On infinite families of optimal double-loop networks with non-unit steps *

Jianqin Zhou
Telecommunication School
Hangzhou Dianzi University, Hangzhou 310018, China
Computer Science School
Anhui University of Technology, Ma'anshan 243002, China
zhou9@yahoo.com

Xirong Xu
Department of Computer Science
Dalian University of Technology, Dalian 116024, China
xirongxu@dlut.edu.cn

Abstract

Double-loop networks have been widely studied as architecture for local area networks. A double-loop network $G(N; s_1, s_2)$ is a digraph with N vertices $0, 1, \ldots, N-1$ and 2N edges of two types:

 s_1 -edge: $i \to i + s_1 \pmod{N}$; i = 0, 1, ..., N - 1. s_2 -edge: $i \to i + s_2 \pmod{N}$; i = 0, 1, ..., N - 1.

for some fixed steps $1 \le s_1 < s_2 < N$ with $gcd(N, s_1, s_2) = 1$. Let $D(N; s_1, s_2)$ be the diameter of G and let us define $D(N) = \min\{D(N; s_1, s_2) | 1 \le s_1 < s_2 < N \text{ and } gcd(N, s_1, s_2) = 1\}$, and $D_1(N) = \min\{D(N; 1, s) | 1 < s < N\}$. If N is a positive integer and $D(N) < D_1(N)$, then N is called a non-unit step integer or a nus integer. Xu and Aguiló et al. gave some infinite families of 0-tight nus integers with $D_1(N) - D(N) \ge 1$.

In this work, we give a method for finding infinite families of nus integers. As application examples, we give one infinite family of 0-tight nus integers with $D_1(N) - D(N) \ge 5$, one infinite family of 2-tight nus integers with $D_1(N) - D(N) \ge 1$ and one infinite family of 3-tight nus integers with $D_1(N) - D(N) \ge 1$.

^{*}The research was supported by Chinese Natural Science Foundation (No. 60473142).

Keywords: Double-loop network, tight optimal, L-shaped tile, non-unit step integer

1 Introduction

Double-loop digraphs $G = G(N; s_1, s_2)$, with $1 \le s_1 < s_2 < N$ and $gcd(N, s_1, s_2) = 1$, have the vertex set $V = \{0, 1, ..., N-1\}$ and the adjacencies are defined by $v \to v + s_i \pmod{N}$ for $v \in V$ and i = 1, 2. The hops s_1 and s_2 between vertices are called steps. These kinds of digraphs have been widely studied as architecture for local area networks, known as double-loop networks (DLN). For surveys about these networks, see[3,7].

From the metric point of view, the minimization of the diameter of G corresponds to a faster transmission of messages in the network. The diameter of G is denoted by $D(N; s_1, s_2)$. As G is vertex symmetric, its diameter can be computed from the expression $\max\{d(0;i)|i\in V\}$, where d(u;v) is the distance from u to v in G. For a fixed integer N>0, the optimal value of the diameter is denoted by

$$D(N) = \min\{D(N; s_1, s_2) | 1 \le s_1 < s_2 < N \text{ and } \gcd(N, s_1, s_2) = 1\}.$$

Several works studied the minimization of the diameter (for a fixed N) with $s_1 = 1$. Let us denote $D_1(N) = \min\{D(N; 1; s) | 1 < s < N\}$.

Since the work of Wong and Coppersmith [12], a sharp lower bound is known for $D_1(N)$:

$$D_1(N) \geq \lceil \sqrt{3N} \rceil - 2 = lb(N).$$

Fiol et al. in [8] showed that lb(N) is also a sharp lower bound for D(N). A given DLN $G(N;s_1,s_2)$ is called k-tight if $D(N;s_1,s_2)=lb(N)+k(k\geq 0)$. A k-tight DLN is called optimal if $D(N)=lb(N)+k(k\geq 0)$. The 0-tight DLN are known as tight ones and they are also optimal. A given DLN $G(N;1,s_2)$ is called k-tight if $D(N;1,s_2)=lb(N)+k(k\geq 0)$. A k-tight DLN $G(N;1,s_2)$ is called optimal if $D_1(N)=lb(N)+k(k\geq 0)$.

The metrical properties of $G(N; s_1, s_2)$ are fully contained in its related L-shaped tile L(N; l, h, x, y) where N = lh - xy, l > y and $h \ge x$. In Figure 1, we illustrate generic dimensions of an L-shaped tile.

Let $D(L) = D(L(N; l, h, x, y)) = max\{l + h - x - 2, l + h - y - 2\}$. For obvious reasons, the value D(L) is called the diameter of the tile L. It is known that an L-shaped tile L(N; l, h, x, y) can be assigned to a $G(N; s_1, s_2)$ without any confusion. However, we can not find double-

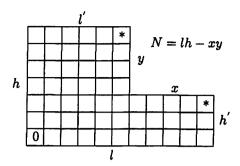


Figure 1: Generic dimensions of an L-shaped tile

loop network $G(N; s_1, s_2)$ from some L-shaped tiles. When an L-shaped tile L(N; l, h, x, y) has diameter lb(N) + k, we say it is k-tight.

Although the identity $D(N)=D_1(N)$ holds for infinite values of N, there are also another infinite set of integers with $D(N)< D_1(N)$. These other integral values of N are called non-unit step integers or nus integers (see [2]). Xu [10] gave three infinite families of 0-tight nus integers with $D_1(N)-D(N)\geq 1$. Aguiló et al. [2] gave a method for finding infinite families of nus integers and then gave some infinite families of 0-tight nus integers with $D_1(N)-D(N)\geq 1$.

In this paper, we propose a method for finding infinite families of nus integers. As application examples, we give one infinite family of 0-tight nus integers with $D_1(N) - D(N) \ge 5$, one infinite family of 2-tight nus integers with $D_1(N) - D(N) \ge 1$ and one infinite family of 3-tight nus integers with $D_1(N) - D(N) \ge 1$.

2 Preliminary

The following Lemma 1, 2, 3 and 4 can be found in [6 or 8 or 9 or 10]. Lemma 1^[8, 10]. Let L(N; l, h, x, y) be an L-shaped tile, N = lh - xy. Then

- (a) There exists G(N;1,s) realizing the L-shaped tile iff l>y, $h\geq x$ and $\gcd(h,y)=1$, where $s\equiv \alpha l-\beta(l-x)(\mod N)$ for some integral values α and β satisfying $\alpha y+\beta(h-y)=1$.
- (b) There exists $G(N; s_1, s_2)$ realizing the L-shaped tile iff l > y, $h \ge x$ and gcd(l, h, x, y) = 1, where $s_1 \equiv \alpha h + \beta y \pmod{N}$, $s_2 \equiv \alpha x + \beta l$

mod N) for some integral values α and β satisfying $gcd(N, s_1, s_2) = 1$.

Lemma 2^[6, 9]. Let us denote by t a non-negative integer. We define $I_1(t) = [3t^2 + 1, 3t^2 + 2t]$, $I_2(t) = [3t^2 + 2t + 1, 3t^2 + 4t + 1]$ and $I_3(t) = [3t^2 + 4t + 2, 3(t+1)^2]$. Then we have $[4, 3T^2 + 6T + 3] = \bigcup_{t=1}^{T} \bigcup_{i=1}^{3} I_i(t)$, where T > 1, and lb(N) = 3t + i - 2 if $N \in I_i(t)$ for i = 1, 2, 3.

Lemma 3^[9]. Let L(N; l, h, x, y) be an L-shaped tile, N = lh - xy. Then

- (a) If L(N; l, h, x, y) is realizable, then $|y x| < \sqrt{N}$;
- (b) If x > 0 and $|y x| < \sqrt{N}$, then

$$D(L(N;l,h,x,y)) \ge \sqrt{3N - \frac{3}{4}(y-x)^2} + \frac{1}{2}|y-x| - 2;$$

(c) Let $f(z)=\sqrt{3N-\frac{3}{4}z^2}+\frac{1}{2}z$. Then f(z) is strictly increasing when $0 < z < \sqrt{N}$.

Proof. (a) In the case of $y - x \ge 0$, by Lemma 1, we know that y < l, thus $y - x \le l'$.

Since yl' < N, thus $|y - x| \le \min\{y, l'\} < \sqrt{N}$.

In the case of x-y>0, by Lemma 1, we know that $x\leq h$, thus $x-y\leq h'$.

Since xh' < N, thus $|y - x| \le \min\{x, h'\} < \sqrt{N}$.

(b) If a > 0 and $ax^2 + bx + c \le 0$, it is well known that $b^2 - 4ac \ge 0$.

In the case of $y-x\geq 0$. As $y-x\geq 0 \Leftrightarrow h+l-x-2\geq l+h-y-2$, so D(L)=h+l-x-2.

Let z = y - x and d = D(L). Then $N = lh - x(x + z) = (d + x + 2 - h)h - x(x + z) \Leftrightarrow x^2 + (z - h)x - h(d + 2 - h) + N = 0$, thus

$$(z-h)^2 + 4h(d+2-h) - 4N \ge 0 \Leftrightarrow 3h^2 + (2z-4d-8)h + 4N - z^2 \le 0.$$

Again we have $(2z - 4d - 8)^2 \ge 12(4N - z^2)$.

Since $z^2 < N$ and z = y - x < h + l - x = d + 2, thus $2d + 4 - z \ge \sqrt{3(4N - 3z^2)}$, which is

$$D(L) \ge \sqrt{3N - \frac{3}{4}(y - x)^2} + \frac{1}{2}|y - x| - 2.$$

In the case of x - y > 0. Note that D(L) = l + h - y - 2 and N =

(d+y+2-h)h-y(y+z), the argument is similar.

(c) For $z(0 \le z < \sqrt{N})$, $f'(z) = \frac{-\frac{3}{2}z}{2\sqrt{3N-\frac{3}{4}z^2}} + \frac{1}{2} = \frac{\sqrt{3N-\frac{3}{4}z^2-\frac{3}{2}z}}{2\sqrt{3N-\frac{3}{4}z^2}} > 0$, thus f(z) is strictly increasing when $0 \le z \le \sqrt{N}$.

We have this lemma.

Lemma 4^[9]. Let $N(t) = 3t^2 + At + B \in I_i(t)$ and L be the L-shaped tile L(N(t); l, h, x, y), where A and B are integral values; l = 2t + a, h = 2t + b, z = |y - x|, a, b, x, y are all integral polynomials of variable t. Then L is k-tight iff $j = i + k(k \ge 0)$, and the following identity holds

$$(a+b-j)(a+b-j+z) - ab + (A+z-2j)t + B = 0.$$
 (1)

Proof. We only prove the case of $x \leq y$. The others are similar.

L is k-tight iff $D(L) = max\{l + h - x - 2, l + h - y - 2\} = lb(N) + k = 3t + i - 2 + k = 3t + j - 2$ and N(t) = lh - xy. Note that $y = x + z(z \ge 0)$, thus D(L) = l + h - x - 2 = 4t + a + b - x - 2 = 3t + j - 2, we have x = t + a + b - j.

Consider y = x + z = t + a + b - j + z, the identity (1) is equivalent to N(t) = lh - xy.

We have this lemma.

The following Lemma 5 is the generalization of Theorem 2 in [11].

Lemma 5. Let $H(z,j) = (2j-z)^2 - 3[j(j-z) + (A+z-2j)t + B]$, and the identity (1) be an equation of a and b. A necessary condition for the equation (1) to have integral solution is that $4H(z,j) = s^2 + 3m^2$, where s and m are integers.

Proof. Suppose that the equation (1) of variable a and b has an integral solution and rewrite it as the following

$$a^{2} + (b - 2j + z)a + b^{2} - (2j - z)b + c = 0$$

where c = j(j-z) + (A+z-2j)t + B. Thus, there exists an integer m such that

$$(b-2j+z)^2-4[b^2-(2j-z)b+c]=m^2$$

Rewrite it as an equation of variable b

$$3b^2 - 2(2j - z)b + 4c + m^2 - (2j - z)^2 = 0$$

Thus, there exists an integer n such that

$$4(2j-z)^2 - 12[4c + m^2 - (2j-z)^2] = n^2$$

This implies that n is even. Let n = 2s.

We have $4(2j-z)^2 - 12c = s^2 + 3m^2$, hence $4H(z,j) = s^2 + 3m^2$.

We have this lemma.

It is easy to show that the following Lemma 6 is equivalent to Theorem 1 in [11].

Lemma 6. Let n, s and m be integers, $n = s^2 + 3m^2$. If n has a prime factor p, here $p \equiv 2 \pmod{3}$, then there exists an even integer q, such that n is divisible by p^q , but not divisible by p^{q+1} .

Proof. We prove it by mathematical induction on p.

- 1. We first prove the case of p=2. Suppose n is divisible by 2, then s and m are both even or odd. Consider s and m are both odd, let s=2i+1 and m=2j+1, thus $n=2^2[i(i+1)+3j(j+1)]$, note that i(i+1)+3j(j+1) is odd, so the lemma is true. Consider s and m are both even, let s=2i and m=2j, thus $n=2^2(i^2+3j^2)$, if i^2+3j^2 is divisible by 2, with the same argument, we know that i^2+3j^2 is divisible by 2^2 . Finally there exists an even integer q, such that n is divisible by 2^q , but not divisible by 2^{q+1} .
- 2. Suppose that n is divisible by a prime number p, where p > 2 and $p \equiv 2 \pmod{3}$. Note that p is odd, so there exist i and j, such that 0 < i < p/2, 0 < j < p/2, s = xp + i (or s = xp i) and m = yp + j (or m = yp j), therefore $i^2 + 3j^2$ is divisible by p.

Note that $i^2+3j^2<(p/2)^2+3(p/2)^2=p^2$, by the induction assumption, we know that there is no prime number p_0 and odd integer k, where $p_0< p$ and $p_0\equiv 2\pmod 3$, such that i^2+3j^2 is divisible by $(p_0)^k$. Suppose that there exists integer q_0 (we can suppose $q_0=(p_1)^q$, where $p_1< p, p_1\equiv 2\pmod 3$, and q is an even integer), where $q_0\equiv 1\pmod 3$, such that $i^2+3j^2=pq_0$. Note that $i^2+3j^2\equiv 0$ or $1\pmod 3$ and $pq_0\equiv 2\pmod 3$, this is a contradiction. It follows that the identity $i^2+3j^2=p$ does not hold.

Therefore i^2+3j^2 is only divisible by 3 and p, thus $3(i/3)^2+j^2$ is divisible by p. So we can conclude that $i^2+3j^2=0$, thus s=xp and m=yp, we obtain that n is divisible by p^2 . Finally there exists an even integer q, such that n is divisible by p^q , but not divisible by p^{q+1} .

By mathematical induction, we have this lemma.

3 A method to generate infinite families of nus integers

We first prove that

Theorem 1. Let $N = N(t) = 3t^2 + At + B \in I_i(t)$, $D(N) = lb(N) + k(k \ge 0)$ and L-shaped tile L(N; l, h, x, y) be k-tight and realizable. Let z = |y - x|. Then the following hold

Case 1. If A = 0 or A = 2(if i = 2) or A = 4(if i = 3), and $3N - \frac{3}{4}(2k + 3)^2 > (3t + \frac{A-1}{2})^2$, then $0 \le z \le 2k + 2$.

Case 2. If A = 1 or A = 3 or A = 5, and $3N - \frac{3}{4}(2k+2)^2 > (3t + \frac{A-1}{2})^2$, then $0 \le z \le 2k+1$.

Case 3. If A = 2(if i = 1) or A = 4(if i = 2) or A = 6, and $3N - \frac{3}{4}(2k + 1)^2 > (3t + \frac{A-1}{2})^2$, then $0 \le z \le 2k$.

Proof. We only prove case 1. The others are similar.

Let L(N; l, h, x, y) be k-tight, then D(L) = 3t + i - 2 + k.

Note that i = A/2 + 1, by lemma 3, if $z \ge 2k + 3$, we have

$$\begin{array}{ll} D(L(N;l,h,x,y)) & \geq & \sqrt{3N(t) - \frac{3}{4}(2k+3)^2} + \frac{2k+3}{2} - 2 \\ & > & (3t + \frac{A-1}{2}) + \frac{2k+3}{2} - 2 \\ & = & 3t + i - 2 + k \\ & = & lb(N) + k. \end{array}$$

Therefore, all the k-tight L-shaped tile L(N; l, h, x, y) must satisfy $0 \le z \le 2k + 2, z = |y - x|$.

We have this theorem.

We now describe our method to generate infinite families of nus integers.

Step 1. Find an integer N_0 , such that $G(N_0; s_1, s_2)$ is k-tight optimal $(k \ge 0)$, and $D(N_0) < D_1(N_0)$.

Step 2. Find a polynomial $N(t) = 3t^2 + At + B$, such that $N(t_0) = N_0$ and $N(t) \in I_i(t), 1 \le i \le 3$.

Step 3. For any H(z, j), $i \le j \le k$, $0 \le z \le 2k + z0$ (if A = 0 or A = 2(i = 2) or A = 4(i = 3), then z0 = 2; if A = 1 or A = 3 or A = 5, then z0 = 1; if A = 2(i = 1) or A = 4(i = 2) or A = 6, then z0 = 0).

Case 1. If 4H(z,j) has not the form of s^2+3m^2 , where s and m are integers. From Lemma 6, when $t=t_0$, 4H(z,j) has a prime factor $p\equiv 2(\mod 3)$, and there exists an even integer q, such that 4H(z,j) is divisible by p^{q-1} , but not divisible by p^q . Suppose we have got the following factors:

$$p_1^{q_1}, p_2^{q_2}, \dots, p_l^{q_l}$$
.
Let $q_0 = lcm(p_1^{q_1}, p_2^{q_2}, \dots, p_l^{q_l})$.

Case 2. If j=k, A+z-2j=0, and 4H(z,j) has the form of s^2+3m^2 , where s and m are integers. For any integral solution (a,b) of the equation: (a+b-j)(a+b-j+z)-ab+(A+z-2j)t+B=0.

Let $l(t)=2t+a=2(t-t_0)+l_0$, $h(t)=2t+b=2(t-t_0)+h_0$, x(t)=t+a+b-j (or $y(t)+z)=(t-t_0)+x_0$, y(t)=x(t)+z (or $(t+a+b-j)=(t-t_0)+y_0$. From Lemma 1, as L(N;l,h,x,y) can not be realized by G(N;1,s), hence $\gcd(h_0,y_0)>1$, so there exists a prime factor p of $\gcd(h_0,y_0)$. Suppose we have got the following prime factors:

$$p_1, p_2, \dots, p_r.$$
Let $g_1 = lcm(p_1, p_2, \dots, p_r).$

Step 4. Suppose $\{G(N(t); s_1(t), s_2(t)) : t = g_2e + t_0, e \ge 0\}$ is an infinite family of k-tight DLN(not necessarily optimal), then $\{N(t) : t = ge + t_0, e \ge 0\}$, where $g = lcm(g_0, g_1, g_2)$, is an infinite family of k-tight nus integers.

From Step 3, we know that our method can only deal with a part of nus integers.

4 Some application examples

We now apply our method to some initial nus integers.

Example 1. Take $N(t) = 3t^2 + 2t - 2414$, and N(14762) = 653777042. For D(N; 19, 44380) = lb(653777042) = 44285, then G(N; 19, 44380) is 0-tight optimal. For D(N; 1, 27202990) = 44290 = lb(N) + 5, and it is checked by computer that $D_1(653777042) = 44290$, so 653777042 is a nus integer with $D_1(N) - D(N) = 5$.

In fact, the following proof will show that $D_1(653777042) \ge 44290$. With a similar argument as G(10606260; 1, 414351) in section 5, it can be proved that D(653777042; 1, 27202990) = 44290.

For A=2, B=-2414, j=1, z=0, then A+z-2j=0, so the equation (1) becomes

$$(a+b-1)(a+b-1)-ab-2414=0,$$

which has integral solutions:

$$S = \{(-55, 19), (-55, 38), (19, -55), (19, 38), (38, -55), (38, 19)\}.$$

For (-55, 19), gcd(h, y) = gcd(2t+b, t+a+b-1) = gcd(2t+19, t-37) = 31 if $t \equiv 6 \pmod{31}$.

For
$$(-55, 38)$$
, $gcd(h, y) = gcd(2t + 38, t - 18) = 2$ if $t \equiv 0 \pmod{2}$.

For
$$(19, -55)$$
, $gcd(h, y) = gcd(2t - 55, t - 37) = 19$ if $t \equiv 18 \pmod{19}$.

For
$$(19,38)$$
, $gcd(h,y) = gcd(2t+38,t+56) = 2$ if $t \equiv 0 \pmod{2}$.

For
$$(38, -55)$$
, $gcd(h, y) = gcd(2t - 55, t - 18) = 19$ if $t \equiv 18 \pmod{19}$.

For
$$(38, 19)$$
, $gcd(h, y) = gcd(2t + 19, t + 56) = 31$ if $t \equiv 6 \pmod{31}$.

By Lemma 1(a) and consider the symmetry of L-shaped tile, for $t=2\times 19\times 31\times e+14762 (e\geq 0)$, there is no G(N;1,s) realizing the 0-tight L-shaped tile L(N(t);l,h,x,y) where |y-x|=0.

Some L-shaped tiles can not be realized by G(N; 1, s), but can be realized by $G(N; s_1, s_2)$.

Take $j=1, z=0, (38, -55) \in S$, let $l=2t+a, h=2t+b, x=t+a+b-1, y=x, \alpha=-1, \beta=2, s_1 \equiv \alpha h+\beta y \pmod{N}=19, s_2 \equiv \alpha x+\beta l \pmod{N}=3t+94$, then for $t=19e+14762(e\geq 0), \gcd(l,h,x,y)=1$ and $\gcd(N,s_1,s_2)=1$. Hence, $\{G(N(t);s_1,s_2): t=19e+14762, e\geq 0\}$ is an infinite family of 0-tight DLN.

For $2 \le j \le 5$, $0 \le z \le 2(j-1)$, t = 14762, H(z, j) has the following factors:

$$H(0,2) = 95818 = 2 \times 47909$$
, where the power of 2 is 1.

$$H(1,2) = 51531 = 89 \times 579$$
, where the power of 89 is 1.

$$H(2,2) = 7246 = 2 \times 3623$$
, where the power of 2 is 1.

$$H(0,3) = 184395 = 5 \times 36879$$
, where the power of 5 is 1.

$$H(1,3) = 140107 = 11 \times 12737$$
, where the power of 11 is 1.

$$H(2,3) = 95821 = 11 \times 8711$$
, where the power of 11 is 1.

$$H(3,3) = 51537 = 41 \times 1257$$
, where the power of 41 is 1.

- $H(4,3) = 7255 = 5 \times 1451$, where the power of 5 is 1.
- $H(0,4) = 272974 = 2 \times 136487$, where the power of 2 is 1.
- $H(1,4) = 228685 = 5 \times 45737$, where the power of 5 is 1.
- $H(2,4) = 184398 = 2 \times 92199$, where the power of 2 is 1.
- $H(3,4) = 140113 = 167 \times 839$, where the power of 167 is 1.
- $H(4,4) = 95830 = 2 \times 47915$, where the power of 2 is 1.
- $H(5,4) = 51549 = 17183 \times 3$, where the power of 17183 is 1.
- $H(6,4) = 7270 = 2 \times 3635$, where the power of 2 is 1.
- $H(0,5) = 361555 = 5 \times 72311$, where the power of 5 is 1.
- $H(1,5) = 317265 = 5 \times 63453$, where the power of 5 is 1.
- $H(2,5) = 272977 = 29 \times 9413$, where the power of 29 is 1.
- $H(3,5) = 228691 = 71 \times 3221$, where the power of 71 is 1.
- $H(4,5) = 184407 = 61469 \times 3$, where the power of 61469 is 1.
- $H(5,5) = 140125 = 5^3 \times 1121$, where the power of 5 is 3.
- $H(6,5) = 95845 = 5 \times 19169$, where the power of 5 is 1.
- $H(7,5) = 51567 = 17189 \times 3$, where the power of 17189 is 1.
- $H(8,5) = 7291 = 23 \times 317$, where the power of 23 is 1.

Let $g_0=2^2\times 5^4\times 11^2\times 29^2\times 41^2\times 71^2\times 89^2\times 167^2\times 17183^2\times 17189^2\times 61469^2$, and $t=19\times 31\times g_0\times e+14762(e\geq 0)$.

For $t \geq 14762$, A = 2, B = -2414, $0 \leq k \leq 4$, we know that $3N(t) - \frac{3}{4}(2k+1)^2 > (3t + \frac{A-1}{2})^2$ is equivalent to $3t + 3B > \frac{3}{4}(2k+3)^2 + \frac{1}{4}(A-1)^2$, which is true. From Theorem 1, if *L*-shaped tile L(N; l, h, x, y) is *k*-tight, z = |y - x|, then $0 \leq z \leq 2k$. We know that there is no 0-tight *L*-shaped tile L(N; l, h, x, y), |y - x| = 0, which can be realized by G(N; 1, s), for $t = 19 \times 31 \times g_0 \times e + 14762(e \geq 0)$.

For $1 \le k \le 4(2 \le j \le 5), 0 \le z = |y-x| \le 2k$, by Lemma 6, H(z,j) has no the form of $s^2 + 3m^2$. By lemma 5, the equation (1) has no integral solutions of a and b. By lemma 4, there is no k-tight L-shaped tile L(N(t); l, h, x, y) for (z, j).

As a conclusion, the nodes $N(t) = 3t^2 + 2t - 2414$, $t = 19 \times 31 \times g_0 \times e + 14762 (e \ge 0)$, of an infinite family of 0-tight optimal DLN correspond

to nus integers with $D_1(N) - D(N) \ge 5$.

Example 2. Take $N(t) = 3t^2 + 2t - 700$, and N(1880) = 10606260. For D(N; 33, 5696) = lb(10606260) + 2 = 5641, then G(N; 33, 5696) is 2-tight optimal. For D(N; 1, 414351) = 5642 = lb(N) + 3, and it is checked by computer that $D_1(10606260) = 5642$, so 10606260 is a 2-tight nus integer with $D_1(N) - D(N) = 1$.

For $1 \le j \le 3, 0 \le z \le 2(j-1), t = 1880, H(z, j)$ has the following factors(except H(4,3)):

$$H(0,1) = 2101 = 11 \times 191$$
, where the power of 11 is 1.

$$H(0,2) = 13384 = 2^3 \times 1673$$
, where the power of 2 is 3.

$$H(1,2) = 7743 = 29 \times 267$$
, where the power of 29 is 1.

$$H(2,2) = 2104 = 2^3 \times 263$$
, where the power of 2 is 3.

$$H(0,3) = 24669 = 2741 \times 9$$
, where the power of 2741 is 1.

$$H(1,3) = 19027 = 53 \times 359$$
, where the power of 53 is 1.

$$H(2,3) = 13387 = 11 \times 1217$$
, where the power of 11 is 1.

$$H(3,3) = 7749 = 41 \times 189$$
, where the power of 41 is 1.

$$H(4,3) = 2113 = 41^2 + 3 \times 12^2$$
.

Let
$$g_0 = 2^4 \times 11^2 \times 29^2 \times 41^2 \times 53^2 \times 2741^2$$
.

For A=2, B=-700, j=3, z=4, then A+z-2j=0, so the equation (1) becomes

$$(a+b-3)(a+b+1)-ab-700=0,$$

which has integral solutions:

$$S = \{(-25, -1), (-25, 28), (-1, -25), (-1, 28), (28, -25), (28, -1)\}.$$

For (-25, -1), gcd(h, y) = gcd(2t + b, t + a + b - 3 + 4) = gcd(2t - 1, t - 25) = 7 if $t \equiv 4 \pmod{7}$.

For
$$(-25, 28)$$
, $gcd(h, y) = gcd(2t + 28, t + 4) = 2$ if $t \equiv 0 \pmod{2}$.

For
$$(-1, -25)$$
, $gcd(h, y) = gcd(2t - 25, t - 25) = 5$ if $t \equiv 0 \pmod{5}$.

For
$$(-1, 28)$$
, $gcd(h, y) = gcd(2t + 28, t + 28) = 2$ if $t \equiv 0 \pmod{2}$.

For
$$(28, -25)$$
, $gcd(h, y) = gcd(2t - 25, t + 4) = 3$ if $t \equiv 2 \pmod{3}$.

For
$$(28, -1)$$
, $gcd(h, y) = gcd(2t - 1, t + 28) = 3$ if $t \equiv 2 \pmod{3}$.

By Lemma 1(a) and consider the symmetry of L-shaped tile, for $t = 2 \times 3 \times 5 \times 7 \times e + 1880 (e \ge 0)$, there is no G(N; 1, s) realizing the 2-tight L-shaped tile L(N(t); l, h, x, y) where |y - x| = 4.

With a similar argument as Example 1, let $t = 3 \times 5 \times 7 \times g_0 \times e + 1880(e \ge 0)$, there is no k-tight($0 \le k \le 1$) L-shaped tile L(N(t); l, h, x, y), and there is no k-tight($0 \le k \le 2$) realizable L-shaped tile L(N(t); l, h, x, y) by G(N(t); 1, s).

Take $j=3, z=4, (28,-25) \in S$, let $l=2t+a, h=2t+b, x=t+a+b-3, y=x+4, \alpha=-1, \beta=2, s_1\equiv \alpha h+\beta y (\mod N)=33, s_2\equiv \alpha x+\beta l (\mod N)=3t+56$, then for $t=g_0\times e+1880(e\geq 0), \gcd(l,h,x,y)=1$ and $\gcd(N,s_1,s_2)=1$. Hence, $\{G(N(t);s_1,s_2): t=g_0\times e+1880, e\geq 0\}$ is an infinite family of 2-tight DLN.

As a conclusion, the nodes $N(t) = 3t^2 + 2t - 700$, $t = 3 \times 5 \times 7 \times g_0 \times e + 1880 (e \ge 0)$, of an infinite family of 2-tight optimal DLN correspond to nus integers with $D_1(N) - D(N) \ge 1$.

Example 3. Take $N(t) = 3t^2 + 2t - 927$, and N(9714) = 283103889. For D(N; 6, 29093) = lb(283103889) + 3 = 29144, then G(N; 6, 29093) is 3-tight optimal. For D(N; 1, 593449) = 29145 = lb(N) + 4, and it is checked by computer that $D_1(283103889) = 29145$, so 283103889 is a 3-tight nus integer with $D_1(N) - D(N) = 1$.

For $1 \le j \le 4, 0 \le z \le 2(j-1), t = 9714, H(z, j)$ has the following factors (unless H(6,4)):

- $H(0,1) = 2782 = 2 \times 1391$, where the power of 2 is 1.
- $H(0,2) = 61069 = 173 \times 353$, where the power of 173 is 1.
- $H(1,2) = 31926 = 2 \times 15963$, where the power of 2 is 1.
- $H(2,2) = 2785 = 5 \times 557$, where the power of 5 is 1.
- $H(0,3) = 119358 = 2 \times 59679$, where the power of 2 is 1.
- $H(1,3) = 90214 = 2 \times 45107$, where the power of 2 is 1.
- $H(2,3) = 61072 = 11 \times 5552$, where the power of 11 is 1.
- $H(3,3) = 31932 = 887 \times 36$, where the power of 887 is 1.
- $H(4,3) = 2794 = 2 \times 1397$, where the power of 2 is 1.
- $H(0,4) = 177649 = 59 \times 3011$, where the power of 59 is 1.
- $H(1,4) = 148504 = 8 \times 18563$, where the power of 2 is 3.

$$H(2,4) = 119361 = 11 \times 10851$$
, where the power of 11 is 1.

$$H(3,4) = 90220 = 5 \times 18044$$
, where the power of 5 is 1.

$$H(4,4) = 61081 = 17 \times 3593$$
, where the power of 17 is 1.

$$H(5,4) = 31944 = 8 \times 3993$$
, where the power of 2 is 3.

$$H(6,4) = 2809 = 53^2$$
.

Let
$$g_0 = 2^4 \times 5^2 \times 11^2 \times 17^2 \times 59^2 \times 173^2 \times 887^2$$
.

For A=2, B=-927, j=4, z=6, then A+z-2j=0, so the equation (1) becomes

$$(a+b-4)(a+b+2) - ab - 927 = 0,$$

which has integral solutions:

$$S = \{(-17, -17), (-17, 36), (36, -17)\}.$$

For (-17, -17), gcd(h, y) = gcd(2t + b, t + a + b - 4 + 6) = gcd(2t - 17, t - 32) = 47 if $t \equiv 32 \pmod{47}$.

For
$$(-17, 36)$$
, $gcd(h, y) = gcd(2t + 36, t + 21) = 3$ if $t \equiv 0 \pmod{3}$.

For
$$(36, -17)$$
, $gcd(h, y) = gcd(2t - 17, t + 21) = 59$ if $t \equiv 38 \pmod{59}$.

By Lemma 1(a) and consider the symmetry of L-shaped tile, for $t = 3 \times 47 \times 59 \times e + 9714(e \ge 0)$, there is no G(N; 1, s) realizing the 3-tight L-shaped tile L(N(t); l, h, x, y) where |y - x| = 6.

With a similar argument as Example 1, let $t = 3 \times 47 \times g_0 \times e + 9714(e \ge 0)$, there is no k-tight($0 \le k \le 2$) L-shaped tile L(N(t); l, h, x, y), and there is no k-tight($0 \le k \le 3$) realizable L-shaped tile L(N(t); l, h, x, y) by G(N(t); 1, s).

Take $j=4, z=6, (-17,36) \in S$, let $l=2t+a, h=2t+b, x=t+a+b-4, y=x+6, \alpha=-1, \beta=2, s_1\equiv \alpha h+\beta y \pmod{N}=6, s_2\equiv \alpha x+\beta l \pmod{N}=3t-49$, then for $t=g_0\times e+9714(e\geq 0), \gcd(l,h,x,y)=1$ and $\gcd(N,s_1,s_2)=1$. Hence, $\{G(N(t);s_1,s_2): t=g_0\times e+9714, e\geq 0\}$ is an infinite family of 3-tight DLN.

As a conclusion, the nodes $N(t) = 3t^2 + 2t - 927, t = 3 \times 47 \times g_0 \times e + 9714(e \ge 0)$, of an infinite family of 3-tight optimal DLN correspond to nus integers with $D_1(N) - D(N) \ge 1$.

5 Remarks

We continue to discuss Example 2. For t = 1880, A = 2, B = -700, j = 4, z = 3, the equation (1) becomes

$$(a+b-4)(a+b-1)-ab-3t-700=0,$$

which has a solution (41,54).

Let a=41, b=3f+54. From the above equation, we get $t=3f^2+144f+1880$.

Let

$$\begin{split} &l(f) = 2t + a = 6f^2 + 288f + 3801, \\ &h(f) = 2t + b = 6f^2 + 291f + 3814, \\ &x(f) = y(f) + z = 3f^2 + 147f + 1974, \\ &y(f) = t + a + b - j = 3f^2 + 147f + 1971, \\ &l'(f) = l(f) - x(f) = 3f^2 + 141f + 1827, \end{split}$$

 $h'(f) = h(f) - y(f) = 3f^2 + 144f + 1843.$

When f = 3481g, $\alpha(g) = 3fg + 17421g + 72$, $\beta(g) = -3fg - 17424g - 77$, it is easy to show that $\alpha(g)y(f) + \beta(g)h'(f) = 1$.

From Lemma 1, we know that G(N(t); 1, s(g)) is an infinite family of 3-tight optimal DLN, where $N(t) = 3t^2 + 2t - 700, t = 3f^2 + 144f + 1880, f = 3481g, <math>g = 3 \times 5 \times 7 \times g_0 \times e(e \ge 0), s(g) = \alpha(g)l(f) - \beta(g)l'(f)$. Therefore, N(t(g)) is an infinite family of nus integers with $D_1(N) - D(N) = 1$.

When e = 0, then g = 0, f = 0, $s(g) = \alpha(g)l(f) - \beta(g)l'(f) = 414351$. We know that G(10606260; 1, 414351) is 3-tight optimal.

In a similar way to the above discussion, we can get infinite families of nus integers with a constant $D_1(N) - D(N)$ from an initial nus integer.

Acknowledgement

We thank the anonymous referees for many constructive comments that greatly improved the presentation of this paper.

References

- [1] F. Aguiló, M.A. Fiol, An efficient algorithm to find optimal double loop networks, *Discrete Mathematics*, 138(1995) 15-29.
- [2] F. Aguiló, E. Simó, M. Zaragozá, Optimal double-loop networks with non-unit steps, The Electronic Journal of Combinatorics, 10 (2003), #R2.
- [3] J.-C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Parallel Distribut. Comput., 24 (1995) 2-10.
- [4] C.F. Chan, C. Chen and Z.X. Hong, A simple algorithm to find the steps of double-loop networks, *Discrete Applied Mathematics*, Vol.121 (2002) 61-72.
- [5] P. Erdös, D.F. Hsu, Distributed loop networks with minimum transmission delay, Theoret. Comput. Sci., 100 (1992) 223-241.
- [6] P.Esqué, F. Aguiló and M.A. Fiol, Double commutative-step digraphs with minimum diameters, Discrete Mathematics, 114 (1993)147-157.
- [7] F.K. Hwang, A complementary survey on double-loop networks, *Theoret. Comput. Sci.*, 263(2001) 211-229.
- [8] M.A. Fiol, J.L.A. Yebra, I. Alegre and M. Valero, A discrete optimization problem in local networks and data alignment, *IEEE Trans. Comput.*, C-36 (1987) 702-713
- [9] Li Q., Xu J. and Zhang Z., The infinite families of optimal double loop networks, Discrete Applied Mathematics, Vol.46(1993)179-183.
- [10] Xu J, Designing of optimal double loop networks, Science in China, Series E, Vol. E-42 num. 5 (1999) 462-469.
- [11] Xu J. and Liu Q., An infinite family of 4-tight optimal double loop networks, Science in China, Series A, Vol. A-46 num. 1 (2003) 139-143.
- [12] C.K. Wong and D. Coppersmith, A combinatorial problem related to multimode memory organizations, J. Ass. Comput. Mach., 21 (1974) 392-402.