}{2m+i-1})] \\ - [\binom{3m+1}{2m+i+2} \cdot 2^{2m+i+2} + 2\binom{3m}{2m+i+1} + \binom{3m-1}{2m+i})]. \end{array}$$

It is easy to see that for any $m \in \mathbb{N}$ and $0 \le i \le m-1$, $\binom{3m}{2m+i} \ge \binom{3m}{2m+i+1}$ and $\binom{3m-1}{2m+i-1} \ge \binom{3m-1}{2m+i}$. Moreover,

Therefore, $c_{2m+1} \ge c_{2m+2} \ge \cdots \ge c_{3m+1}$. On the other hand, we have for any $m \in \mathbb{N}$ and $0 \le j \le 2m$

$$\begin{array}{l} c_{2m-j+1}-c_{2m-j}\\ =& [\binom{3m+1}{2m-j+1}\cdot 2^{2m-j+1}+2\binom{3m}{2m-j}+\binom{3m-1}{2m-j-1}]\\ &-[\binom{3m+1}{2m-j}\cdot 2^{2m-j}+2\binom{3m}{2m-j-1}+\binom{3m-1}{2m-j-2}]\\ =& \frac{(3m+1)!\cdot 2^{2m-j}\cdot (3j+1)}{(2m-j+1)!(m+j+1)!}-\frac{2(3m)!\cdot (m-2j-1)}{(2m-j)!(m+j+1)!}-\frac{(3m-1)!\cdot (m-2j-2)}{(2m-j-1)!(m+j+1)!}\\ =& \frac{(3m-1)!}{(2m-j+1)!(m+j+1)!}\cdot [3m(3m+1)(3j+1)\cdot 2^{2m-j}\\ &-2(3m)(m-2j-1)(2m-j+1)\\ &-(m-2j-2)(2m-j+1)(2m-j)]. \end{array}$$

Notice that

$$2(3m)(m-2j-1)(2m-j+1) + (m-2j-2)(2m-j+1)(2m-j) \le (m-2j-1)(2m-j+1)[2m+2(3m)] \le (2m-j+1)8m^2 < 2^{2m-j}3m(3m+1).$$

Thus we conclude that $c_0 \leq \cdots \leq c_{2m} \leq c_{2m+1} \geq c_{2m+2} \geq \cdots \geq c_n$. Case 3. n = 3m + 2. For $0 \leq i \leq m$,

$$= \begin{array}{l} c_{2m+i+1} - c_{2m+i+2} \\ = [\binom{3m+2}{2m+i+1} \cdot 2^{2m+i+1} + 2\binom{3m+1}{2m+i} + \binom{3m}{2m+i-1}] \\ - [\binom{3m+2}{2m+i+2} \cdot 2^{2m+i+2} + 2\binom{3m+1}{2m+i+1} + \binom{3m}{2m+i}]. \end{array}$$

It is easy to see that for any $m \in \mathbb{N}$ and $0 \le i \le m$, $\binom{3m+1}{2m+i} \ge \binom{3m+1}{2m+i+1}$ and $\binom{3m}{2m+i-1} \ge \binom{3m}{2m+i}$. Moreover,

$$\binom{3m+2}{2m+i+1} \cdot 2^{2m+i+1} - \binom{3m+2}{2m+i+2} \cdot 2^{2m+i+2} & = \frac{(3m+2)! \cdot 2^{2m+i+1} \cdot (3i)}{(2m+i+2)!(m-i+1)!} \\ \geq 0.$$

Therefore, $c_{2m+1} \ge c_{2m+2} \ge \cdots \ge c_{3m+2}$. On the other hand, we have for any $m \in \mathbb{N}$ and $0 \le j \le 2m$ that

$$\begin{array}{l} & c_{2m-j+1}-c_{2m-j}\\ & = & [\binom{3m+2}{2m-j+1} \cdot 2^{2m-j+1} + 2\binom{3m+1}{2m-j} + \binom{3m}{2m-j-1}]\\ & - [\binom{3m+2}{2m-j} \cdot 2^{2m-j} + 2\binom{3m+1}{2m-j-1} + \binom{3m}{3m}]\\ & = & \frac{(3m+2)! \cdot 2^{2m-j} \cdot (3j+3)}{(2m-j+1)!(m+j+2)!} - \frac{2(3m+1)! \cdot (m-2j-2)}{(2m-j)!(m+j+2)!} - \frac{(3m)! \cdot (m-2j-3)}{(2m-j-1)!(m+j+2)!}\\ & = & \frac{(3m)!}{(2m-j+1)!(m+j+2)!} [(3m+2)(3m+1)(3j+3) \cdot 2^{2m-j}\\ & - 2(3m+1)(m-2j-2)(2m-j+1)\\ & - (m-2j-3)(2m-j+1)(2m-j)]. \end{array}$$

Notice that

$$\begin{array}{l} 2(3m+1)(m-2j-2)(2m-j+1) \\ +(m-2j-3)(2m-j+1)(2m-j) \\ \leq (m-2j-2)(2m-j+1)[2m+2(3m+1)] \\ \leq (2m-j+1)m(8m+2) \\ < 2^{2m-j}(3m+1)(3m+2). \end{array}$$

Thus we conclude that $c_0 \leq \cdots \leq c_{2m} \leq c_{2m+1} \geq c_{2m+2} \geq \cdots \geq c_n$. \square

Lemma 4.5 Let

$$c_k = \binom{n}{k} 2^k + \sum_{i=1}^{2} \binom{2}{i} \binom{n-i}{k-i}$$

and $h = \lfloor \frac{2n+1}{3} \rfloor$, where $0 \le k \le n$ and $n \ge 2$. Then $c_{h-1} > c_{h+2}$ and $c_{h+1} > c_{h-2}$.

Proof. Observe that

$$\begin{array}{l} = & C_{h-1} - C_{h+2} \\ = & [\binom{n}{h-1} \cdot 2^{h-1} - \binom{n}{h+2} \cdot 2^{h+2}] + 2[\binom{n-1}{h-2} - \binom{n-1}{h+1}] + [\binom{n-2}{h-3} - [\binom{n-2}{h}] \\ = & \frac{n! \cdot 2^{h-1}}{(h+2)[(n-h+1)!} \cdot Q_1(n,h) + \frac{2(n-1)!}{(h+1)!(n-h+1)!} \cdot Q_2(n,h) \\ & + \frac{(n-2)!}{h!(n-h+1)!} \cdot Q_3(n,h), \end{array}$$

where

$$Q_1(n,h) = h(h+1)(h+2) - 8(n-h+1)(n-h)(n-h-1)$$

$$Q_2(n,h) = h(h+1)(h-1) - (n-h+1)(n-h)(n-h-1)$$

$$Q_3(n,h) = h(h-1)(h-2) - (n-h+1)(n-h)(n-h-1).$$

If n = 3m, then h = 2m and the following hold:

$$Q_1(3m, 2m) = 12m(m+1) > 0$$

and

$$Q_2(3m,2m) \ge Q_3(3m,2m) = m(m-1)(7m-5) \ge 0.$$

If n = 3m + 1, then h = 2m + 1 and the following hold:

$$Q_1(3m+1,2m+1) = 2(m+1)(12m+3) > 0$$

and

$$Q_2(3m+1,2m+1) \ge Q_3(3m+1,2m+1) = m(7m^2-1) > 0.$$

If n = 3m + 2, then h = 2m + 1 and the following hold:

$$Q_1(3m+2,2m+1) = 6(m+1) > 0$$

and

$$Q_2(3m+2,2m+1) \ge Q_3(3m+2,2m+1) = m(m-1)(7m+4) \ge 0.$$

From the above, we conclude that $c_{h-1} > c_{h+2}$. On the other hand, observe that

$$\begin{array}{l} c_{h+1} - c_{h-2} \\ \geq \binom{n}{h+1} \cdot 2^{h+1} - \left[\binom{n}{h-2} \cdot 2^{h-2} + 2\binom{n-1}{h-3} + \binom{n-2}{h-4} \right] \\ = \left[\frac{n!}{(h+1)!(n-h-1)!} \cdot 2^{h+1} - \frac{n!}{(h-2)!(n-h+2)!} \cdot 2^{h-2} \right] \\ - \left[\frac{2(n-1)!}{(h-3)!(n-h+2)!} + \frac{(n-2)!}{(h-4)!(n-h+2)!} \right] \\ = \frac{(n-2)!}{(h+1)!(n-h+2)!} \cdot R(n,h), \end{array}$$

where

$$R(n,h) = n(n-1)[(n-h+2)(n-h+1)(n-h) \cdot 2^{h+1} -h(h+1)(h-1) \cdot 2^{h-2}] -h(h+1)(h-1)(h-2)[2(n-1)+(h-3)].$$

If n = 3m, then h = 2m and

$$R(3m, 2m) = (2m)(3m)(3m-1)(12m+9) \cdot 2^{2m-2} - (2m)(2m+1)(2m-1)(8m-5)(2m-2) > 0.$$

If n = 3m + 1, then h = 2m + 1 and

$$R(3m+1,2m+1) = (2m)(2m+2)(3m+1)(9m) \cdot 2^{2m-1} - (2m)(2m+1)(2m+2)(8m-2)(2m-1) > 0$$

If n = 3m + 2, then h = 2m + 1 and

$$R(3m+2,2m+1) = (2m+2)(3m+1)(3m+2)(18m+24) \cdot 2^{2m-1} - (2m)(2m+1)(2m+2)(8m)(2m-1) > 0.$$

Therefore, we conclude that $c_{h+1} > c_{h-2}$. \square

Theorem 4.6 The independence polynomial of $K_{2,n}^*$ is unimodal with mode equal to $\lfloor \frac{2n+4}{3} \rfloor$.

Proof. If n=1, then $I(K_{2,1}^*)=1+6x+10x^2+5x^3$, so that the mode is $2=\lfloor \frac{6}{3}\rfloor$. Therefore, we may assume that $n\geq 2$. By Theorem 4.3, the independence polynomial of $K_{2,n}^*$ is

$$I(K_{2,n}^*;x) = (1+x)^2 \cdot \left\{ \sum_{k=0}^n \left[\binom{n}{k} 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i} \right] \cdot x^k \right\}.$$

Let

$$c_k = \binom{n}{k} 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i};$$

then $I(K_{2,n}^*;x) = (1+x)^2 \cdot \sum_{i=0}^n c_i x^i$. By Proposition 4.4, $c_0 \le c_1 \le \cdots \le c_{h-1} \le c_h \ge c_{h+1} \ge \cdots \ge c_n$ where $h = \lfloor \frac{2n+1}{3} \rfloor$. Write $I(K_{2,n}^*;x) = \sum_{i=0}^{n+2} a_i x^i$; then

$$(1+2x+x^2)(c_0+c_1x+\cdots+c_nx^n) = a_0+a_1x+\cdots+a_{n+2}x^{n+2},$$

and therefore $a_0 = c_0$, $a_1 = c_1 + 2c_o$, $a_{n+1} = 2c_n + c_{n-1}$, $a_{n+2} = c_n$, and $a_k = c_k + 2c_{k-1} + c_{k-2}$ for $2 \le k \le n$. It is easy to see that $a_0 \le a_1 \le a_2$ and $a_n \ge a_{n+1} \ge a_{n+2}$. Notice that if $2 \le k \le h-1$, then $c_k + 2c_{k-1} + c_{k-2} \le c_{k+1} + 2c_k + c_{k-1}$, so that $a_2 \le a_3 \le \cdots \le a_h$. Similarly, we have that $a_{h+2} \ge a_{h+3} \ge \cdots \ge a_n$. Hence the possible modes of $I(K_{2,n}^*; x)$ are h, h+1 and h+2. Since $c_h \ge c_{h-1}$ and $c_h \ge c_{h+1}$, by Lemma 4.5,

$$a_{h+1} - a_h$$
= $(c_{h+1} + 2c_h + c_{h-1}) - (c_h + 2c_{h-1} + c_{h-2})$
= $(c_{h+1} - c_{h-2}) + (c_h - c_{h-1})$
> 0

and

$$a_{h+1} - a_{h+2}$$
= $(c_{h+1} + 2c_h + c_{h-1}) - (c_{h+2} + 2c_{h+1} + c_h)$
= $(c_h - c_{h+1}) + (c_{h-1} - c_{h+2})$
> 0.

Therefore, the mode of $K_{2,n}^*$ is $h+1=\lfloor \frac{2n+1}{3}\rfloor+1=\lfloor \frac{2n+4}{3}\rfloor$. In view of Theorem 4.6, we provide the following question: Conjecture: $I(K_{t,n}^*;x)$ is unimodal for every t.

In [8, Theorem 5], Levit and Mandrescu proved that $I(K_{1,n}^*;x)$ is log-concave, we prove a similar result for $I(K_{2,n}^*;x)$ as follows.

Theorem 4.7 The independence polynomial of $K_{2,n}^*$ is log-concave.

Proof. If n=1, then $I(K_{2,1}^*)=1+6x+10x^2+5x^3$. It is easy to see that the independence polynomial of $K_{2,1}^*$ is log-concave, so that the assertion holds for n=1. Therefore, we may assume that $n \geq 2$. By Theorem 4.3,

$$I(K_{2,n}^*;x) = (1+x)^2 \cdot \left\{ \sum_{k=0}^n \left[\binom{n}{k} \cdot 2^k + \sum_{i=1}^2 \binom{2}{i} \binom{n-i}{k-i} \right] \cdot x^k \right\}.$$

Let

$$c_k = \binom{n}{k} \cdot 2^k + \sum_{i=1}^{2} \binom{2}{i} \binom{n-i}{k-i};$$

then $I(K_{2,n}^*;x) = (1+x)^2 \cdot \sum_{i=0}^n c_i x^i$. Since the product of two log-concave polynomials is also log-concave and $(1+x)^2$ is log-concave, it is sufficient to show that $c_k^2 \ge c_{k-1}c_{k+1}$ for $1 \le k \le n-1$. For this, notice that $c_1^2 - c_0 c_2 = 2n^2 + 8n + 5 > 0$ and $c_2^2 - c_1 c_3 = \frac{1}{3}(4n^4 + 10n^3 + 2n^2 - 4n + 3) > 0$. For $3 \le k \le n-1$, let $A_k = \binom{n}{k} \cdot 2^k$ and $B_k = 2\binom{n-1}{k-1} + \binom{n-2}{k-2}$; then $c_k = A_k + B_k$. Moreover,

$$\begin{array}{l} c_k^2 - c_{k-1} \cdot c_{k+1} \\ = A_k^2 + 2A_kB_k - A_{k-1}A_{k+1} - A_{k-1}B_{k+1} - A_{k+1}B_{k-1} \\ + B_k^2 - B_{k-1}B_{k+1}. \end{array}$$

Observe that $\binom{n-i}{k-i}^2 \ge \binom{n-i}{k-i-1} \binom{n-i}{k-i+1}$ for i=1,2, therefore

$$\begin{array}{l} \operatorname{Hat} \ (_{k-i}) \ \geq (_{k-i-1})(_{k-i+1}) \ \operatorname{Iof} \ i=1,2, \ \operatorname{therefore} \\ B_k^2 - B_{k-1}B_{k+1} \\ = \ 4\binom{n-1}{k-1}^2 + 4\binom{n-1}{k-1}\binom{n-2}{k-2} + \binom{n-2}{k-2}^2 - 4\binom{n-1}{k-1}\binom{n-1}{k} \\ - 2\binom{n-1}{k-2}\binom{n-2}{k-1} - 2\binom{n-2}{k-3}\binom{n-1}{k} \\ - \binom{n-2}{k-2}\binom{n-2}{k-1} \\ \geq \ 4\binom{n-1}{k-1}\binom{n-2}{k-2} - 2\binom{n-1}{k-2}\binom{n-2}{k-1} - 2\binom{n-2}{k-3}\binom{n-1}{k} \\ = \ 4\binom{n-1}{k-1}\binom{n-2}{k-2} - 2 \cdot \frac{k-1}{n-k+1} \cdot \binom{n-1}{k-1} \cdot \frac{n-k}{k-1} \cdot \binom{n-2}{k-2} \\ - 2 \cdot \frac{k-2}{n-k+1} \cdot \binom{n-2}{k-2} \cdot \frac{n-k}{k} \cdot \binom{n-1}{k-1} \\ = \ 2\binom{n-1}{k-1}\binom{n-2}{k-2} \cdot \left[(1 - \frac{n-k}{n-k+1}) + (1 - \frac{n-k}{n-k+1} \cdot \frac{k-2}{k}) \right] \\ > \ 0 \end{array}$$

for $\frac{n-k}{n-k+1}$, $\frac{k-2}{k} \in (0,1)$. To finish the proof, it is enough to show that

$$A_k^2 + 2A_kB_k - A_{k-1}A_{k+1} - A_{k-1}B_{k+1} - A_{k+1}B_{k-1} \ge 0.$$

For this, notice that $A_{k+1} = \frac{n-k}{k+1} \binom{n}{k} 2^{k+1}$, $A_{k-1} = \frac{k}{n-k+1} \binom{n}{k} 2^{k-1}$, $B_k = [\frac{2k}{n} + \frac{k(k-1)}{n(n-1)}]\binom{n}{k}$, $B_{k+1} = [\frac{2(n-k)}{n} + \frac{(n-k)k}{n(n-1)}]\binom{n}{k}$ and $B_{k-1} = [\frac{2k(k-1)}{n(n-k+1)} + \frac{k(k-1)(k-2)}{n(n-1)(n-k+1)}]\binom{n}{k}$. It follows that

$$= \frac{A_k^2 + 2A_kB_k - A_{k-1}A_{k+1} - A_{k-1}B_{k+1} - A_{k+1}B_{k-1}}{\frac{\binom{n}{k}^2 \cdot 2^{k-1}}{n(n-1)(k+1)(n-k+1)}D},$$

where

$$\begin{split} D &= n(n-1)(k+1)(n-k+1) \cdot 2^{k+1} \\ &+ 8k(n-1)(k+1)(n-k+1) \\ &+ 4k(k-1)(k+1)(n-k+1) - n(n-1)k(n-k) \cdot 2^{k+1} \\ &- 2k(n-k)(n-1)(k+1) - k^2(n-k)(k+1) \\ &- 8k(n-k)(k-1)(n-1) - 4k(k-1)(k-2)(n-k) \\ &= [n(n-1)(n+1) \cdot 2^{k+1} - k^2(n-k)(k+1) \\ &- 2k(k+1)(n-1)(n-k)] \\ &+ [8k(n-1)(k+1)(n-k+1) - 8k(n-k)(k-1)(n-1)] \\ &+ [4k(k-1)(k+1)(n-k+1) - 4k(k-1)(k-2)(n-k)]. \end{split}$$

However,

$$8k(n-1)(k+1)(n-k+1) - 8k(n-k)(k-1)(n-1) \ge 0,$$

$$4k(k-1)(k+1)(n-k+1) - 4k(k-1)(k-2)(n-k) > 0$$

and

$$n(n-1)(n+1)\cdot 2^{k+1} - k^2(n-k)(k+1) - 2k(k+1)(n-1)(n-k) \ge 0.$$

This shows that $c_k^2 - c_{k-1} \cdot c_{k+1} \ge 0$ for $1 \le k \le n-1$. \square In view of Theorem 4.7, we provide the following question: Conjecture: $I(K_{t,n}^*;x)$ is log-concave for every t.

References

- [1] J.L. Arocha, Propriedades del polinomio independiente de un grafo, Revista Ciencias Mathematicas, vol V (1984) 103-110.
- [2] J.I. Brown, K. Dilcher, R.J. Nowakowski, Roots of independence polynomials of well-covered graphs, Journal of Algebraic Combinatroics 11 (2000), 197-210.
- [3] I. Gutman and F. Harary, Generalizations of matching polynomial, Utilitas Mathematica 24 (1983), 97-106.
- [4] V.E. Levit and E. Mandrescu, *Trees with unimodal independence polynomials*, Congressus Numerantium **159** (2002), 193-202.
- [5] V.E. Levit and E. Mandrescu, A family of well-covered graphs with unimodal independence polynomials, Congressus Numerantium 165 (2003), 195-207.

- [6] V.E. Levit and E. Mandrescu, On the roots of independence polynomials of almost all very well-covered graphs, Los Alamos Archive, prE-print arXiv:math.CO/0305227, (2003), 17pp.
- [7] V.E. Levit and E. Mandrescu, On unimodity of independence polynomials of some well-covered trees, Lecture Notes in Computer Science, LNCS 2731 Springer (2003), 237-256.
- [8] V.E. Levit and E. Mandrescu, Very well-covered graphs with log-concave independence polynomials, Carpathian J. Math. 20, no. 1, (2004), 73– 80.
- T.S. Michael and W. N. Traves, Independence sequences of well-covered graph: non-unimodality and the Roller-Coaster conjecture, Graphs and Combinatorics 19 (2002) no.3., 403-411.
- [10] M.D. Plummer, Some covering concepts in graphs, Journal of Combinatorial Theory 8 (1970) 91-98.