PROOFS OF RAMANUJAN’S ;4;-SUMMATION FORMULA
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ABSTRACT. Ramanujan’s;%;-summation formula is one of the funda-
mental identities in basic hypergeometric series. We review proofs of
this identity and clear its connections with other basic hypergeomet-
ric series transformations and formulae. In particular, we shall put
our main emphasis on methods that can be used not only to provide
deeper insight into Ramanujan’s 141-summation formula, but also to
derive new transformations and identities for basic hypergeometric
series.

1. INTRODUCTION AND NOTATION

For two indeterminate ¢ and z, define the shifted-factorial by
(zigo =1 and (z;9)n = (1-2)(1-2zq)---(1—zg"!) for neN.
When |g| < 1, the shifted factorial of infinite order is well-defined

(z;9)00 = g(l—zqk) and (z;q)n = _(—:1(7% for neZ.
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Its product and fraction forms are abbreviated compactly to

[a: bs G q ]n = (a‘; q)ﬂ(b’ q)n tte (c; Q)"’H
[a, b ooy | q] _ (a9n(big)n - (ci0)n
a, B, -, 17], (@ 9)n(B;@)n - (7:9)n

Following Bailey [9], Gasper-Rahman [21] and Slater [34], the unilateral and
bilateral basic hypergeometric series are defined, respectively, by

=)
ap, a1, -+, Qar nl|0 @1, °°*y Gr
2= ¥4
1+r¢s [ bh ceey b a4 ] Z I:q’ bl; . b Q] ’
n=0 n
a, a a et a;, @ ar
1, 2y i n 1y 2y "t
2= z .
r";bs [bls b2, R} bs % ] n;@ [bl.) b2’ R} bs q]n

Throughout the paper, the base g will be confined to |g] < 1 for non-
terminating g-series. One of the fundamental basic hypergeometric series
identities is Ramanujan’s 1¢;-summation formula (cf. [21, II-5]):

al . — |D c/ay az, q/azl
o [0 ais] = |2 T % Uet|o] where feel <l <1 )

The objective of the present paper is to review the hypergeometric proofs
of this identity and clear its connections with other basic hypergeometric
series transformations and formulae. In particular, we shall put our main
emphasis on methods that can be used not only to provide deeper insight
into Ramanujan’s ;1);-summation formula, but also to derive new transfor-
mations and identities for basic hypergeometric series.

The identity (1) is not only the bilateral extension of the g-binomial theorem
(see (6) in §2.2), but also has many applications in classical analysis and
number theory (cf. [5, §10.6]). For example, the celebrated Jacobi triple
product identity (cf. [21, II-28})

400
[0,2¢/zde = Y (-1)*¢B) 2% for o<1 (2)

k=—00

follows from (1) as a limit. In fact, specializing with ¢ — 0 and z —
z/a and then letting @ — oo, we derive it immediately from (1). For the
historical account of the identity (1), see Berndt {10, Entry 17], Chan [11]
and Johnson [27]. Further applications and different proofs can be found
from the references collected at the end of this paper.
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2. ELEMENTARY METHOD FOR PROVING ;%;-SUMMATION FORMULA

In this section, we will prove Ramanujan’s 4, -summation formula by the
g-Gaufl summation theorem, the Cauchy method and partial fraction de-
composition. For the proofs via functional equations and Abel’s lemma
on summation by parts, refer to Gasper-Rahman [21, §5.2] and the recent
paper due to Chu [15], respectively.

§2.1. ¢-Gauf3 summation theorem. One of the very useful g-series iden-
tities reads as the ¢-Gaufl summation theorem (cf. [21, II-8])

2b1 [a, Zlq; ﬁ] _ [c/a, cC//:b q} where |c/ab| < 1. (3)

G

Letting a := ag™™, b := ¢/az and ¢ := cg~™, we may reformulate it as

c/az, aq I _ {c/a, azg™™
2¢1[ Qv]“{z’ cq-m qoo'

According to the deﬁmtmn, we may write explicitly the last o¢;-series as

follows:
+oo —-m
2b1 [c/a.z, a.q |q’ ] _ Z [c/az, (;,g_m lq] o
k

pard g,
= M c/a'za ag™™ |q +Z.° a, cqm/a'z ‘ q 2*
g, cg”™ g't™, ¢
Mmpk=—m k

where the last line has been justified by changing the summation index
n - n+m. Under some routine simplification, we find the following relation:

+o0 r
o emfos | |k pom [ der™ | aq™™, cfaz
=2z _ - iz
kzz_m[ q1+m’ c q X _c/az, aq m |4 m2¢1 cq m |4
-m| @ g™ q] [c/a, azq™™ q]
c/az, ag™™ |7 |z, eg™™ |7]

-ml @& azg™ ] [c/a,, azlq]
¢/az, ag™™ ml% € .

| e qfaz | ¢/a, az l
= q q
cfaz, qja mlL% ¢ o
Letting m — oo and then appealing to the Weierstrass M-test on uniformly
convergent series (cf. Stromberg [35, P 141}), we derive Ramanujan’s formula
(1) for 14h;-series. The proof presented here is essentially the same as those
found in [12], [16, F2] and [29] recently.

=2z
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§2.2. The Cauchy method. Define F(2z) by the factorial fraction and
then express it in terms of Laurent series

F(z) = [“’ Q/“zlq] = ¥ Q. @)

z, cfaz
where §,, is independent of variable 2. It is not hard to check that

_ (1-2)(1-1/a2)
Flgz) = F(2) (1 -a2)(1 —c/qaz)
which is equivalent to the following functional equation:
q9(1 — 2)F(2) = (c - qaz)F(q2). (5)
Extracting coefficients of 2" for n € Z on both sides of (5), we find that

g — @1 = cq"Qp — 0q" Q01 for neZ
which leads us to the following recurrence relation:

1-ag™!
1—cq™~
Iterating the above recurrence relation for n-times, we get

Q, = 7{n-1 for ne€Z.

Q, = Ea’ q;"Q for neZ.

Substituting the last relation into (4), we find the following summation
formula

F(z)=% x 1% [Z Iq; z] .
In order to compute g, we recall the g-binomial formula (cf. [21, II-3])

160 [f |q; z] ((a:q(;?: for |z| <1. (6)

We can expand the factorial fraction in (4) as follows

F(z) = [az’ 9/az |¢1L<> 160 [f_ |<1; 2] 160 [qfc Iq; a—cz]

z,c/az
(aa Q)t 2 (Q/C; q)j < J
E (Qa Q)z Z (q; q)j (az) )

=0

By means of the g-Gaufi summation formula (3), we find the constant term
as follows:

= SOl (0} — o [2 9| ] = [Vl ],

k=0
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Therefore we have established the following identity
al | _ I X az,q/az
o [2|ae] = P/ = 572 ]o] [0 q
which is exactly Ramanujan’s 4;-summation formula (1).

The first part of this proof is motivated by Askey (7], where the constant
term is determined in a different manner (cf. Berndt {10, Entry 17]). More
applications of the Cauchy method can be found in the recent paper due to
Johnson [27].

§2.3. Partial fraction decomposition. Consider rational function in par-
tial fractions

_ loz,b/z4q), ~_Bi/z
G(2) := [cz,d/z q),, 4 ; 1- q icz — 1-¢id/z

Computing the coefficients

S n i _ i [cd, gc/a (a/¢; Q)m—i(bC; @)m+
A= _lim (1~ ¢'e2)G(2) = (0/0) [ b [q]i P,

cd, qd/b ] (b/d; @)m—j(ad; @)maj .
¢ ad 17]; (¢;9)m—j(cd; Q)mjr’

B;= lim (z - ¢d)G(2) = d(gb/d)’ [
z —gid

we find the following identity -

o2,b/ziql,  _ <~ _(a/c)' [cd, qc/al] (a/¢; @)m—i(bC; Q)m+i
ez, d/2; )y Sgl-gicz | ¢ bc 17], (g5 9)m—ilcd; @Jmeina

+ — d/z(qb/d)’ [cd. qd/b ] (b/d; @)m—j(ad; @)m+;

S 1-did/z | ¢ 0d 7], (g Q)m—j(cd; Ymesi1”

Letting m — oo, we get the limiting case

[az, b/zl] _[a/c, be q] +°°M[cd, QC/an]i (7a)

cz, dfz q, cd o 1_0 1-gicz|q, bc
ad, b/d = d/2(gb/dy [cd, qd/b
+[ ] Z 1-gid/z g, ad qj (7b)

which is equivalent to Chan [11, Lemma 2.2)].
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When |d| < |2| < 1/|¢|, we have two geometric series

; -1
—sz(qc)k and %’ > i)k,

k=0 k=-o00

1- q’cz

Interchanging the summation order, we derive the following Laurent series
expansion:

_oz,b/z ), _ ko= (8/6 Qm—i(be; Qms [cd, ge/a .
[c2,d/z; q]m+1 - kz_o( ) Z; (¢; Dm—i(ed; Qmetiv1 [ @ be I ]i (g%a/e)

b/d; @)m-j(ad; @)m+; [cd, gd/b _ i
* Z &/ d)kz Eq;/Q):)-j(;ﬂ(:‘I):lj:l[ q,qaé q] j(q ey

k=—o00 j=0
which may further be reformulated in terms of balanced series:

[az,b/z; 4],
[ez,d/2 )1

_|a/c,be Iz ™ ed, gqe/a, g™be 14k
= l:q’ch Q] z cd4¢3 [bc q —mc/a q1+mcd ;9

m k=i

ad,b/d (2/d)* g™, cd, qd/b, ¢"ad |
+ [q,ch q] Z 1— 4¢3 ad,¢'~™d/b, ¢'*™cd | %9

When m — oo, the limit reads as

[extle ] = [olote]d]$E cotamn [4 5 | arerd

0 k=0
-1
+[ag,2‘/ld ‘1] > (S)kﬁbx[ ’qd/b|q, "°b/d-
’ ® k=~o00

For ab = g, both 2¢;-series reduce to ; ¢p-series and therefore can be evalu-
ated by g-binomial theorem (6). This leads to the following identity

AR AT

which is equivalent to Ramanujan’s ;%;-summation formula.

This is essentially what has been done recently by Chan [11]. Further appli-
cations of the partial fraction method to basic hypergeometric series iden-
tities can be found in Chu [13, 14].
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3. PrROOFS BY HEINE’S TRANSFORMATIONS

Heine's transformations (cf. [21, II-1-2- 3]) on p¢;-series read as

i )
2¢1[ |q,] = |b @ g 21 /b, ale;] (8a)

.c’ 2 Jdoo

[ 1 [ ab
= |e/bb g| 201 abz/e, bilqw/b] (8b)

¢z
L -4 00

_ l'abz/c QJ 21 Fc/a, C£b lq;abz/c] . (8c)

z oo

§3.1. With a and b being exchanged, the second transformation (8b) reads
as
a, b| | _ |c/a, az abzfe, a | .
2¢1[ CIQ92] = [C, z lq:'oo 2¢1[ GZIQ)C/G'J' (9)
Performing the replacements
a—aqg ", b—gq and c—ecqg™" (10)
we may reformulate the left hand side as follows:

q, a'q 2 (aq sQ)k k
LHS(9) = 261 [ |q, ]—,CZO(W—";Q)I: (11a)

az\n(9/a; Q)n <=2 (a;9)k &
(2) 4/ )n == (C)Q)k (11b)

where the summation index has been shifted by & — n + k. The right hand
side may be manipulated correspondingly as

RHS(9) = 24 [qafz/ch’ff—" |q;§] [CQ’ Zq__,.n lq]oo (12a)
=200 [0 | 2| @[ o] [T2]d] o

Compa.ring the identities (11b) and (12b), we get
= (a59)% 2 [ g/az lq] [c/a, az 'q] 21 [qaz/c, ag~" lq; 2] . 48)
n o0

P [ ‘I)k g/a ¢z azq™™

Applying the g-binomial theorem (6), we have
. azfc, ag™™ az/c H
nlg{.lo 201 [q /e, ag |q; C/a] = 1o [q / |q, a—] - (00x

azg™" (c/az;q)oo”

71



Hence the limiting case n — oo of (13) leads us to Ramanujan’s ;-
summation formula (1) thanks again to the Weierstrass M-test on uniformly
convergent series (cf. Stromberg [35, P 141]).

§3.2. Ramanujan’s ;3;-summation formula can also be obtained by Heine’s
third transformation (8c). Making the same replacements (10) and recalling
(11b), we may restate the result as follows:

(E)n(q/a;q)n*Z(a,q)k " (qa2/c;Q)ooz[c/a, | ] (222)* 14

@/cOn s Gk (B0e

k=-n

Replacing k by n + k on the right side of the last equation and then simpli-
fying the result, we obtain:

(G_Q)k x _ (ge2/c; @)oo [C/a,qz/c |q]n E’f [c/q,cq"/a lq]k(@c_z)k‘

(c» Q)k N (25 9)o0 9,q/a P C, q1+n

The limiting case n — oo of the above identity results in the following
relation:

l%[ﬁlq;z] _ [zq/,c, cﬁ:,, qaz/cl] " [/qlq’ ] (15)

§3.3. In order to derive Ramanujan’s y3;-summation formula from the last
transformation, we have to verify the following bilateral series identity

1%1 [cﬁq |Q; g('clf] = [q, 5. o 9/oz IQ] (16)

¢, g°/c, cfaz, qaz/c

which is equivalent to the following formula:

oyl = |2 O q/a:y| ] where <lyl<1l @17
1 [qzlq’y] [q:z:, a/z, ¥, 9/y qoo lgl < |yl <1. (17)

We remark that for |g| < |z| and |y| < 1, there is a curious symmetric
relation

1 [; Iq;y] (1-y) =19 [q’; |q;x] (1-2) (18)

which follows immediately from (17). However, the authors have not found
a direct proof, even though it would be more desirable.

Interestingly, the identity (17) can be established by means of partial frac-
tion method. Consider rational function in variable z and decompose it in

72



partial fractions:

1 [2y, q/oy —_Ci
H(Z)=1—m[qw, q/z q] _Zl—mq‘ le zq~I

=0

where the coefficients are determined as follows:
(¥ Dm—i(9/¥; Dmai _;

! z—vq-*( =¢)H(z) (@ Qm—i (25 Qm+i
. _i ¥ Dm+i (0/Y; Qm—j _;
D; = lim(l-zqg)H(z)= 7,
I ,_.q,-( ¢)H() (¢ @)m-3(a; Q)m+j

We find the following finite summation formula

Ty, q/zy @ Dm—i(9/¥; Dmei ¥
Hz) = 1-$ [‘Ix q/z ] ,2_; (4 Dm-i(% Qm+i 1 -z

+ i % D3 (@/% Dy v
i=1 (%) m-3(4 Dm+; 1—2zq7

Letting m — oo and simplifying the result, we derive the identity:
q, 9, TY, q/.'l:y i l-z —'
[y, /v, 9z, q9/= q] Z 1- mq' Z 1-zg37
It is trivial to see that the right side of the last 1dent1t.y is the restatement

of the j4);-series in (17). This completes the proof of the bilateral series
identity of (17) and also Ramanujan’s ;%;-summation formula.

4. PROOF BY BAILEY’S ¢¢s-SERIES IDENTITY

Among the classical hierarchy of basic hypergeometric identities, the most
important one perhaps is Bailey’s very well-poised bilateral gg-series iden-
tity (Bailey [8], see also [21, II-33)):

\/—a \/_: b, (&% d,
o¥e [qf, Ve aals, agje, oafd, aafe|% i ] (198)

— [9:99,9/a,9a/bc,ga/bd, qa/be, qa/cd, qa/ce, qa/de I (19b)
ga/b,qa/c,qa/d, qa/e,q/b,q/c,q/d, q/e, ga®/bede

provided that |ga®/bcde| < 1 for convergence.

Performing the replacements a = d = ag~2-2" and e = ¢~1~2" in Bailey’s
identity (19a-19b) and then simplifying the result, we get the finite series
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formula:

-—2—-2n -n —-n -1-2
q a, ¢ "va, =¢""+/a, A
695 [ —l—n a, _q-l—n\/' q'1 2na/b q—l 2na/c a Iq, b] (20a)

_ q—1—2na, q—1—2na/bc _ q/a, qbc/a
[q"l‘z"a/b, q—1—2na/c ' omsl = qb/a, qc/a lq 2n+1. (20b)

The gps-series displayed in (20a) consists of 2n + 2 terms. Splitting equally
the sum into two parts with each of them having n + 1 terms and then
replacing the summation index for the second part by £ — 1+ 2n — k, we
can reformulate (20a-20b) as follows:
a k
G

Q/a') qbc/al _ = q—2-2n Qy q—“\/a’ -q " ‘/Ev b, c, q-1—2n
qb/a’7 qc/a - @9~ " Va,—¢" " Va,g" " "a/b,g 2" /c,al
a\k
o (&)
In view of the Weierstrass M-test on uniformly convergent series, the lim-
iting case n — oo of this identity results in the following simpler relation:
a,qb b, ¢ a, b, c b/a,
a/a,gbe/q | _ 4 |q;q +| 9@ bl g eyl (21)

gb/a,qc/ a/g,gb/a.9¢/al
Applying Heine’s transformation (8a) to both 2¢-series:

b by 1)
z¢1[’c|q;q] [‘fl,c|q] 201 [q afe |q,c],
gb/a, qcfa | _ |gb/a, qc/a q,q/b|  ab].
261 [ q/a|q,q] = [ a.4%/a | 261 qzc/a|q,a ;
we can further reduce the right hand side of (21) as follows:

ele] {30 - = 881 <)

.qbac ] — (a‘/C;Q)knk_ Q(l—b) = (q/b) Q)k k
(%@ w{z_;, (abi @)k a(l—qc/a)z(q%/a,q)k( )}

(gb,c| ] { (a/ca)e s Z (a/e; )k k}

| 9,a & (gb; RCCT (gbia)e

where the replacement £ — -k —1 has been made for the second sum.
Equating the last result with the left hand side of (21), we have

gq/a,gbc/a _ |gbe afc|
[qb/a,qC/a |q]w = [q,a IqL”/" [qb ‘q’c]

14+2n p—g

a/qlqblﬂch/a q, q-u/\/a, —q_n/'\/an q_z"/by q—2n/c, q2/a

+[ g/a, b, ¢ ] x - ["'2"/0-4"“/\/5,—91'"/\/5. gb/a, gc/a,q~*~3"
14+2n k=0

Q

N
L

1l
,-e
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which is equivalent to the following identity
afc| | _ |4a/a, gbc/a, q, @
1%1 [qb Iq’c] - [qb/a, gc/a, gb, c |q -

Under the parameter replacements a — az, b — ¢/q and ¢ — z, this identity
becomes Ramnujan’s 19;-summation formula (1).

In addition, we remark that the famous quintuple product identity (cf. [21,
Ex 5.6] and Gordon [22] for example):

+00
[9,2,9/7 4 [02%9/2% 0%, = D, {1—z“6"} @G (2" (22)

follows from the case a — 22, b —» —z and ¢, d, e — oo of Bailey’s gig-series
identity.

5. PROOF BY JACKSON’s ¢-DOUGALL THEOREM

Jackson’s terminating very well-poised g@7-series identity (cf. [21, II-22])
reads as

a, Q\/aa —Q‘\/aa b) c, dl €, qa" .
8"”[ o % aalh, aae, asld, agle, ot | 54| (23)

_ | aq, aq/bc, aq/bd, ag/cd 2 ntl _
= [aq/b, agle, ag/d, agfbed|9| ~ToT @ =bede.  (23b)

§5.1. Performing the replacements a — eg2~%", d — eg~1"2"/d, e — @
and n — 1 + 2n in Jackson’s sum (23a-23b), we obtain

56 eg=2%",q""\/e, —q " Ve, a,b,¢c,eq7~2"/d, g1 ~2n l -
7 q"l""\/e—z, _q—l-n\/a eq'l""“/a, eq-l—zn/b’ eq_l_z"/c, dei?

= [d/a, d/b, dfc, dfabe

q where gabe = de.
d, dfab, dfac, dfbc ]1+2n

Following the same procedure as that for Bailey’s identity (20a-20b) for
6%s-series, we can split equally the last sum into two parts and reformulate
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the result as

dfa, d/b, dfc, dfabc
d, dfab, dfac, dfbc |,

1—g?*=2=2n¢ [ 4 b ¢ eq=2-2" eg=1-2n/d, g~1-2n .
= Z 1-q2-2ne [q,d e,eq~1"?"/a,eq= 12" /b, eq‘l’z"/c | ]kq

4 [a, b, ¢ Q/e,qd/elq]
ga/e, gb/e, gcle, d, efq 17|, .,

~1-g*2/e [qa/e,qb/e,qC/e,q‘z"/e,q”"/d,q'l‘”"|q] &
k

X
1—gq27/e | 9,9d/e,q*/e,q"%"[a,q~%"/b,q~2"/c

k=0

The limiting case n — oo of this identity results in the following non-
terminating extension of the ¢g-Saalschiitzian formula (Sears [32, Eq 5.2]),
see also (21, II-24}:

d/a, d/b) d/Ca d/abc _ a, b’ c )
[d, dfab, dfac, d/bcl o 32 d, e|q,q (24a)

a, b) G q/e’ qd/e qa/e, qb/e, qc/e .
+ [qa/e, qb/e, qc/e, d, e/q q:loo3¢2 [ qd/e, qz/e | q;9]. (24b)

Let the E-function be defined by

- d, abe/d , b,
Ela, by, d] = [ a,ab’c/c q]wsdiz [a d, : |q; q] where de = qabe.

Then the Sears formula may be expressed in the following symmetric form:

Ela,b,c,d] + Elga/e,gb/e,qc/e, qd/e] (25a)

_ [d/a ,d/b,d/c,d/abc, abc/d ]

a, b, ¢, d/ab, d/ac, djbe |9 (25b)

85.2. Keeping in mind of de = gabc and then specializing (25a-25b) by
c¢— 0 and d — 0, we get the following relation:

[e/q, a/e, ¢1al>/e|q]oo = [:/‘{, q] 261 [“’ b|q;q]

a, b, ga/e, qb/e
ga/e, gbfe|
+ [qa/e,qb/e” 2¢1[ qz/e|q,q].
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In view of Heine’s transformation (8a), the last two 9¢;-series may be trans-
formed into the following:
[qa,bl ] [q,/ |q }
1

261 [a’ 2 | g q]

ga/e,gbfe| 1 _ [qa/e,q?b/e g,9/a| g
2¢1[ q’/elq’] = [ a,¢/e |¢1]°°2¢1 [q2b/e| ,-e—]

which lead us to the following reduction:

[q, e/q,q/e, qab/e l q]oo 1-e/a 4 [‘1’ e/ | b]

a,b,qa/e,qbfe l-a
1-g/e 9,9/a| 9@
+ 1—qb/e2d’1 [qzb/e | ‘e’

According to the definition, writing explicitly the two g¢;-series and then
inverting the summation order for the later, we have

[q,e/q,q/e,qab/el ] 1- e/q (CLTIIN q/eZ (a/a; 9)x /q_a)’c
b, qa/e, gb/e l—a (qa;q);c 1 qb/e (q2b/e;q)k\e

l—e/qZ(e/baQ)k k l—e/q Z (e/b;9)k bk

(ga; @)k (ga; q)k
_l-e/g (/b _ 1= e/q e/b
T 1-a, %~ (qaiq o = Toa ¥ [ |q’]'

Therefore we have established

e/b| .| _ [a,eq/eqab/e
1%1 [qa Iq’b] = [qa,b,qa/e,qb/e lq -

where 0 < |b] < 1 and 0 < |ga/e|] < 1. Under the parameter replacements
a — ¢fq, b — z and e — az, this becomes Ramanujan’s ;;-summation

formula.

Remark As we declared that our intention is to give a general coverage of
the proofs for Ramanujan’s 9, -series identity through basic hypergeometric
series, but not to write a comprehensive review article. Among many other
proofs, we invite the reader, in particular, to refer the following approaches:

e Analytical continuation by Ismail [25)].

o The probabilistic proof by Kadell [28].

e The proof based on loop integral by Mimachi [30].

e Combinatorial proofs by Corteel-Lovejoy [18] and Yee [36).
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Abstract

Double-loop networks have been widely studied as architecture
for local area networks. A double-loop network G(N;si,sz) is a
digraph with NV vertices 0,1,..., N — 1 and 2N edges of two types:

s1-edge: i - ¢+9( mod N);2=0,1,...,N -1,

sz-edge: ¢ — ¢+ s2( mod N);i=0,1,...,N —1.
for some fixed steps 1 < 81 < s2 < N with ged(NV, s1,s2) = 1.
Let D(N;s1,s2) be the diameter of G and let us define D(N) =
min{D(N;s1,82)|1 < 81 < s2 < N and ged(N, s1,s2) = 1}, and
Dy(N) = min{D(N;1,s)]1 < s < N}. If N is a positive integer and
D(N) < Di(N), then N is called a non-unit step integer or a nus
integer. Xu and Aguild et al. gave some infinite families of O-tight
nus integers with D,(N) — D(N) > 1.

In this work, we give a method for finding infinite families of nus
integers. As application examples, we give one infinite family of 0-
tight nus integers with D;(N) — D(N) > 5, one infinite family of
2-tight nus integers with D;(N) — D(N) > 1 and one infinite family
of 3-tight nus integers with D1(N) — D(N) > 1.
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